[mlir][VectorOps] Lower vector.outerproduct of int vectors

vector.fma and mulf don't work on integers. Use a muli/addi pair or
plain muli instead.

Differential Revision: https://reviews.llvm.org/D83292
This commit is contained in:
Benjamin Kramer 2020-07-07 12:49:32 +02:00
parent b80508703f
commit cca4ac523e
2 changed files with 53 additions and 2 deletions

View File

@ -1289,9 +1289,16 @@ public:
Value m;
if (acc) {
Value e = rewriter.create<vector::ExtractOp>(loc, rhsType, acc, pos);
m = rewriter.create<vector::FMAOp>(loc, b, op.rhs(), e);
if (eltType.isa<IntegerType>())
m = rewriter.create<AddIOp>(
loc, rewriter.create<MulIOp>(loc, b, op.rhs()), e);
else
m = rewriter.create<vector::FMAOp>(loc, b, op.rhs(), e);
} else {
m = rewriter.create<MulFOp>(loc, b, op.rhs());
if (eltType.isa<IntegerType>())
m = rewriter.create<MulIOp>(loc, b, op.rhs());
else
m = rewriter.create<MulFOp>(loc, b, op.rhs());
}
result = rewriter.create<vector::InsertOp>(loc, resType, m, result, pos);
}

View File

@ -293,6 +293,50 @@ func @outerproduct_acc(%arg0: vector<2xf32>,
return %0: vector<2x3xf32>
}
// CHECK-LABEL: func @outerproduct_noacc_int
// CHECK-SAME: %[[A:.*0]]: vector<2xi32>,
// CHECK-SAME: %[[B:.*1]]: vector<3xi32>
// CHECK: %[[C0:.*]] = constant dense<0> : vector<2x3xi32>
// CHECK: %[[T0:.*]] = vector.extract %[[A]][0] : vector<2xi32>
// CHECK: %[[T1:.*]] = splat %[[T0]] : vector<3xi32>
// CHECK: %[[T2:.*]] = muli %[[T1]], %[[B]] : vector<3xi32>
// CHECK: %[[T3:.*]] = vector.insert %[[T2]], %[[C0]] [0] : vector<3xi32> into vector<2x3xi32>
// CHECK: %[[T4:.*]] = vector.extract %[[A]][1] : vector<2xi32>
// CHECK: %[[T5:.*]] = splat %[[T4]] : vector<3xi32>
// CHECK: %[[T6:.*]] = muli %[[T5]], %[[B]] : vector<3xi32>
// CHECK: %[[T7:.*]] = vector.insert %[[T6]], %[[T3]] [1] : vector<3xi32> into vector<2x3xi32>
// CHECK: return %[[T7]] : vector<2x3xi32>
func @outerproduct_noacc_int(%arg0: vector<2xi32>,
%arg1: vector<3xi32>) -> vector<2x3xi32> {
%0 = vector.outerproduct %arg0, %arg1 : vector<2xi32>, vector<3xi32>
return %0: vector<2x3xi32>
}
// CHECK-LABEL: func @outerproduct_acc_int
// CHECK-SAME: %[[A:.*0]]: vector<2xi32>,
// CHECK-SAME: %[[B:.*1]]: vector<3xi32>,
// CHECK-SAME: %[[C:.*2]]: vector<2x3xi32>
// CHECK: %[[C0:.*]] = constant dense<0> : vector<2x3xi32>
// CHECK: %[[T0:.*]] = vector.extract %[[A]][0] : vector<2xi32>
// CHECK: %[[T1:.*]] = splat %[[T0]] : vector<3xi32>
// CHECK: %[[T2:.*]] = vector.extract %[[C]][0] : vector<2x3xi32>
// CHECK: %[[T3:.*]] = muli %[[T1]], %[[B]] : vector<3xi32>
// CHECK: %[[T4:.*]] = addi %[[T3]], %[[T2]] : vector<3xi32>
// CHECK: %[[T5:.*]] = vector.insert %[[T4]], %[[C0]] [0] : vector<3xi32> into vector<2x3xi32>
// CHECK: %[[T6:.*]] = vector.extract %[[A]][1] : vector<2xi32>
// CHECK: %[[T7:.*]] = splat %[[T6]] : vector<3xi32>
// CHECK: %[[T8:.*]] = vector.extract %[[C]][1] : vector<2x3xi32>
// CHECK: %[[T9:.*]] = muli %[[T7]], %[[B]] : vector<3xi32>
// CHECK: %[[T10:.*]] = addi %[[T9]], %[[T8]] : vector<3xi32>
// CHECK: %[[T11:.*]] = vector.insert %[[T10]], %[[T5]] [1] : vector<3xi32> into vector<2x3xi32>
// CHECK: return %[[T11]] : vector<2x3xi32>
func @outerproduct_acc_int(%arg0: vector<2xi32>,
%arg1: vector<3xi32>,
%arg2: vector<2x3xi32>) -> vector<2x3xi32> {
%0 = vector.outerproduct %arg0, %arg1, %arg2 : vector<2xi32>, vector<3xi32>
return %0: vector<2x3xi32>
}
// CHECK-LABEL: func @transpose23
// CHECK-SAME: %[[A:.*]]: vector<2x3xf32>
// CHECK: %[[Z:.*]] = constant dense<0.000000e+00> : vector<3x2xf32>