forked from OSchip/llvm-project
parent
53862f7d2b
commit
cbde84070a
|
@ -1,13 +0,0 @@
|
|||
##===- lib/Bytecode/Writer/Makefile ------------------------*- Makefile -*-===##
|
||||
#
|
||||
# The LLVM Compiler Infrastructure
|
||||
#
|
||||
# This file was developed by the LLVM research group and is distributed under
|
||||
# the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
#
|
||||
##===----------------------------------------------------------------------===##
|
||||
LEVEL = ../../..
|
||||
LIBRARYNAME = LLVMBCWriter
|
||||
BUILD_ARCHIVE = 1
|
||||
|
||||
include $(LEVEL)/Makefile.common
|
|
@ -1,390 +0,0 @@
|
|||
//===-- SlotCalculator.cpp - Calculate what slots values land in ----------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements a useful analysis step to figure out what numbered slots
|
||||
// values in a program will land in (keeping track of per plane information).
|
||||
//
|
||||
// This is used when writing a file to disk, either in bytecode or assembly.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "SlotCalculator.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/InlineAsm.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/TypeSymbolTable.h"
|
||||
#include "llvm/Type.h"
|
||||
#include "llvm/ValueSymbolTable.h"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
#include <algorithm>
|
||||
#include <functional>
|
||||
using namespace llvm;
|
||||
|
||||
#ifndef NDEBUG
|
||||
#include "llvm/Support/Streams.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
static cl::opt<bool> SlotCalculatorDebugOption("scdebug",cl::init(false),
|
||||
cl::desc("Enable SlotCalculator debug output"), cl::Hidden);
|
||||
#define SC_DEBUG(X) if (SlotCalculatorDebugOption) cerr << X
|
||||
#else
|
||||
#define SC_DEBUG(X)
|
||||
#endif
|
||||
|
||||
void SlotCalculator::insertPrimitives() {
|
||||
// Preload the table with the built-in types. These built-in types are
|
||||
// inserted first to ensure that they have low integer indices which helps to
|
||||
// keep bytecode sizes small. Note that the first group of indices must match
|
||||
// the Type::TypeIDs for the primitive types. After that the integer types are
|
||||
// added, but the order and value is not critical. What is critical is that
|
||||
// the indices of these "well known" slot numbers be properly maintained in
|
||||
// Reader.h which uses them directly to extract values of these types.
|
||||
SC_DEBUG("Inserting primitive types:\n");
|
||||
// See WellKnownTypeSlots in Reader.h
|
||||
getOrCreateTypeSlot(Type::VoidTy ); // 0: VoidTySlot
|
||||
getOrCreateTypeSlot(Type::FloatTy ); // 1: FloatTySlot
|
||||
getOrCreateTypeSlot(Type::DoubleTy); // 2: DoubleTySlot
|
||||
getOrCreateTypeSlot(Type::LabelTy ); // 3: LabelTySlot
|
||||
assert(TypeMap.size() == Type::FirstDerivedTyID &&"Invalid primitive insert");
|
||||
// Above here *must* correspond 1:1 with the primitive types.
|
||||
getOrCreateTypeSlot(Type::Int1Ty ); // 4: Int1TySlot
|
||||
getOrCreateTypeSlot(Type::Int8Ty ); // 5: Int8TySlot
|
||||
getOrCreateTypeSlot(Type::Int16Ty ); // 6: Int16TySlot
|
||||
getOrCreateTypeSlot(Type::Int32Ty ); // 7: Int32TySlot
|
||||
getOrCreateTypeSlot(Type::Int64Ty ); // 8: Int64TySlot
|
||||
}
|
||||
|
||||
SlotCalculator::SlotCalculator(const Module *M) {
|
||||
assert(M);
|
||||
TheModule = M;
|
||||
|
||||
insertPrimitives();
|
||||
processModule();
|
||||
}
|
||||
|
||||
// processModule - Process all of the module level function declarations and
|
||||
// types that are available.
|
||||
//
|
||||
void SlotCalculator::processModule() {
|
||||
SC_DEBUG("begin processModule!\n");
|
||||
|
||||
// Add all of the global variables to the value table...
|
||||
//
|
||||
for (Module::const_global_iterator I = TheModule->global_begin(),
|
||||
E = TheModule->global_end(); I != E; ++I)
|
||||
CreateSlotIfNeeded(I);
|
||||
|
||||
// Scavenge the types out of the functions, then add the functions themselves
|
||||
// to the value table...
|
||||
//
|
||||
for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
|
||||
I != E; ++I)
|
||||
CreateSlotIfNeeded(I);
|
||||
|
||||
// Add all of the global aliases to the value table...
|
||||
//
|
||||
for (Module::const_alias_iterator I = TheModule->alias_begin(),
|
||||
E = TheModule->alias_end(); I != E; ++I)
|
||||
CreateSlotIfNeeded(I);
|
||||
|
||||
// Add all of the module level constants used as initializers
|
||||
//
|
||||
for (Module::const_global_iterator I = TheModule->global_begin(),
|
||||
E = TheModule->global_end(); I != E; ++I)
|
||||
if (I->hasInitializer())
|
||||
CreateSlotIfNeeded(I->getInitializer());
|
||||
|
||||
// Add all of the module level constants used as aliasees
|
||||
//
|
||||
for (Module::const_alias_iterator I = TheModule->alias_begin(),
|
||||
E = TheModule->alias_end(); I != E; ++I)
|
||||
if (I->getAliasee())
|
||||
CreateSlotIfNeeded(I->getAliasee());
|
||||
|
||||
// Now that all global constants have been added, rearrange constant planes
|
||||
// that contain constant strings so that the strings occur at the start of the
|
||||
// plane, not somewhere in the middle.
|
||||
//
|
||||
for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) {
|
||||
if (const ArrayType *AT = dyn_cast<ArrayType>(Types[plane]))
|
||||
if (AT->getElementType() == Type::Int8Ty) {
|
||||
TypePlane &Plane = Table[plane];
|
||||
unsigned FirstNonStringID = 0;
|
||||
for (unsigned i = 0, e = Plane.size(); i != e; ++i)
|
||||
if (isa<ConstantAggregateZero>(Plane[i]) ||
|
||||
(isa<ConstantArray>(Plane[i]) &&
|
||||
cast<ConstantArray>(Plane[i])->isString())) {
|
||||
// Check to see if we have to shuffle this string around. If not,
|
||||
// don't do anything.
|
||||
if (i != FirstNonStringID) {
|
||||
// Swap the plane entries....
|
||||
std::swap(Plane[i], Plane[FirstNonStringID]);
|
||||
|
||||
// Keep the NodeMap up to date.
|
||||
NodeMap[Plane[i]] = i;
|
||||
NodeMap[Plane[FirstNonStringID]] = FirstNonStringID;
|
||||
}
|
||||
++FirstNonStringID;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Scan all of the functions for their constants, which allows us to emit
|
||||
// more compact modules.
|
||||
SC_DEBUG("Inserting function constants:\n");
|
||||
for (Module::const_iterator F = TheModule->begin(), E = TheModule->end();
|
||||
F != E; ++F) {
|
||||
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
|
||||
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
|
||||
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
|
||||
OI != E; ++OI) {
|
||||
if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
|
||||
isa<InlineAsm>(*OI))
|
||||
CreateSlotIfNeeded(*OI);
|
||||
}
|
||||
getOrCreateTypeSlot(I->getType());
|
||||
}
|
||||
}
|
||||
|
||||
// Insert constants that are named at module level into the slot pool so that
|
||||
// the module symbol table can refer to them...
|
||||
SC_DEBUG("Inserting SymbolTable values:\n");
|
||||
processTypeSymbolTable(&TheModule->getTypeSymbolTable());
|
||||
processValueSymbolTable(&TheModule->getValueSymbolTable());
|
||||
|
||||
// Now that we have collected together all of the information relevant to the
|
||||
// module, compactify the type table if it is particularly big and outputting
|
||||
// a bytecode file. The basic problem we run into is that some programs have
|
||||
// a large number of types, which causes the type field to overflow its size,
|
||||
// which causes instructions to explode in size (particularly call
|
||||
// instructions). To avoid this behavior, we "sort" the type table so that
|
||||
// all non-value types are pushed to the end of the type table, giving nice
|
||||
// low numbers to the types that can be used by instructions, thus reducing
|
||||
// the amount of explodage we suffer.
|
||||
if (Types.size() >= 64) {
|
||||
unsigned FirstNonValueTypeID = 0;
|
||||
for (unsigned i = 0, e = Types.size(); i != e; ++i)
|
||||
if (Types[i]->isFirstClassType() || Types[i]->isPrimitiveType()) {
|
||||
// Check to see if we have to shuffle this type around. If not, don't
|
||||
// do anything.
|
||||
if (i != FirstNonValueTypeID) {
|
||||
// Swap the type ID's.
|
||||
std::swap(Types[i], Types[FirstNonValueTypeID]);
|
||||
|
||||
// Keep the TypeMap up to date.
|
||||
TypeMap[Types[i]] = i;
|
||||
TypeMap[Types[FirstNonValueTypeID]] = FirstNonValueTypeID;
|
||||
|
||||
// When we move a type, make sure to move its value plane as needed.
|
||||
if (Table.size() > FirstNonValueTypeID) {
|
||||
if (Table.size() <= i) Table.resize(i+1);
|
||||
std::swap(Table[i], Table[FirstNonValueTypeID]);
|
||||
}
|
||||
}
|
||||
++FirstNonValueTypeID;
|
||||
}
|
||||
}
|
||||
|
||||
NumModuleTypes = getNumPlanes();
|
||||
|
||||
SC_DEBUG("end processModule!\n");
|
||||
}
|
||||
|
||||
// processTypeSymbolTable - Insert all of the type sin the specified symbol
|
||||
// table.
|
||||
void SlotCalculator::processTypeSymbolTable(const TypeSymbolTable *TST) {
|
||||
for (TypeSymbolTable::const_iterator TI = TST->begin(), TE = TST->end();
|
||||
TI != TE; ++TI )
|
||||
getOrCreateTypeSlot(TI->second);
|
||||
}
|
||||
|
||||
// processSymbolTable - Insert all of the values in the specified symbol table
|
||||
// into the values table...
|
||||
//
|
||||
void SlotCalculator::processValueSymbolTable(const ValueSymbolTable *VST) {
|
||||
for (ValueSymbolTable::const_iterator VI = VST->begin(), VE = VST->end();
|
||||
VI != VE; ++VI)
|
||||
CreateSlotIfNeeded(VI->getValue());
|
||||
}
|
||||
|
||||
void SlotCalculator::CreateSlotIfNeeded(const Value *V) {
|
||||
// Check to see if it's already in!
|
||||
if (NodeMap.count(V)) return;
|
||||
|
||||
const Type *Ty = V->getType();
|
||||
assert(Ty != Type::VoidTy && "Can't insert void values!");
|
||||
|
||||
if (const Constant *C = dyn_cast<Constant>(V)) {
|
||||
if (isa<GlobalValue>(C)) {
|
||||
// Initializers for globals are handled explicitly elsewhere.
|
||||
} else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
|
||||
// Do not index the characters that make up constant strings. We emit
|
||||
// constant strings as special entities that don't require their
|
||||
// individual characters to be emitted.
|
||||
if (!C->isNullValue())
|
||||
ConstantStrings.push_back(cast<ConstantArray>(C));
|
||||
} else {
|
||||
// This makes sure that if a constant has uses (for example an array of
|
||||
// const ints), that they are inserted also.
|
||||
for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
|
||||
I != E; ++I)
|
||||
CreateSlotIfNeeded(*I);
|
||||
}
|
||||
}
|
||||
|
||||
unsigned TyPlane = getOrCreateTypeSlot(Ty);
|
||||
if (Table.size() <= TyPlane) // Make sure we have the type plane allocated.
|
||||
Table.resize(TyPlane+1, TypePlane());
|
||||
|
||||
// If this is the first value to get inserted into the type plane, make sure
|
||||
// to insert the implicit null value.
|
||||
if (Table[TyPlane].empty()) {
|
||||
// Label's and opaque types can't have a null value.
|
||||
if (Ty != Type::LabelTy && !isa<OpaqueType>(Ty)) {
|
||||
Value *ZeroInitializer = Constant::getNullValue(Ty);
|
||||
|
||||
// If we are pushing zeroinit, it will be handled below.
|
||||
if (V != ZeroInitializer) {
|
||||
Table[TyPlane].push_back(ZeroInitializer);
|
||||
NodeMap[ZeroInitializer] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Insert node into table and NodeMap...
|
||||
NodeMap[V] = Table[TyPlane].size();
|
||||
Table[TyPlane].push_back(V);
|
||||
|
||||
SC_DEBUG(" Inserting value [" << TyPlane << "] = " << *V << " slot=" <<
|
||||
NodeMap[V] << "\n");
|
||||
}
|
||||
|
||||
|
||||
unsigned SlotCalculator::getOrCreateTypeSlot(const Type *Ty) {
|
||||
TypeMapType::iterator TyIt = TypeMap.find(Ty);
|
||||
if (TyIt != TypeMap.end()) return TyIt->second;
|
||||
|
||||
// Insert into TypeMap.
|
||||
unsigned ResultSlot = TypeMap[Ty] = Types.size();
|
||||
Types.push_back(Ty);
|
||||
SC_DEBUG(" Inserting type [" << ResultSlot << "] = " << *Ty << "\n" );
|
||||
|
||||
// Loop over any contained types in the definition, ensuring they are also
|
||||
// inserted.
|
||||
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
|
||||
I != E; ++I)
|
||||
getOrCreateTypeSlot(*I);
|
||||
|
||||
return ResultSlot;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void SlotCalculator::incorporateFunction(const Function *F) {
|
||||
SC_DEBUG("begin processFunction!\n");
|
||||
|
||||
// Iterate over function arguments, adding them to the value table...
|
||||
for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
||||
I != E; ++I)
|
||||
CreateFunctionValueSlot(I);
|
||||
|
||||
SC_DEBUG("Inserting Instructions:\n");
|
||||
|
||||
// Add all of the instructions to the type planes...
|
||||
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
|
||||
CreateFunctionValueSlot(BB);
|
||||
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
|
||||
if (I->getType() != Type::VoidTy)
|
||||
CreateFunctionValueSlot(I);
|
||||
}
|
||||
}
|
||||
|
||||
SC_DEBUG("end processFunction!\n");
|
||||
}
|
||||
|
||||
void SlotCalculator::purgeFunction() {
|
||||
SC_DEBUG("begin purgeFunction!\n");
|
||||
|
||||
// Next, remove values from existing type planes
|
||||
for (DenseMap<unsigned,unsigned,
|
||||
ModuleLevelDenseMapKeyInfo>::iterator I = ModuleLevel.begin(),
|
||||
E = ModuleLevel.end(); I != E; ++I) {
|
||||
unsigned PlaneNo = I->first;
|
||||
unsigned ModuleLev = I->second;
|
||||
|
||||
// Pop all function-local values in this type-plane off of Table.
|
||||
TypePlane &Plane = getPlane(PlaneNo);
|
||||
assert(ModuleLev < Plane.size() && "module levels higher than elements?");
|
||||
for (unsigned i = ModuleLev, e = Plane.size(); i != e; ++i) {
|
||||
NodeMap.erase(Plane.back()); // Erase from nodemap
|
||||
Plane.pop_back(); // Shrink plane
|
||||
}
|
||||
}
|
||||
|
||||
ModuleLevel.clear();
|
||||
|
||||
// Finally, remove any type planes defined by the function...
|
||||
while (Table.size() > NumModuleTypes) {
|
||||
TypePlane &Plane = Table.back();
|
||||
SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size "
|
||||
<< Plane.size() << "\n");
|
||||
for (unsigned i = 0, e = Plane.size(); i != e; ++i)
|
||||
NodeMap.erase(Plane[i]); // Erase from nodemap
|
||||
|
||||
Table.pop_back(); // Nuke the plane, we don't like it.
|
||||
}
|
||||
|
||||
SC_DEBUG("end purgeFunction!\n");
|
||||
}
|
||||
|
||||
inline static bool hasImplicitNull(const Type* Ty) {
|
||||
return Ty != Type::LabelTy && Ty != Type::VoidTy && !isa<OpaqueType>(Ty);
|
||||
}
|
||||
|
||||
void SlotCalculator::CreateFunctionValueSlot(const Value *V) {
|
||||
assert(!NodeMap.count(V) && "Function-local value can't be inserted!");
|
||||
|
||||
const Type *Ty = V->getType();
|
||||
assert(Ty != Type::VoidTy && "Can't insert void values!");
|
||||
assert(!isa<Constant>(V) && "Not a function-local value!");
|
||||
|
||||
unsigned TyPlane = getOrCreateTypeSlot(Ty);
|
||||
if (Table.size() <= TyPlane) // Make sure we have the type plane allocated.
|
||||
Table.resize(TyPlane+1, TypePlane());
|
||||
|
||||
// If this is the first value noticed of this type within this function,
|
||||
// remember the module level for this type plane in ModuleLevel. This reminds
|
||||
// us to remove the values in purgeFunction and tells us how many to remove.
|
||||
if (TyPlane < NumModuleTypes)
|
||||
ModuleLevel.insert(std::make_pair(TyPlane, Table[TyPlane].size()));
|
||||
|
||||
// If this is the first value to get inserted into the type plane, make sure
|
||||
// to insert the implicit null value.
|
||||
if (Table[TyPlane].empty()) {
|
||||
// Label's and opaque types can't have a null value.
|
||||
if (hasImplicitNull(Ty)) {
|
||||
Value *ZeroInitializer = Constant::getNullValue(Ty);
|
||||
|
||||
// If we are pushing zeroinit, it will be handled below.
|
||||
if (V != ZeroInitializer) {
|
||||
Table[TyPlane].push_back(ZeroInitializer);
|
||||
NodeMap[ZeroInitializer] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Insert node into table and NodeMap...
|
||||
NodeMap[V] = Table[TyPlane].size();
|
||||
Table[TyPlane].push_back(V);
|
||||
|
||||
SC_DEBUG(" Inserting value [" << TyPlane << "] = " << *V << " slot=" <<
|
||||
NodeMap[V] << "\n");
|
||||
}
|
|
@ -1,138 +0,0 @@
|
|||
//===-- Analysis/SlotCalculator.h - Calculate value slots -------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This class calculates the slots that values will land in. This is useful for
|
||||
// when writing bytecode or assembly out, because you have to know these things.
|
||||
//
|
||||
// Specifically, this class calculates the "type plane numbering" that you see
|
||||
// for a function if you strip out all of the symbols in it. For assembly
|
||||
// writing, this is used when a symbol does not have a name. For bytecode
|
||||
// writing, this is always used, and the symbol table is added on later.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_SLOTCALCULATOR_H
|
||||
#define LLVM_ANALYSIS_SLOTCALCULATOR_H
|
||||
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include <vector>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class Value;
|
||||
class Type;
|
||||
class Module;
|
||||
class Function;
|
||||
class SymbolTable;
|
||||
class TypeSymbolTable;
|
||||
class ValueSymbolTable;
|
||||
class ConstantArray;
|
||||
|
||||
struct ModuleLevelDenseMapKeyInfo {
|
||||
static inline unsigned getEmptyKey() { return ~0U; }
|
||||
static inline unsigned getTombstoneKey() { return ~1U; }
|
||||
static unsigned getHashValue(unsigned Val) { return Val ^ Val >> 4; }
|
||||
static bool isPod() { return true; }
|
||||
};
|
||||
|
||||
|
||||
class SlotCalculator {
|
||||
const Module *TheModule;
|
||||
public:
|
||||
typedef std::vector<const Type*> TypeList;
|
||||
typedef SmallVector<const Value*, 16> TypePlane;
|
||||
private:
|
||||
std::vector<TypePlane> Table;
|
||||
TypeList Types;
|
||||
typedef DenseMap<const Value*, unsigned> NodeMapType;
|
||||
NodeMapType NodeMap;
|
||||
|
||||
typedef DenseMap<const Type*, unsigned> TypeMapType;
|
||||
TypeMapType TypeMap;
|
||||
|
||||
/// ConstantStrings - If we are indexing for a bytecode file, this keeps track
|
||||
/// of all of the constants strings that need to be emitted.
|
||||
std::vector<const ConstantArray*> ConstantStrings;
|
||||
|
||||
/// ModuleLevel - Used to keep track of which values belong to the module,
|
||||
/// and which values belong to the currently incorporated function.
|
||||
///
|
||||
DenseMap<unsigned,unsigned,ModuleLevelDenseMapKeyInfo> ModuleLevel;
|
||||
unsigned NumModuleTypes;
|
||||
|
||||
SlotCalculator(const SlotCalculator &); // DO NOT IMPLEMENT
|
||||
void operator=(const SlotCalculator &); // DO NOT IMPLEMENT
|
||||
public:
|
||||
SlotCalculator(const Module *M);
|
||||
|
||||
/// getSlot - Return the slot number of the specified value in it's type
|
||||
/// plane.
|
||||
///
|
||||
unsigned getSlot(const Value *V) const {
|
||||
NodeMapType::const_iterator I = NodeMap.find(V);
|
||||
assert(I != NodeMap.end() && "Value not in slotcalculator!");
|
||||
return I->second;
|
||||
}
|
||||
|
||||
unsigned getTypeSlot(const Type* T) const {
|
||||
TypeMapType::const_iterator I = TypeMap.find(T);
|
||||
assert(I != TypeMap.end() && "Type not in slotcalc!");
|
||||
return I->second;
|
||||
}
|
||||
|
||||
inline unsigned getNumPlanes() const { return Table.size(); }
|
||||
inline unsigned getNumTypes() const { return Types.size(); }
|
||||
|
||||
TypePlane &getPlane(unsigned Plane) {
|
||||
// Okay we are just returning an entry out of the main Table. Make sure the
|
||||
// plane exists and return it.
|
||||
if (Plane >= Table.size())
|
||||
Table.resize(Plane+1);
|
||||
return Table[Plane];
|
||||
}
|
||||
|
||||
TypeList& getTypes() { return Types; }
|
||||
|
||||
/// incorporateFunction/purgeFunction - If you'd like to deal with a function,
|
||||
/// use these two methods to get its data into the SlotCalculator!
|
||||
///
|
||||
void incorporateFunction(const Function *F);
|
||||
void purgeFunction();
|
||||
|
||||
/// string_iterator/string_begin/end - Access the list of module-level
|
||||
/// constant strings that have been incorporated. This is only applicable to
|
||||
/// bytecode files.
|
||||
typedef std::vector<const ConstantArray*>::const_iterator string_iterator;
|
||||
string_iterator string_begin() const { return ConstantStrings.begin(); }
|
||||
string_iterator string_end() const { return ConstantStrings.end(); }
|
||||
|
||||
private:
|
||||
void CreateSlotIfNeeded(const Value *V);
|
||||
void CreateFunctionValueSlot(const Value *V);
|
||||
unsigned getOrCreateTypeSlot(const Type *T);
|
||||
|
||||
// processModule - Process all of the module level function declarations and
|
||||
// types that are available.
|
||||
//
|
||||
void processModule();
|
||||
|
||||
// processSymbolTable - Insert all of the values in the specified symbol table
|
||||
// into the values table...
|
||||
//
|
||||
void processTypeSymbolTable(const TypeSymbolTable *ST);
|
||||
void processValueSymbolTable(const ValueSymbolTable *ST);
|
||||
|
||||
// insertPrimitives - helper for constructors to insert primitive types.
|
||||
void insertPrimitives();
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
|
@ -1,138 +0,0 @@
|
|||
//===- WriterInternals.h - Data structures shared by the Writer -*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This header defines the interface used between components of the bytecode
|
||||
// writer.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_LIB_BYTECODE_WRITER_WRITERINTERNALS_H
|
||||
#define LLVM_LIB_BYTECODE_WRITER_WRITERINTERNALS_H
|
||||
|
||||
#include "SlotCalculator.h"
|
||||
#include "llvm/Bytecode/Writer.h"
|
||||
#include "llvm/Bytecode/Format.h"
|
||||
#include "llvm/Instruction.h"
|
||||
|
||||
namespace llvm {
|
||||
class InlineAsm;
|
||||
class TypeSymbolTable;
|
||||
class ValueSymbolTable;
|
||||
class ParamAttrsList;
|
||||
|
||||
class BytecodeWriter {
|
||||
std::vector<unsigned char> &Out;
|
||||
SlotCalculator Table;
|
||||
public:
|
||||
BytecodeWriter(std::vector<unsigned char> &o, const Module *M);
|
||||
|
||||
private:
|
||||
void outputConstants();
|
||||
void outputConstantStrings();
|
||||
void outputFunction(const Function *F);
|
||||
void outputInstructions(const Function *F);
|
||||
void outputInstruction(const Instruction &I);
|
||||
void outputInstructionFormat0(const Instruction *I, unsigned Opcode,
|
||||
const SlotCalculator &Table,
|
||||
unsigned Type);
|
||||
void outputInstrVarArgsCall(const Instruction *I,
|
||||
unsigned Opcode,
|
||||
const SlotCalculator &Table,
|
||||
unsigned Type) ;
|
||||
inline void outputInstructionFormat1(const Instruction *I,
|
||||
unsigned Opcode,
|
||||
unsigned *Slots,
|
||||
unsigned Type) ;
|
||||
inline void outputInstructionFormat2(const Instruction *I,
|
||||
unsigned Opcode,
|
||||
unsigned *Slots,
|
||||
unsigned Type) ;
|
||||
inline void outputInstructionFormat3(const Instruction *I,
|
||||
unsigned Opcode,
|
||||
unsigned *Slots,
|
||||
unsigned Type) ;
|
||||
|
||||
void outputModuleInfoBlock(const Module *C);
|
||||
void outputTypeSymbolTable(const TypeSymbolTable &TST);
|
||||
void outputValueSymbolTable(const ValueSymbolTable &ST);
|
||||
void outputTypes(unsigned StartNo);
|
||||
void outputParamAttrsList(const ParamAttrsList* Attrs);
|
||||
void outputConstantsInPlane(const Value *const*Plane, unsigned PlaneSize,
|
||||
unsigned StartNo);
|
||||
void outputConstant(const Constant *CPV);
|
||||
void outputInlineAsm(const InlineAsm *IA);
|
||||
void outputType(const Type *T);
|
||||
|
||||
/// @brief Unsigned integer output primitive
|
||||
inline void output(unsigned i, int pos = -1);
|
||||
|
||||
/// @brief Signed integer output primitive
|
||||
inline void output(int i);
|
||||
|
||||
/// @brief 64-bit variable bit rate output primitive.
|
||||
inline void output_vbr(uint64_t i);
|
||||
|
||||
/// @brief 32-bit variable bit rate output primitive.
|
||||
inline void output_vbr(unsigned i);
|
||||
|
||||
/// @brief Signed 64-bit variable bit rate output primitive.
|
||||
inline void output_vbr(int64_t i);
|
||||
|
||||
/// @brief Signed 32-bit variable bit rate output primitive.
|
||||
inline void output_vbr(int i);
|
||||
|
||||
inline void output_str(const char *Str, unsigned Len);
|
||||
inline void output(const std::string &s) {
|
||||
output_str(&s[0], s.size());
|
||||
}
|
||||
|
||||
inline void output_data(const void *Ptr, const void *End);
|
||||
|
||||
inline void output_float(float& FloatVal);
|
||||
inline void output_double(double& DoubleVal);
|
||||
|
||||
inline void output_typeid(unsigned i);
|
||||
|
||||
inline size_t size() const { return Out.size(); }
|
||||
inline void resize(size_t S) { Out.resize(S); }
|
||||
friend class BytecodeBlock;
|
||||
};
|
||||
|
||||
/// BytecodeBlock - Little helper class is used by the bytecode writer to help
|
||||
/// do backpatching of bytecode block sizes really easily. It backpatches when
|
||||
/// it goes out of scope.
|
||||
///
|
||||
class BytecodeBlock {
|
||||
unsigned Id;
|
||||
unsigned Loc;
|
||||
BytecodeWriter& Writer;
|
||||
|
||||
/// ElideIfEmpty - If this is true and the bytecode block ends up being empty,
|
||||
/// the block can remove itself from the output stream entirely.
|
||||
bool ElideIfEmpty;
|
||||
|
||||
/// If this is true then the block is written with a long format header using
|
||||
/// a uint (32-bits) for both the block id and size. Otherwise, it uses the
|
||||
/// short format which is a single uint with 27 bits for size and 5 bits for
|
||||
/// the block id. Both formats are used in a bc file with version 1.3.
|
||||
/// Previously only the long format was used.
|
||||
bool HasLongFormat;
|
||||
|
||||
BytecodeBlock(const BytecodeBlock &); // do not implement
|
||||
void operator=(const BytecodeBlock &); // do not implement
|
||||
public:
|
||||
inline BytecodeBlock(unsigned ID, BytecodeWriter& w,
|
||||
bool elideIfEmpty = false, bool hasLongFormat = false);
|
||||
|
||||
inline ~BytecodeBlock();
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue