Now that all of the derived types have disciplined interfaces, we can eliminate

all of the ad-hoc storage of contained types.  This allows getContainedType to
not be virtual, and allows us to entirely delete the TypeIterator class.

llvm-svn: 11230
This commit is contained in:
Chris Lattner 2004-02-09 05:40:24 +00:00
parent e3af6f73ce
commit cbd34b2ae6
3 changed files with 76 additions and 181 deletions

View File

@ -19,7 +19,6 @@
#define LLVM_DERIVED_TYPES_H
#include "llvm/Type.h"
#include <vector>
namespace llvm {
@ -57,7 +56,7 @@ protected:
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems.
virtual void dropAllTypeUses() = 0;
void dropAllTypeUses();
public:
@ -122,8 +121,6 @@ public:
class FunctionType : public DerivedType {
friend class TypeMap<FunctionValType, FunctionType>;
PATypeHandle ResultType;
std::vector<PATypeHandle> ParamTys;
bool isVarArgs;
FunctionType(const FunctionType &); // Do not implement
@ -137,11 +134,6 @@ protected:
FunctionType(const Type *Result, const std::vector<const Type*> &Params,
bool IsVarArgs);
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems.
virtual void dropAllTypeUses();
public:
/// FunctionType::get - This static method is the primary way of constructing
/// a FunctionType
@ -150,25 +142,19 @@ public:
bool isVarArg);
inline bool isVarArg() const { return isVarArgs; }
inline const Type *getReturnType() const { return ResultType; }
inline const Type *getReturnType() const { return ContainedTys[0]; }
typedef std::vector<PATypeHandle>::const_iterator param_iterator;
param_iterator param_begin() const { return ParamTys.begin(); }
param_iterator param_end() const { return ParamTys.end(); }
param_iterator param_begin() const { return ContainedTys.begin()+1; }
param_iterator param_end() const { return ContainedTys.end(); }
// Parameter type accessors...
const Type *getParamType(unsigned i) const { return ParamTys[i]; }
const Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
// getNumParams - Return the number of fixed parameters this function type
// requires. This does not consider varargs.
//
unsigned getNumParams() const { return ParamTys.size(); }
virtual const Type *getContainedType(unsigned i) const {
return i == 0 ? ResultType.get() : ParamTys[i-1].get();
}
virtual unsigned getNumContainedTypes() const { return ParamTys.size()+1; }
unsigned getNumParams() const { return ContainedTys.size()-1; }
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
@ -213,8 +199,6 @@ public:
class StructType : public CompositeType {
friend class TypeMap<StructValType, StructType>;
std::vector<PATypeHandle> ETypes; // Element types of struct
StructType(const StructType &); // Do not implement
const StructType &operator=(const StructType &); // Do not implement
@ -226,11 +210,6 @@ protected:
// Private ctor - Only can be created by a static member...
StructType(const std::vector<const Type*> &Types);
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems.
virtual void dropAllTypeUses();
public:
/// StructType::get - This static method is the primary way to create a
/// StructType.
@ -238,21 +217,16 @@ public:
// Iterator access to the elements
typedef std::vector<PATypeHandle>::const_iterator element_iterator;
element_iterator element_begin() const { return ETypes.begin(); }
element_iterator element_end() const { return ETypes.end(); }
element_iterator element_begin() const { return ContainedTys.begin(); }
element_iterator element_end() const { return ContainedTys.end(); }
// Random access to the elements
unsigned getNumElements() const { return ETypes.size(); }
unsigned getNumElements() const { return ContainedTys.size(); }
const Type *getElementType(unsigned N) const {
assert(N < ETypes.size() && "Element number out of range!");
return ETypes[N];
assert(N < ContainedTys.size() && "Element number out of range!");
return ContainedTys[N];
}
virtual const Type *getContainedType(unsigned i) const {
return ETypes[i].get();
}
virtual unsigned getNumContainedTypes() const { return ETypes.size(); }
// getTypeAtIndex - Given an index value into the type, return the type of the
// element. For a structure type, this must be a constant value...
//
@ -284,25 +258,19 @@ class SequentialType : public CompositeType {
SequentialType(const SequentialType &); // Do not implement!
const SequentialType &operator=(const SequentialType &); // Do not implement!
protected:
PATypeHandle ElementType;
SequentialType(PrimitiveID TID, const Type *ElType)
: CompositeType(TID), ElementType(PATypeHandle(ElType, this)) {
SequentialType(PrimitiveID TID, const Type *ElType) : CompositeType(TID) {
ContainedTys.reserve(1);
ContainedTys.push_back(PATypeHandle(ElType, this));
}
public:
inline const Type *getElementType() const { return ElementType; }
virtual const Type *getContainedType(unsigned i) const {
return ElementType.get();
}
virtual unsigned getNumContainedTypes() const { return 1; }
inline const Type *getElementType() const { return ContainedTys[0]; }
// getTypeAtIndex - Given an index value into the type, return the type of the
// element. For sequential types, there is only one subtype...
//
virtual const Type *getTypeAtIndex(const Value *V) const {
return ElementType.get();
return ContainedTys[0];
}
virtual bool indexValid(const Value *V) const {
return V->getType()->isInteger();
@ -334,11 +302,6 @@ protected:
// Private ctor - Only can be created by a static member...
ArrayType(const Type *ElType, unsigned NumEl);
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems.
virtual void dropAllTypeUses();
public:
/// ArrayType::get - This static method is the primary way to construct an
/// ArrayType
@ -374,10 +337,6 @@ protected:
// Private ctor - Only can be created by a static member...
PointerType(const Type *ElType);
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems.
virtual void dropAllTypeUses();
public:
/// PointerType::get - This is the only way to construct a new pointer type.
static PointerType *get(const Type *ElementType);
@ -408,13 +367,6 @@ protected:
// Private ctor - Only can be created by a static member...
OpaqueType();
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems.
virtual void dropAllTypeUses() {
// FIXME: THIS IS NOT AN ABSTRACT TYPE USER!
} // No type uses
public:
// OpaqueType::get - Static factory method for the OpaqueType class...
static OpaqueType *get() {

View File

@ -36,6 +36,7 @@
#include "llvm/Value.h"
#include "Support/GraphTraits.h"
#include "Support/iterator"
#include <vector>
namespace llvm {
@ -106,6 +107,15 @@ protected:
/// to the more refined type. Only abstract types can be forwarded.
mutable const Type *ForwardType;
/// ContainedTys - The list of types contained by this one. For example, this
/// includes the arguments of a function type, the elements of the structure,
/// the pointee of a pointer, etc. Note that keeping this vector in the Type
/// class wastes some space for types that do not contain anything (such as
/// primitive types). However, keeping it here allows the subtype_* members
/// to be implemented MUCH more efficiently, and dynamically very few types do
/// not contain any elements (most are derived).
std::vector<PATypeHandle> ContainedTys;
public:
virtual void print(std::ostream &O) const;
@ -204,22 +214,22 @@ public:
//===--------------------------------------------------------------------===//
// Type Iteration support
//
class TypeIterator;
typedef TypeIterator subtype_iterator;
inline subtype_iterator subtype_begin() const; // DEFINED BELOW
inline subtype_iterator subtype_end() const; // DEFINED BELOW
typedef std::vector<PATypeHandle>::const_iterator subtype_iterator;
subtype_iterator subtype_begin() const { return ContainedTys.begin(); }
subtype_iterator subtype_end() const { return ContainedTys.end(); }
/// getContainedType - This method is used to implement the type iterator
/// (defined a the end of the file). For derived types, this returns the
/// types 'contained' in the derived type.
///
virtual const Type *getContainedType(unsigned i) const {
assert(0 && "No contained types!");
return 0;
const Type *getContainedType(unsigned i) const {
assert(i < ContainedTys.size() && "Index out of range!");
return ContainedTys[i];
}
/// getNumContainedTypes - Return the number of types in the derived type
virtual unsigned getNumContainedTypes() const { return 0; }
/// getNumContainedTypes - Return the number of types in the derived type.
///
unsigned getNumContainedTypes() const { return ContainedTys.size(); }
//===--------------------------------------------------------------------===//
// Static members exported by the Type class itself. Useful for getting
@ -249,50 +259,8 @@ public:
}
#include "llvm/Type.def"
private:
class TypeIterator : public bidirectional_iterator<const Type, ptrdiff_t> {
const Type * const Ty;
unsigned Idx;
typedef TypeIterator _Self;
public:
TypeIterator(const Type *ty, unsigned idx) : Ty(ty), Idx(idx) {}
~TypeIterator() {}
const _Self &operator=(const _Self &RHS) {
assert(Ty == RHS.Ty && "Cannot assign from different types!");
Idx = RHS.Idx;
return *this;
}
bool operator==(const _Self& x) const { return Idx == x.Idx; }
bool operator!=(const _Self& x) const { return !operator==(x); }
pointer operator*() const { return Ty->getContainedType(Idx); }
pointer operator->() const { return operator*(); }
_Self& operator++() { ++Idx; return *this; } // Preincrement
_Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
_Self& operator--() { --Idx; return *this; } // Predecrement
_Self operator--(int) { // Postdecrement
_Self tmp = *this; --*this; return tmp;
}
};
};
inline Type::TypeIterator Type::subtype_begin() const {
return TypeIterator(this, 0);
}
inline Type::TypeIterator Type::subtype_end() const {
return TypeIterator(this, getNumContainedTypes());
}
// Provide specializations of GraphTraits to be able to treat a type as a
// graph of sub types...

View File

@ -261,7 +261,7 @@ const std::string &Type::getDescription() const {
bool StructType::indexValid(const Value *V) const {
// Structure indexes require unsigned integer constants.
if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(V))
return CU->getValue() < ETypes.size();
return CU->getValue() < ContainedTys.size();
return false;
}
@ -271,9 +271,9 @@ bool StructType::indexValid(const Value *V) const {
const Type *StructType::getTypeAtIndex(const Value *V) const {
assert(isa<Constant>(V) && "Structure index must be a constant!!");
unsigned Idx = cast<ConstantUInt>(V)->getValue();
assert(Idx < ETypes.size() && "Structure index out of range!");
assert(Idx < ContainedTys.size() && "Structure index out of range!");
assert(indexValid(V) && "Invalid structure index!"); // Duplicate check
return ETypes[Idx];
return ContainedTys[Idx];
}
@ -358,12 +358,13 @@ Type *Type::LabelTy = &TheLabelTy;
FunctionType::FunctionType(const Type *Result,
const std::vector<const Type*> &Params,
bool IsVarArgs) : DerivedType(FunctionTyID),
ResultType(PATypeHandle(Result, this)),
isVarArgs(IsVarArgs) {
bool isAbstract = Result->isAbstract();
ParamTys.reserve(Params.size());
for (unsigned i = 0; i < Params.size(); ++i) {
ParamTys.push_back(PATypeHandle(Params[i], this));
ContainedTys.reserve(Params.size()+1);
ContainedTys.push_back(PATypeHandle(Result, this));
for (unsigned i = 0; i != Params.size(); ++i) {
ContainedTys.push_back(PATypeHandle(Params[i], this));
isAbstract |= Params[i]->isAbstract();
}
@ -373,11 +374,11 @@ FunctionType::FunctionType(const Type *Result,
StructType::StructType(const std::vector<const Type*> &Types)
: CompositeType(StructTyID) {
ETypes.reserve(Types.size());
ContainedTys.reserve(Types.size());
bool isAbstract = false;
for (unsigned i = 0; i < Types.size(); ++i) {
assert(Types[i] != Type::VoidTy && "Void type in method prototype!!");
ETypes.push_back(PATypeHandle(Types[i], this));
ContainedTys.push_back(PATypeHandle(Types[i], this));
isAbstract |= Types[i]->isAbstract();
}
@ -405,44 +406,22 @@ OpaqueType::OpaqueType() : DerivedType(OpaqueTyID) {
#endif
}
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems.
void DerivedType::dropAllTypeUses() {
if (!ContainedTys.empty()) {
while (ContainedTys.size() > 1)
ContainedTys.pop_back();
// getAlwaysOpaqueTy - This function returns an opaque type. It doesn't matter
// _which_ opaque type it is, but the opaque type must never get resolved.
//
static Type *getAlwaysOpaqueTy() {
// The type must stay abstract. To do this, we insert a pointer to a type
// that will never get resolved, thus will always be abstract.
static Type *AlwaysOpaqueTy = OpaqueType::get();
static PATypeHolder Holder(AlwaysOpaqueTy);
return AlwaysOpaqueTy;
ContainedTys[0] = AlwaysOpaqueTy;
}
}
//===----------------------------------------------------------------------===//
// dropAllTypeUses methods - These methods eliminate any possibly recursive type
// references from a derived type. The type must remain abstract, so we make
// sure to use an always opaque type as an argument.
//
void FunctionType::dropAllTypeUses() {
ResultType = getAlwaysOpaqueTy();
ParamTys.clear();
}
void ArrayType::dropAllTypeUses() {
ElementType = getAlwaysOpaqueTy();
}
void StructType::dropAllTypeUses() {
ETypes.clear();
ETypes.push_back(PATypeHandle(getAlwaysOpaqueTy(), this));
}
void PointerType::dropAllTypeUses() {
ElementType = getAlwaysOpaqueTy();
}
// isTypeAbstract - This is a recursive function that walks a type hierarchy
// calculating whether or not a type is abstract. Worst case it will have to do
// a lot of traversing if you have some whacko opaque types, but in most cases,
@ -465,7 +444,7 @@ bool Type::isTypeAbstract() {
// one!
for (Type::subtype_iterator I = subtype_begin(), E = subtype_end();
I != E; ++I)
if (const_cast<Type*>(*I)->isTypeAbstract()) {
if (const_cast<Type*>(I->get())->isTypeAbstract()) {
setAbstract(true); // Restore the abstract bit.
return true; // This type is abstract if subtype is abstract!
}
@ -601,8 +580,8 @@ public:
for (Type::subtype_iterator I = Ty->subtype_begin(),
E = Ty->subtype_end(); I != E; ++I) {
for (df_ext_iterator<const Type *, std::set<const Type*> >
DFI = df_ext_begin(*I, VisitedTypes),
E = df_ext_end(*I, VisitedTypes); DFI != E; ++DFI)
DFI = df_ext_begin(I->get(), VisitedTypes),
E = df_ext_end(I->get(), VisitedTypes); DFI != E; ++DFI)
if (*DFI == Ty) {
HasTypeCycle = true;
goto FoundCycle;
@ -1051,14 +1030,10 @@ void FunctionType::refineAbstractType(const DerivedType *OldType,
FunctionTypes.getEntryForType(this);
// Find the type element we are refining...
if (ResultType == OldType) {
ResultType.removeUserFromConcrete();
ResultType = NewType;
}
for (unsigned i = 0, e = ParamTys.size(); i != e; ++i)
if (ParamTys[i] == OldType) {
ParamTys[i].removeUserFromConcrete();
ParamTys[i] = NewType;
for (unsigned i = 0, e = ContainedTys.size(); i != e; ++i)
if (ContainedTys[i] == OldType) {
ContainedTys[i].removeUserFromConcrete();
ContainedTys[i] = NewType;
}
FunctionTypes.finishRefinement(TMI);
@ -1088,8 +1063,8 @@ void ArrayType::refineAbstractType(const DerivedType *OldType,
ArrayTypes.getEntryForType(this);
assert(getElementType() == OldType);
ElementType.removeUserFromConcrete();
ElementType = NewType;
ContainedTys[0].removeUserFromConcrete();
ContainedTys[0] = NewType;
ArrayTypes.finishRefinement(TMI);
}
@ -1117,12 +1092,12 @@ void StructType::refineAbstractType(const DerivedType *OldType,
TypeMap<StructValType, StructType>::iterator TMI =
StructTypes.getEntryForType(this);
for (int i = ETypes.size()-1; i >= 0; --i)
if (ETypes[i] == OldType) {
ETypes[i].removeUserFromConcrete();
for (int i = ContainedTys.size()-1; i >= 0; --i)
if (ContainedTys[i] == OldType) {
ContainedTys[i].removeUserFromConcrete();
// Update old type to new type in the array...
ETypes[i] = NewType;
ContainedTys[i] = NewType;
}
StructTypes.finishRefinement(TMI);
@ -1150,9 +1125,9 @@ void PointerType::refineAbstractType(const DerivedType *OldType,
TypeMap<PointerValType, PointerType>::iterator TMI =
PointerTypes.getEntryForType(this);
assert(ElementType == OldType);
ElementType.removeUserFromConcrete();
ElementType = NewType;
assert(ContainedTys[0] == OldType);
ContainedTys[0].removeUserFromConcrete();
ContainedTys[0] = NewType;
PointerTypes.finishRefinement(TMI);
}