[ValueTracking][SelectionDAG] Rename ComputeMinSignedBits->ComputeMaxSignificantBits. NFC

This function returns an upper bound on the number of bits needed
to represent the signed value. Use "Max" to match similar functions
in KnownBits like countMaxActiveBits.

Rename APInt::getMinSignedBits->getSignificantBits. Keeping the old
name around to keep this patch size down. Will do a bulk rename as
follow up.

Rename KnownBits::countMaxSignedBits->countMaxSignificantBits.

Reviewed By: lebedev.ri, RKSimon, spatel

Differential Revision: https://reviews.llvm.org/D116522
This commit is contained in:
Craig Topper 2022-01-03 11:13:25 -08:00
parent e5947760c2
commit cbcbbd6ac8
17 changed files with 77 additions and 59 deletions

View File

@ -417,7 +417,7 @@ public:
bool isIntN(unsigned N) const { return getActiveBits() <= N; } bool isIntN(unsigned N) const { return getActiveBits() <= N; }
/// Check if this APInt has an N-bits signed integer value. /// Check if this APInt has an N-bits signed integer value.
bool isSignedIntN(unsigned N) const { return getMinSignedBits() <= N; } bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; }
/// Check if this APInt's value is a power of two greater than zero. /// Check if this APInt's value is a power of two greater than zero.
/// ///
@ -1069,7 +1069,8 @@ public:
/// ///
/// \returns true if *this < RHS when considered signed. /// \returns true if *this < RHS when considered signed.
bool slt(int64_t RHS) const { bool slt(int64_t RHS) const {
return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative() return (!isSingleWord() && getSignificantBits() > 64)
? isNegative()
: getSExtValue() < RHS; : getSExtValue() < RHS;
} }
@ -1139,7 +1140,8 @@ public:
/// ///
/// \returns true if *this > RHS when considered signed. /// \returns true if *this > RHS when considered signed.
bool sgt(int64_t RHS) const { bool sgt(int64_t RHS) const {
return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative() return (!isSingleWord() && getSignificantBits() > 64)
? !isNegative()
: getSExtValue() > RHS; : getSExtValue() > RHS;
} }
@ -1450,7 +1452,12 @@ public:
/// returns the smallest bit width that will retain the negative value. For /// returns the smallest bit width that will retain the negative value. For
/// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
/// for -1, this function will always return 1. /// for -1, this function will always return 1.
unsigned getMinSignedBits() const { return BitWidth - getNumSignBits() + 1; } unsigned getSignificantBits() const {
return BitWidth - getNumSignBits() + 1;
}
/// NOTE: This is soft-deprecated. Please use `getSignificantBits()` instead.
unsigned getMinSignedBits() const { return getSignificantBits(); }
/// Get zero extended value /// Get zero extended value
/// ///
@ -1472,7 +1479,7 @@ public:
int64_t getSExtValue() const { int64_t getSExtValue() const {
if (isSingleWord()) if (isSingleWord())
return SignExtend64(U.VAL, BitWidth); return SignExtend64(U.VAL, BitWidth);
assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); assert(getSignificantBits() <= 64 && "Too many bits for int64_t");
return int64_t(U.pVal[0]); return int64_t(U.pVal[0]);
} }

View File

@ -202,10 +202,10 @@ constexpr unsigned MaxAnalysisRecursionDepth = 6;
const DominatorTree *DT = nullptr, const DominatorTree *DT = nullptr,
bool UseInstrInfo = true); bool UseInstrInfo = true);
/// Get the minimum bit size for this Value \p Op as a signed integer. /// Get the upper bound on bit size for this Value \p Op as a signed integer.
/// i.e. x == sext(trunc(x to MinSignedBits) to bitwidth(x)). /// i.e. x == sext(trunc(x to MaxSignificantBits) to bitwidth(x)).
/// Similar to the APInt::getMinSignedBits function. /// Similar to the APInt::getSignificantBits function.
unsigned ComputeMinSignedBits(const Value *Op, const DataLayout &DL, unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL,
unsigned Depth = 0, unsigned Depth = 0,
AssumptionCache *AC = nullptr, AssumptionCache *AC = nullptr,
const Instruction *CxtI = nullptr, const Instruction *CxtI = nullptr,

View File

@ -1833,17 +1833,17 @@ public:
unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
unsigned Depth = 0) const; unsigned Depth = 0) const;
/// Get the minimum bit size for this Value \p Op as a signed integer. /// Get the upper bound on bit size for this Value \p Op as a signed integer.
/// i.e. x == sext(trunc(x to MinSignedBits) to bitwidth(x)). /// i.e. x == sext(trunc(x to MaxSignedBits) to bitwidth(x)).
/// Similar to the APInt::getMinSignedBits function. /// Similar to the APInt::getSignificantBits function.
/// Helper wrapper to ComputeNumSignBits. /// Helper wrapper to ComputeNumSignBits.
unsigned ComputeMinSignedBits(SDValue Op, unsigned Depth = 0) const; unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth = 0) const;
/// Get the minimum bit size for this Value \p Op as a signed integer. /// Get the upper bound on bit size for this Value \p Op as a signed integer.
/// i.e. x == sext(trunc(x to MinSignedBits) to bitwidth(x)). /// i.e. x == sext(trunc(x to MaxSignedBits) to bitwidth(x)).
/// Similar to the APInt::getMinSignedBits function. /// Similar to the APInt::getSignificantBits function.
/// Helper wrapper to ComputeNumSignBits. /// Helper wrapper to ComputeNumSignBits.
unsigned ComputeMinSignedBits(SDValue Op, const APInt &DemandedElts, unsigned ComputeMaxSignificantBits(SDValue Op, const APInt &DemandedElts,
unsigned Depth = 0) const; unsigned Depth = 0) const;
/// Return true if this function can prove that \p Op is never poison /// Return true if this function can prove that \p Op is never poison

View File

@ -254,8 +254,11 @@ public:
} }
/// Returns the maximum number of bits needed to represent all possible /// Returns the maximum number of bits needed to represent all possible
/// signed values with these known bits. /// signed values with these known bits. This is the inverse of the minimum
unsigned countMaxSignedBits() const { /// number of known sign bits. Examples for bitwidth 5:
/// 110?? --> 4
/// 0000? --> 2
unsigned countMaxSignificantBits() const {
return getBitWidth() - countMinSignBits() + 1; return getBitWidth() - countMinSignBits() + 1;
} }
@ -289,6 +292,9 @@ public:
return getBitWidth() - Zero.countPopulation(); return getBitWidth() - Zero.countPopulation();
} }
/// Returns the maximum number of bits needed to represent all possible
/// unsigned values with these known bits. This is the inverse of the
/// minimum number of leading zeros.
unsigned countMaxActiveBits() const { unsigned countMaxActiveBits() const {
return getBitWidth() - countMinLeadingZeros(); return getBitWidth() - countMinLeadingZeros();
} }

View File

@ -480,9 +480,9 @@ public:
return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT); return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
} }
unsigned ComputeMinSignedBits(const Value *Op, unsigned Depth = 0, unsigned ComputeMaxSignificantBits(const Value *Op, unsigned Depth = 0,
const Instruction *CxtI = nullptr) const { const Instruction *CxtI = nullptr) const {
return llvm::ComputeMinSignedBits(Op, DL, Depth, &AC, CxtI, &DT); return llvm::ComputeMaxSignificantBits(Op, DL, Depth, &AC, CxtI, &DT);
} }
OverflowResult computeOverflowForUnsignedMul(const Value *LHS, OverflowResult computeOverflowForUnsignedMul(const Value *LHS,

View File

@ -396,7 +396,7 @@ unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
} }
unsigned llvm::ComputeMinSignedBits(const Value *V, const DataLayout &DL, unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC, unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI, const Instruction *CxtI,
const DominatorTree *DT) { const DominatorTree *DT) {

View File

@ -12320,7 +12320,7 @@ SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
// If the input is already sign extended, just drop the extension. // If the input is already sign extended, just drop the extension.
if (ExtVTBits >= DAG.ComputeMinSignedBits(N0)) if (ExtVTBits >= DAG.ComputeMaxSignificantBits(N0))
return N0; return N0;
// fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
@ -12336,7 +12336,8 @@ SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
SDValue N00 = N0.getOperand(0); SDValue N00 = N0.getOperand(0);
unsigned N00Bits = N00.getScalarValueSizeInBits(); unsigned N00Bits = N00.getScalarValueSizeInBits();
if ((N00Bits <= ExtVTBits || DAG.ComputeMinSignedBits(N00) <= ExtVTBits) && if ((N00Bits <= ExtVTBits ||
DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits) &&
(!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00);
} }
@ -12355,7 +12356,7 @@ SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
APInt DemandedSrcElts = APInt::getLowBitsSet(SrcElts, DstElts); APInt DemandedSrcElts = APInt::getLowBitsSet(SrcElts, DstElts);
if ((N00Bits == ExtVTBits || if ((N00Bits == ExtVTBits ||
(!IsZext && (N00Bits < ExtVTBits || (!IsZext && (N00Bits < ExtVTBits ||
DAG.ComputeMinSignedBits(N00) <= ExtVTBits))) && DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits))) &&
(!LegalOperations || (!LegalOperations ||
TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))) TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)))
return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, N00); return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, N00);

View File

@ -1751,8 +1751,8 @@ void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &LHS, SDValue &RHS,
// duplicated sign bits is no greater than the width of LHS/RHS, we can avoid // duplicated sign bits is no greater than the width of LHS/RHS, we can avoid
// inserting a zext_inreg operation that we might not be able to remove. // inserting a zext_inreg operation that we might not be able to remove.
if (ISD::isIntEqualitySetCC(CCCode)) { if (ISD::isIntEqualitySetCC(CCCode)) {
unsigned OpLEffectiveBits = DAG.ComputeMinSignedBits(OpL); unsigned OpLEffectiveBits = DAG.ComputeMaxSignificantBits(OpL);
unsigned OpREffectiveBits = DAG.ComputeMinSignedBits(OpR); unsigned OpREffectiveBits = DAG.ComputeMaxSignificantBits(OpR);
if (OpLEffectiveBits <= LHS.getScalarValueSizeInBits() && if (OpLEffectiveBits <= LHS.getScalarValueSizeInBits() &&
OpREffectiveBits <= RHS.getScalarValueSizeInBits()) { OpREffectiveBits <= RHS.getScalarValueSizeInBits()) {
LHS = OpL; LHS = OpL;

View File

@ -4297,12 +4297,13 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
return std::max(FirstAnswer, Known.countMinSignBits()); return std::max(FirstAnswer, Known.countMinSignBits());
} }
unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op, unsigned Depth) const { unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
unsigned Depth) const {
unsigned SignBits = ComputeNumSignBits(Op, Depth); unsigned SignBits = ComputeNumSignBits(Op, Depth);
return Op.getScalarValueSizeInBits() - SignBits + 1; return Op.getScalarValueSizeInBits() - SignBits + 1;
} }
unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op, unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
const APInt &DemandedElts, const APInt &DemandedElts,
unsigned Depth) const { unsigned Depth) const {
unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);

View File

@ -1833,7 +1833,7 @@ bool TargetLowering::SimplifyDemandedBits(
// If we only care about the highest bit, don't bother shifting right. // If we only care about the highest bit, don't bother shifting right.
if (DemandedBits.isSignMask()) { if (DemandedBits.isSignMask()) {
unsigned MinSignedBits = unsigned MinSignedBits =
TLO.DAG.ComputeMinSignedBits(Op0, DemandedElts, Depth + 1); TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
bool AlreadySignExtended = ExVTBits >= MinSignedBits; bool AlreadySignExtended = ExVTBits >= MinSignedBits;
// However if the input is already sign extended we expect the sign // However if the input is already sign extended we expect the sign
// extension to be dropped altogether later and do not simplify. // extension to be dropped altogether later and do not simplify.

View File

@ -450,7 +450,7 @@ unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op) const {
} }
unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op) const { unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op) const {
return ComputeMinSignedBits(Op, *DL, 0, AC); return ComputeMaxSignificantBits(Op, *DL, 0, AC);
} }
static void extractValues(IRBuilder<> &Builder, static void extractValues(IRBuilder<> &Builder,

View File

@ -51,7 +51,7 @@ unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
// In order for this to be a signed 24-bit value, bit 23, must // In order for this to be a signed 24-bit value, bit 23, must
// be a sign bit. // be a sign bit.
return DAG.ComputeMinSignedBits(Op); return DAG.ComputeMaxSignificantBits(Op);
} }
AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,

View File

@ -6850,8 +6850,8 @@ static SDValue getPack(SelectionDAG &DAG, const X86Subtarget &Subtarget,
DAG.computeKnownBits(RHS).countMaxActiveBits() <= EltSizeInBits) DAG.computeKnownBits(RHS).countMaxActiveBits() <= EltSizeInBits)
return DAG.getNode(X86ISD::PACKUS, dl, VT, LHS, RHS); return DAG.getNode(X86ISD::PACKUS, dl, VT, LHS, RHS);
if (DAG.ComputeMinSignedBits(LHS) <= EltSizeInBits && if (DAG.ComputeMaxSignificantBits(LHS) <= EltSizeInBits &&
DAG.ComputeMinSignedBits(RHS) <= EltSizeInBits) DAG.ComputeMaxSignificantBits(RHS) <= EltSizeInBits)
return DAG.getNode(X86ISD::PACKSS, dl, VT, LHS, RHS); return DAG.getNode(X86ISD::PACKSS, dl, VT, LHS, RHS);
} }
@ -23157,10 +23157,10 @@ static SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
// For equality comparisons try to use SIGN_EXTEND if the input was // For equality comparisons try to use SIGN_EXTEND if the input was
// truncate from something with enough sign bits. // truncate from something with enough sign bits.
if (Op0.getOpcode() == ISD::TRUNCATE) { if (Op0.getOpcode() == ISD::TRUNCATE) {
if (DAG.ComputeMinSignedBits(Op0.getOperand(0)) <= 16) if (DAG.ComputeMaxSignificantBits(Op0.getOperand(0)) <= 16)
ExtendOp = ISD::SIGN_EXTEND; ExtendOp = ISD::SIGN_EXTEND;
} else if (Op1.getOpcode() == ISD::TRUNCATE) { } else if (Op1.getOpcode() == ISD::TRUNCATE) {
if (DAG.ComputeMinSignedBits(Op1.getOperand(0)) <= 16) if (DAG.ComputeMaxSignificantBits(Op1.getOperand(0)) <= 16)
ExtendOp = ISD::SIGN_EXTEND; ExtendOp = ISD::SIGN_EXTEND;
} }
} }
@ -44732,7 +44732,8 @@ static SDValue combineMulToPMADDWD(SDNode *N, SelectionDAG &DAG,
return SDValue(); return SDValue();
// Sign bits must extend down to the lowest i16. // Sign bits must extend down to the lowest i16.
if (DAG.ComputeMinSignedBits(N1) > 16 || DAG.ComputeMinSignedBits(N0) > 16) if (DAG.ComputeMaxSignificantBits(N1) > 16 ||
DAG.ComputeMaxSignificantBits(N0) > 16)
return SDValue(); return SDValue();
// At least one of the elements must be zero in the upper 17 bits, or can be // At least one of the elements must be zero in the upper 17 bits, or can be
@ -48714,7 +48715,7 @@ static SDValue combinePMULH(SDValue Src, EVT VT, const SDLoc &DL,
// sequence or using AVX512 truncations. If the inputs are sext/zext then the // sequence or using AVX512 truncations. If the inputs are sext/zext then the
// truncations may actually be free by peeking through to the ext source. // truncations may actually be free by peeking through to the ext source.
auto IsSext = [&DAG](SDValue V) { auto IsSext = [&DAG](SDValue V) {
return DAG.ComputeMinSignedBits(V) <= 16; return DAG.ComputeMaxSignificantBits(V) <= 16;
}; };
auto IsZext = [&DAG](SDValue V) { auto IsZext = [&DAG](SDValue V) {
return DAG.computeKnownBits(V).countMaxActiveBits() <= 16; return DAG.computeKnownBits(V).countMaxActiveBits() <= 16;

View File

@ -1263,8 +1263,8 @@ static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
// This is only really a signed overflow check if the inputs have been // This is only really a signed overflow check if the inputs have been
// sign-extended; check for that condition. For example, if CI2 is 2^31 and // sign-extended; check for that condition. For example, if CI2 is 2^31 and
// the operands of the add are 64 bits wide, we need at least 33 sign bits. // the operands of the add are 64 bits wide, we need at least 33 sign bits.
if (IC.ComputeMinSignedBits(A, 0, &I) > NewWidth || if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
IC.ComputeMinSignedBits(B, 0, &I) > NewWidth) IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
return nullptr; return nullptr;
// In order to replace the original add with a narrower // In order to replace the original add with a narrower

View File

@ -2325,8 +2325,9 @@ Instruction *InstCombinerImpl::matchSAddSubSat(Instruction &MinMax1) {
// The two operands of the add/sub must be nsw-truncatable to the NewTy. This // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
// is usually achieved via a sext from a smaller type. // is usually achieved via a sext from a smaller type.
if (ComputeMinSignedBits(AddSub->getOperand(0), 0, AddSub) > NewBitWidth || if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) >
ComputeMinSignedBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth) NewBitWidth ||
ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth)
return nullptr; return nullptr;
// Finally create and return the sat intrinsic, truncated to the new type // Finally create and return the sat intrinsic, truncated to the new type

View File

@ -4940,7 +4940,8 @@ static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
// We can also eliminate cases by determining that their values are outside of // We can also eliminate cases by determining that their values are outside of
// the limited range of the condition based on how many significant (non-sign) // the limited range of the condition based on how many significant (non-sign)
// bits are in the condition value. // bits are in the condition value.
unsigned MaxSignificantBitsInCond = ComputeMinSignedBits(Cond, DL, 0, AC, SI); unsigned MaxSignificantBitsInCond =
ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
// Gather dead cases. // Gather dead cases.
SmallVector<ConstantInt *, 8> DeadCases; SmallVector<ConstantInt *, 8> DeadCases;

View File

@ -442,14 +442,14 @@ TEST(KnownBitsTest, CountMaxActiveBits) {
}); });
} }
TEST(KnownBitsTest, CountMaxSignedBits) { TEST(KnownBitsTest, CountMaxSignificantBits) {
unsigned Bits = 4; unsigned Bits = 4;
ForeachKnownBits(Bits, [&](const KnownBits &Known) { ForeachKnownBits(Bits, [&](const KnownBits &Known) {
unsigned Expected = 0; unsigned Expected = 0;
ForeachNumInKnownBits(Known, [&](const APInt &N) { ForeachNumInKnownBits(Known, [&](const APInt &N) {
Expected = std::max(Expected, N.getMinSignedBits()); Expected = std::max(Expected, N.getSignificantBits());
}); });
EXPECT_EQ(Expected, Known.countMaxSignedBits()); EXPECT_EQ(Expected, Known.countMaxSignificantBits());
}); });
} }