forked from OSchip/llvm-project
Make processing @llvm.assume more efficient by using operand bundles
There was an efficiency problem with how we processed @llvm.assume in ValueTracking (and other places). The AssumptionCache tracked all of the assumptions in a given function. In order to find assumptions relevant to computing known bits, etc. we searched every assumption in the function. For ValueTracking, that means that we did O(#assumes * #values) work in InstCombine and other passes (with a constant factor that can be quite large because we'd repeat this search at every level of recursion of the analysis). Several of us discussed this situation at the last developers' meeting, and this implements the discussed solution: Make the values that an assume might affect operands of the assume itself. To avoid exposing this detail to frontends and passes that need not worry about it, I've used the new operand-bundle feature to add these extra call "operands" in a way that does not affect the intrinsic's signature. I think this solution is relatively clean. InstCombine adds these extra operands based on what ValueTracking, LVI, etc. will need and then those passes need only search the users of the values under consideration. This should fix the computational-complexity problem. At this point, no passes depend on the AssumptionCache, and so I'll remove that as a follow-up change. Differential Revision: https://reviews.llvm.org/D27259 llvm-svn: 289755
This commit is contained in:
parent
dfe85e2d88
commit
cb9f78e1c3
|
@ -1753,6 +1753,15 @@ site, these bundles may contain any values that are needed by the
|
|||
generated code. For more details, see :ref:`GC Transitions
|
||||
<gc_transition_args>`.
|
||||
|
||||
Affected Operand Bundles
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Affected operand bundles are characterized by the ``"affected"`` operand bundle
|
||||
tag. These operand bundles indicate that a call, specifically a call to an
|
||||
intrinsic like ``llvm.assume``, implies some additional knowledge about the
|
||||
values within the bundle. This enables the optimizer to efficiently find these
|
||||
relationships. The optimizer will add these automatically.
|
||||
|
||||
.. _moduleasm:
|
||||
|
||||
Module-Level Inline Assembly
|
||||
|
|
|
@ -532,6 +532,10 @@ private:
|
|||
///
|
||||
ValueExprMapType ValueExprMap;
|
||||
|
||||
/// This is a map of SCEVs to intrinsics (e.g. assumptions) that might affect
|
||||
/// (i.e. imply something about) them.
|
||||
DenseMap<const SCEV *, SetVector<Value *>> AffectedMap;
|
||||
|
||||
/// Mark predicate values currently being processed by isImpliedCond.
|
||||
SmallPtrSet<Value *, 6> PendingLoopPredicates;
|
||||
|
||||
|
@ -800,6 +804,9 @@ private:
|
|||
ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Stop,
|
||||
const SCEV *MaxBECount, unsigned BitWidth);
|
||||
|
||||
/// Add to the AffectedMap this SCEV if its operands are in the AffectedMap.
|
||||
void addAffectedFromOperands(const SCEV *S);
|
||||
|
||||
/// We know that there is no SCEV for the specified value. Analyze the
|
||||
/// expression.
|
||||
const SCEV *createSCEV(Value *V);
|
||||
|
|
|
@ -76,20 +76,12 @@ void CodeMetrics::collectEphemeralValues(
|
|||
SmallPtrSet<const Value *, 32> Visited;
|
||||
SmallVector<const Value *, 16> Worklist;
|
||||
|
||||
for (auto &AssumeVH : AC->assumptions()) {
|
||||
if (!AssumeVH)
|
||||
continue;
|
||||
Instruction *I = cast<Instruction>(AssumeVH);
|
||||
|
||||
// Filter out call sites outside of the loop so we don't do a function's
|
||||
// worth of work for each of its loops (and, in the common case, ephemeral
|
||||
// values in the loop are likely due to @llvm.assume calls in the loop).
|
||||
if (!L->contains(I->getParent()))
|
||||
continue;
|
||||
|
||||
if (EphValues.insert(I).second)
|
||||
appendSpeculatableOperands(I, Visited, Worklist);
|
||||
}
|
||||
for (auto &B : L->blocks())
|
||||
for (auto &I : *B)
|
||||
if (auto *II = dyn_cast<IntrinsicInst>(&I))
|
||||
if (II->getIntrinsicID() == Intrinsic::assume &&
|
||||
EphValues.insert(II).second)
|
||||
appendSpeculatableOperands(II, Visited, Worklist);
|
||||
|
||||
completeEphemeralValues(Visited, Worklist, EphValues);
|
||||
}
|
||||
|
@ -100,16 +92,12 @@ void CodeMetrics::collectEphemeralValues(
|
|||
SmallPtrSet<const Value *, 32> Visited;
|
||||
SmallVector<const Value *, 16> Worklist;
|
||||
|
||||
for (auto &AssumeVH : AC->assumptions()) {
|
||||
if (!AssumeVH)
|
||||
continue;
|
||||
Instruction *I = cast<Instruction>(AssumeVH);
|
||||
assert(I->getParent()->getParent() == F &&
|
||||
"Found assumption for the wrong function!");
|
||||
|
||||
if (EphValues.insert(I).second)
|
||||
appendSpeculatableOperands(I, Visited, Worklist);
|
||||
}
|
||||
for (auto &B : *F)
|
||||
for (auto &I : B)
|
||||
if (auto *II = dyn_cast<IntrinsicInst>(&I))
|
||||
if (II->getIntrinsicID() == Intrinsic::assume &&
|
||||
EphValues.insert(II).second)
|
||||
appendSpeculatableOperands(II, Visited, Worklist);
|
||||
|
||||
completeEphemeralValues(Visited, Worklist, EphValues);
|
||||
}
|
||||
|
|
|
@ -924,14 +924,16 @@ void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
|
|||
if (!BBI)
|
||||
return;
|
||||
|
||||
for (auto &AssumeVH : AC->assumptions()) {
|
||||
if (!AssumeVH)
|
||||
for (auto *U : Val->users()) {
|
||||
auto *II = dyn_cast<IntrinsicInst>(U);
|
||||
if (!II)
|
||||
continue;
|
||||
auto *I = cast<CallInst>(AssumeVH);
|
||||
if (!isValidAssumeForContext(I, BBI, DT))
|
||||
if (II->getIntrinsicID() != Intrinsic::assume)
|
||||
continue;
|
||||
if (!isValidAssumeForContext(II, BBI, DT))
|
||||
continue;
|
||||
|
||||
BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
|
||||
BBLV = intersect(BBLV, getValueFromCondition(Val, II->getArgOperand(0)));
|
||||
}
|
||||
|
||||
// If guards are not used in the module, don't spend time looking for them
|
||||
|
|
|
@ -1212,6 +1212,7 @@ const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
|
|||
SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
|
||||
Op, Ty);
|
||||
UniqueSCEVs.InsertNode(S, IP);
|
||||
addAffectedFromOperands(S);
|
||||
return S;
|
||||
}
|
||||
|
||||
|
@ -1598,7 +1599,7 @@ const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
|
|||
// these to prove lack of overflow. Use this fact to avoid
|
||||
// doing extra work that may not pay off.
|
||||
if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
|
||||
!AC.assumptions().empty()) {
|
||||
!AffectedMap.empty()) {
|
||||
// If the backedge is guarded by a comparison with the pre-inc
|
||||
// value the addrec is safe. Also, if the entry is guarded by
|
||||
// a comparison with the start value and the backedge is
|
||||
|
@ -1664,6 +1665,7 @@ const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
|
|||
SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
|
||||
Op, Ty);
|
||||
UniqueSCEVs.InsertNode(S, IP);
|
||||
addAffectedFromOperands(S);
|
||||
return S;
|
||||
}
|
||||
|
||||
|
@ -1833,7 +1835,7 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
|
|||
// doing extra work that may not pay off.
|
||||
|
||||
if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
|
||||
!AC.assumptions().empty()) {
|
||||
!AffectedMap.empty()) {
|
||||
// If the backedge is guarded by a comparison with the pre-inc
|
||||
// value the addrec is safe. Also, if the entry is guarded by
|
||||
// a comparison with the start value and the backedge is
|
||||
|
@ -1891,6 +1893,7 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
|
|||
SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
|
||||
Op, Ty);
|
||||
UniqueSCEVs.InsertNode(S, IP);
|
||||
addAffectedFromOperands(S);
|
||||
return S;
|
||||
}
|
||||
|
||||
|
@ -2444,6 +2447,7 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
|
|||
S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
|
||||
O, Ops.size());
|
||||
UniqueSCEVs.InsertNode(S, IP);
|
||||
addAffectedFromOperands(S);
|
||||
}
|
||||
S->setNoWrapFlags(Flags);
|
||||
return S;
|
||||
|
@ -2736,6 +2740,7 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
|
|||
S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
|
||||
O, Ops.size());
|
||||
UniqueSCEVs.InsertNode(S, IP);
|
||||
addAffectedFromOperands(S);
|
||||
}
|
||||
S->setNoWrapFlags(Flags);
|
||||
return S;
|
||||
|
@ -2856,6 +2861,7 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
|
|||
SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
|
||||
LHS, RHS);
|
||||
UniqueSCEVs.InsertNode(S, IP);
|
||||
addAffectedFromOperands(S);
|
||||
return S;
|
||||
}
|
||||
|
||||
|
@ -3036,6 +3042,7 @@ ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
|
|||
S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
|
||||
O, Operands.size(), L);
|
||||
UniqueSCEVs.InsertNode(S, IP);
|
||||
addAffectedFromOperands(S);
|
||||
}
|
||||
S->setNoWrapFlags(Flags);
|
||||
return S;
|
||||
|
@ -3191,6 +3198,7 @@ ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
|
|||
SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
|
||||
O, Ops.size());
|
||||
UniqueSCEVs.InsertNode(S, IP);
|
||||
addAffectedFromOperands(S);
|
||||
return S;
|
||||
}
|
||||
|
||||
|
@ -3292,6 +3300,7 @@ ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
|
|||
SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
|
||||
O, Ops.size());
|
||||
UniqueSCEVs.InsertNode(S, IP);
|
||||
addAffectedFromOperands(S);
|
||||
return S;
|
||||
}
|
||||
|
||||
|
@ -3492,9 +3501,38 @@ const SCEV *ScalarEvolution::getSCEV(Value *V) {
|
|||
ExprValueMap[Stripped].insert({V, Offset});
|
||||
}
|
||||
}
|
||||
|
||||
// If this value is an instruction or an argument, and might be affected by
|
||||
// an assumption, and its SCEV to the AffectedMap.
|
||||
if (isa<Instruction>(V) || isa<Argument>(V)) {
|
||||
for (auto *U : V->users()) {
|
||||
auto *II = dyn_cast<IntrinsicInst>(U);
|
||||
if (!II)
|
||||
continue;
|
||||
if (II->getIntrinsicID() != Intrinsic::assume)
|
||||
continue;
|
||||
|
||||
AffectedMap[S].insert(II);
|
||||
}
|
||||
}
|
||||
|
||||
return S;
|
||||
}
|
||||
|
||||
// If one of this SCEV's operands is in the AffectedMap (meaning that it might
|
||||
// be affected by an assumption), then this SCEV might be affected by the same
|
||||
// assumption.
|
||||
void ScalarEvolution::addAffectedFromOperands(const SCEV *S) {
|
||||
if (auto *NS = dyn_cast<SCEVNAryExpr>(S))
|
||||
for (auto *Op : NS->operands()) {
|
||||
auto AMI = AffectedMap.find(Op);
|
||||
if (AMI == AffectedMap.end())
|
||||
continue;
|
||||
|
||||
AffectedMap[S].insert(AMI->second.begin(), AMI->second.end());
|
||||
}
|
||||
}
|
||||
|
||||
const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
|
||||
assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
|
||||
|
||||
|
@ -7926,16 +7964,23 @@ ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
|
|||
}
|
||||
|
||||
// Check conditions due to any @llvm.assume intrinsics.
|
||||
for (auto &AssumeVH : AC.assumptions()) {
|
||||
if (!AssumeVH)
|
||||
continue;
|
||||
auto *CI = cast<CallInst>(AssumeVH);
|
||||
if (!DT.dominates(CI, Latch->getTerminator()))
|
||||
continue;
|
||||
auto CheckAssumptions = [&](const SCEV *S) {
|
||||
auto AMI = AffectedMap.find(S);
|
||||
if (AMI != AffectedMap.end())
|
||||
for (auto *Assume : AMI->second) {
|
||||
auto *CI = cast<CallInst>(Assume);
|
||||
if (!DT.dominates(CI, Latch->getTerminator()))
|
||||
continue;
|
||||
|
||||
if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
|
||||
return true;
|
||||
}
|
||||
if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
};
|
||||
|
||||
if (CheckAssumptions(LHS) || CheckAssumptions(RHS))
|
||||
return true;
|
||||
|
||||
// If the loop is not reachable from the entry block, we risk running into an
|
||||
// infinite loop as we walk up into the dom tree. These loops do not matter
|
||||
|
@ -8020,16 +8065,23 @@ ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
|
|||
}
|
||||
|
||||
// Check conditions due to any @llvm.assume intrinsics.
|
||||
for (auto &AssumeVH : AC.assumptions()) {
|
||||
if (!AssumeVH)
|
||||
continue;
|
||||
auto *CI = cast<CallInst>(AssumeVH);
|
||||
if (!DT.dominates(CI, L->getHeader()))
|
||||
continue;
|
||||
auto CheckAssumptions = [&](const SCEV *S) {
|
||||
auto AMI = AffectedMap.find(S);
|
||||
if (AMI != AffectedMap.end())
|
||||
for (auto *Assume : AMI->second) {
|
||||
auto *CI = cast<CallInst>(Assume);
|
||||
if (!DT.dominates(CI, L->getHeader()))
|
||||
continue;
|
||||
|
||||
if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
|
||||
return true;
|
||||
}
|
||||
if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
};
|
||||
|
||||
if (CheckAssumptions(LHS) || CheckAssumptions(RHS))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
|
|
@ -526,31 +526,28 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
|
||||
unsigned BitWidth = KnownZero.getBitWidth();
|
||||
|
||||
for (auto &AssumeVH : Q.AC->assumptions()) {
|
||||
if (!AssumeVH)
|
||||
for (auto *U : V->users()) {
|
||||
auto *II = dyn_cast<IntrinsicInst>(U);
|
||||
if (!II)
|
||||
continue;
|
||||
CallInst *I = cast<CallInst>(AssumeVH);
|
||||
assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
|
||||
"Got assumption for the wrong function!");
|
||||
if (Q.isExcluded(I))
|
||||
if (II->getIntrinsicID() != Intrinsic::assume)
|
||||
continue;
|
||||
if (Q.isExcluded(II))
|
||||
continue;
|
||||
|
||||
// Warning: This loop can end up being somewhat performance sensetive.
|
||||
// We're running this loop for once for each value queried resulting in a
|
||||
// runtime of ~O(#assumes * #values).
|
||||
Value *Arg = II->getArgOperand(0);
|
||||
|
||||
assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
|
||||
"must be an assume intrinsic");
|
||||
|
||||
Value *Arg = I->getArgOperand(0);
|
||||
|
||||
if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
if (Arg == V && isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
assert(BitWidth == 1 && "assume operand is not i1?");
|
||||
KnownZero.clearAllBits();
|
||||
KnownOne.setAllBits();
|
||||
return;
|
||||
}
|
||||
|
||||
// Note that the patterns below need to be kept in sync with the code
|
||||
// in InstCombiner::visitCallInst that adds relevant values to each
|
||||
// assume's operand bundles.
|
||||
|
||||
// The remaining tests are all recursive, so bail out if we hit the limit.
|
||||
if (Depth == MaxDepth)
|
||||
continue;
|
||||
|
@ -564,20 +561,20 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
ConstantInt *C;
|
||||
// assume(v = a)
|
||||
if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
KnownZero |= RHSKnownZero;
|
||||
KnownOne |= RHSKnownOne;
|
||||
// assume(v & b = a)
|
||||
} else if (match(Arg,
|
||||
m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_EQ &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
|
||||
computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, II));
|
||||
|
||||
// For those bits in the mask that are known to be one, we can propagate
|
||||
// known bits from the RHS to V.
|
||||
|
@ -587,11 +584,11 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
|
||||
m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_EQ &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
|
||||
computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, II));
|
||||
|
||||
// For those bits in the mask that are known to be one, we can propagate
|
||||
// inverted known bits from the RHS to V.
|
||||
|
@ -601,11 +598,11 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
} else if (match(Arg,
|
||||
m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_EQ &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
|
||||
computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, II));
|
||||
|
||||
// For those bits in B that are known to be zero, we can propagate known
|
||||
// bits from the RHS to V.
|
||||
|
@ -615,11 +612,11 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
|
||||
m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_EQ &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
|
||||
computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, II));
|
||||
|
||||
// For those bits in B that are known to be zero, we can propagate
|
||||
// inverted known bits from the RHS to V.
|
||||
|
@ -629,11 +626,11 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
} else if (match(Arg,
|
||||
m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_EQ &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
|
||||
computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, II));
|
||||
|
||||
// For those bits in B that are known to be zero, we can propagate known
|
||||
// bits from the RHS to V. For those bits in B that are known to be one,
|
||||
|
@ -646,11 +643,11 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
|
||||
m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_EQ &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
|
||||
computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, II));
|
||||
|
||||
// For those bits in B that are known to be zero, we can propagate
|
||||
// inverted known bits from the RHS to V. For those bits in B that are
|
||||
|
@ -663,9 +660,9 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
} else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
|
||||
m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_EQ &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
// For those bits in RHS that are known, we can propagate them to known
|
||||
// bits in V shifted to the right by C.
|
||||
KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
|
||||
|
@ -674,9 +671,9 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
|
||||
m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_EQ &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
// For those bits in RHS that are known, we can propagate them inverted
|
||||
// to known bits in V shifted to the right by C.
|
||||
KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
|
||||
|
@ -687,9 +684,9 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
m_AShr(m_V, m_ConstantInt(C))),
|
||||
m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_EQ &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
// For those bits in RHS that are known, we can propagate them to known
|
||||
// bits in V shifted to the right by C.
|
||||
KnownZero |= RHSKnownZero << C->getZExtValue();
|
||||
|
@ -700,9 +697,9 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
m_AShr(m_V, m_ConstantInt(C)))),
|
||||
m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_EQ &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
// For those bits in RHS that are known, we can propagate them inverted
|
||||
// to known bits in V shifted to the right by C.
|
||||
KnownZero |= RHSKnownOne << C->getZExtValue();
|
||||
|
@ -710,9 +707,9 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
// assume(v >=_s c) where c is non-negative
|
||||
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_SGE &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
|
||||
if (RHSKnownZero.isNegative()) {
|
||||
// We know that the sign bit is zero.
|
||||
|
@ -721,9 +718,9 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
// assume(v >_s c) where c is at least -1.
|
||||
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_SGT &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
|
||||
if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
|
||||
// We know that the sign bit is zero.
|
||||
|
@ -732,9 +729,9 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
// assume(v <=_s c) where c is negative
|
||||
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_SLE &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
|
||||
if (RHSKnownOne.isNegative()) {
|
||||
// We know that the sign bit is one.
|
||||
|
@ -743,9 +740,9 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
// assume(v <_s c) where c is non-positive
|
||||
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_SLT &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
|
||||
if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
|
||||
// We know that the sign bit is one.
|
||||
|
@ -754,9 +751,9 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
// assume(v <=_u c)
|
||||
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_ULE &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
|
||||
// Whatever high bits in c are zero are known to be zero.
|
||||
KnownZero |=
|
||||
|
@ -764,13 +761,13 @@ static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
|
|||
// assume(v <_u c)
|
||||
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
|
||||
Pred == ICmpInst::ICMP_ULT &&
|
||||
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
|
||||
isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
|
||||
|
||||
// Whatever high bits in c are zero are known to be zero (if c is a power
|
||||
// of 2, then one more).
|
||||
if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
|
||||
if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, II)))
|
||||
KnownZero |=
|
||||
APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
|
||||
else
|
||||
|
|
|
@ -2518,6 +2518,78 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
|||
if (KnownOne.isAllOnesValue())
|
||||
return eraseInstFromFunction(*II);
|
||||
|
||||
// For assumptions, add to the associated operand bundle the values to which
|
||||
// the assumption might apply.
|
||||
// Note: This code must be kept in-sync with the code in
|
||||
// computeKnownBitsFromAssume in ValueTracking.
|
||||
SmallVector<Value *, 16> Affected;
|
||||
auto AddAffected = [&Affected](Value *V) {
|
||||
if (isa<Argument>(V)) {
|
||||
Affected.push_back(V);
|
||||
} else if (auto *I = dyn_cast<Instruction>(V)) {
|
||||
Affected.push_back(I);
|
||||
|
||||
if (I->getOpcode() == Instruction::BitCast ||
|
||||
I->getOpcode() == Instruction::PtrToInt) {
|
||||
V = I->getOperand(0);
|
||||
if (isa<Instruction>(V) || isa<Argument>(V))
|
||||
Affected.push_back(V);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
CmpInst::Predicate Pred;
|
||||
if (match(IIOperand, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
|
||||
AddAffected(A);
|
||||
AddAffected(B);
|
||||
|
||||
if (Pred == ICmpInst::ICMP_EQ) {
|
||||
// For equality comparisons, we handle the case of bit inversion.
|
||||
auto AddAffectedFromEq = [&AddAffected](Value *V) {
|
||||
Value *A;
|
||||
if (match(V, m_Not(m_Value(A)))) {
|
||||
AddAffected(A);
|
||||
V = A;
|
||||
}
|
||||
|
||||
Value *B;
|
||||
ConstantInt *C;
|
||||
if (match(V,
|
||||
m_CombineOr(m_And(m_Value(A), m_Value(B)),
|
||||
m_CombineOr(m_Or(m_Value(A), m_Value(B)),
|
||||
m_Xor(m_Value(A), m_Value(B)))))) {
|
||||
AddAffected(A);
|
||||
AddAffected(B);
|
||||
} else if (match(V,
|
||||
m_CombineOr(m_Shl(m_Value(A), m_ConstantInt(C)),
|
||||
m_CombineOr(m_LShr(m_Value(A), m_ConstantInt(C)),
|
||||
m_AShr(m_Value(A),
|
||||
m_ConstantInt(C)))))) {
|
||||
AddAffected(A);
|
||||
}
|
||||
};
|
||||
|
||||
AddAffectedFromEq(A);
|
||||
AddAffectedFromEq(B);
|
||||
}
|
||||
}
|
||||
|
||||
// If the list of affected values is the same as the existing list then
|
||||
// there's nothing more to do here.
|
||||
if (!Affected.empty())
|
||||
if (auto OB = CI.getOperandBundle("affected"))
|
||||
if (Affected.size() == OB.getValue().Inputs.size() &&
|
||||
std::equal(Affected.begin(), Affected.end(),
|
||||
OB.getValue().Inputs.begin()))
|
||||
Affected.clear();
|
||||
|
||||
if (!Affected.empty()) {
|
||||
Builder->CreateCall(AssumeIntrinsic, IIOperand,
|
||||
OperandBundleDef("affected", Affected),
|
||||
II->getName());
|
||||
return eraseInstFromFunction(*II);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
case Intrinsic::experimental_gc_relocate: {
|
||||
|
|
|
@ -425,9 +425,12 @@ bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
|
|||
NewSrcAlignments.clear();
|
||||
|
||||
bool Changed = false;
|
||||
for (auto &AssumeVH : AC.assumptions())
|
||||
if (AssumeVH)
|
||||
Changed |= processAssumption(cast<CallInst>(AssumeVH));
|
||||
|
||||
for (auto &B : F)
|
||||
for (auto &I : B)
|
||||
if (auto *II = dyn_cast<IntrinsicInst>(&I))
|
||||
if (II->getIntrinsicID() == Intrinsic::assume)
|
||||
Changed |= processAssumption(II);
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
|
|
@ -55,7 +55,7 @@ loop:
|
|||
%cmp = icmp slt i32 %iv, 10000
|
||||
; CHECK: %iv.sext = sext i32 %iv to i64
|
||||
; CHECK-NEXT: --> {0,+,3}<nuw><nsw><%loop>
|
||||
call void @llvm.assume(i1 %cmp)
|
||||
call void @llvm.assume(i1 %cmp) [ "affected"(i32 %iv) ]
|
||||
%c = load volatile i1, i1* %cond
|
||||
br i1 %c, label %loop, label %leave
|
||||
|
||||
|
@ -159,7 +159,7 @@ loop:
|
|||
%cmp = icmp ugt i32 %iv.inc, -10000
|
||||
; CHECK: %iv.zext = zext i32 %iv to i64
|
||||
; CHECK-NEXT: --> {30000,+,-2}<nw><%loop>
|
||||
call void @llvm.assume(i1 %cmp)
|
||||
call void @llvm.assume(i1 %cmp) [ "affected"(i32 %iv.inc) ]
|
||||
%c = load volatile i1, i1* %cond
|
||||
br i1 %c, label %loop, label %leave
|
||||
|
||||
|
|
|
@ -11,7 +11,7 @@ define void @foo(i32 %no, double* nocapture %d, double* nocapture %q) nounwind {
|
|||
entry:
|
||||
%n = and i32 %no, 4294967294
|
||||
%0 = icmp sgt i32 %n, 0 ; <i1> [#uses=1]
|
||||
tail call void @llvm.assume(i1 %0)
|
||||
tail call void @llvm.assume(i1 %0) [ "affected"(i32 %n) ]
|
||||
br label %bb.nph
|
||||
|
||||
bb.nph: ; preds = %entry
|
||||
|
|
|
@ -26,7 +26,7 @@ declare void @llvm.assume(i1)
|
|||
define i8 @test2(i8 %a) {
|
||||
; CHECK-LABEL: @test2
|
||||
%cmp1 = icmp eq i8 %a, 5
|
||||
call void @llvm.assume(i1 %cmp1)
|
||||
call void @llvm.assume(i1 %cmp1) [ "affected"(i8 %a) ]
|
||||
%cmp2 = icmp eq i8 %a, 3
|
||||
; CHECK: br i1 false, label %dead, label %exit
|
||||
br i1 %cmp2, label %dead, label %exit
|
||||
|
@ -43,7 +43,7 @@ define i8 @test3(i8 %a) {
|
|||
dead:
|
||||
%cmp2 = icmp eq i8 %a, 3
|
||||
; CHECK: call void @llvm.assume(i1 false)
|
||||
call void @llvm.assume(i1 %cmp2)
|
||||
call void @llvm.assume(i1 %cmp2) [ "affected"(i8 %a) ]
|
||||
ret i8 %a
|
||||
exit:
|
||||
ret i8 0
|
||||
|
|
|
@ -11,7 +11,7 @@ target triple = "x86_64-unknown-linux-gnu"
|
|||
define void @_Z3fooR1s(%struct.s* nocapture readonly dereferenceable(8) %x) #0 {
|
||||
|
||||
; CHECK-LABEL: @_Z3fooR1s
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %maskcond) [ "affected"(i64 %maskedptr, i64 %ptrint, double* %{{.*}}) ]
|
||||
; CHECK-NOT: call void @llvm.assume
|
||||
|
||||
entry:
|
||||
|
|
|
@ -11,7 +11,7 @@ entry:
|
|||
; been removed:
|
||||
; CHECK-LABEL: @foo1
|
||||
; CHECK-DAG: load i32, i32* %a, align 32
|
||||
; CHECK-DAG: call void @llvm.assume
|
||||
; CHECK-DAG: call void @llvm.assume(i1 %maskcond) [ "affected"(i64 %maskedptr, i64 %ptrint, i32* %a) ]
|
||||
; CHECK: ret i32
|
||||
|
||||
%ptrint = ptrtoint i32* %a to i64
|
||||
|
@ -28,7 +28,7 @@ entry:
|
|||
; Same check as in @foo1, but make sure it works if the assume is first too.
|
||||
; CHECK-LABEL: @foo2
|
||||
; CHECK-DAG: load i32, i32* %a, align 32
|
||||
; CHECK-DAG: call void @llvm.assume
|
||||
; CHECK-DAG: call void @llvm.assume(i1 %maskcond) [ "affected"(i64 %maskedptr, i64 %ptrint, i32* %a) ]
|
||||
; CHECK: ret i32
|
||||
|
||||
%ptrint = ptrtoint i32* %a to i64
|
||||
|
@ -51,7 +51,7 @@ entry:
|
|||
; CHECK: ret i32 4
|
||||
|
||||
%cmp = icmp eq i32 %a, 4
|
||||
tail call void @llvm.assume(i1 %cmp)
|
||||
tail call void @llvm.assume(i1 %cmp) [ "affected"(i32 %a) ]
|
||||
ret i32 %a
|
||||
}
|
||||
|
||||
|
@ -93,7 +93,7 @@ entry:
|
|||
%and1 = and i32 %a, 3
|
||||
|
||||
; CHECK-LABEL: @bar1
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %and, i32 %a) ]
|
||||
; CHECK: ret i32 1
|
||||
|
||||
%and = and i32 %a, 7
|
||||
|
@ -107,7 +107,7 @@ entry:
|
|||
define i32 @bar2(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @bar2
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %and, i32 %a) ]
|
||||
; CHECK: ret i32 1
|
||||
|
||||
%and = and i32 %a, 7
|
||||
|
@ -125,7 +125,7 @@ entry:
|
|||
|
||||
; Don't be fooled by other assumes around.
|
||||
; CHECK-LABEL: @bar3
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %and, i32 %a) ]
|
||||
; CHECK: ret i32 1
|
||||
|
||||
tail call void @llvm.assume(i1 %x)
|
||||
|
@ -145,8 +145,8 @@ entry:
|
|||
%and1 = and i32 %b, 3
|
||||
|
||||
; CHECK-LABEL: @bar4
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %and, i32 %a) ]
|
||||
; CHECK: call void @llvm.assume(i1 %cmp2) [ "affected"(i32 %a, i32 %b) ]
|
||||
; CHECK: ret i32 1
|
||||
|
||||
%and = and i32 %a, 7
|
||||
|
@ -167,7 +167,7 @@ entry:
|
|||
ret i32 %conv
|
||||
|
||||
; CHECK-LABEL: @icmp1
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %a) ]
|
||||
; CHECK: ret i32 1
|
||||
|
||||
}
|
||||
|
@ -182,7 +182,7 @@ entry:
|
|||
ret i32 %lnot.ext
|
||||
|
||||
; CHECK-LABEL: @icmp2
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %a) ]
|
||||
; CHECK: ret i32 0
|
||||
}
|
||||
|
||||
|
@ -217,7 +217,7 @@ entry:
|
|||
|
||||
; CHECK-LABEL: @nonnull2
|
||||
; CHECK-NOT: !nonnull
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %load) ]
|
||||
}
|
||||
|
||||
; Make sure the above canonicalization does not trigger
|
||||
|
@ -236,7 +236,7 @@ not_taken:
|
|||
|
||||
; CHECK-LABEL: @nonnull3
|
||||
; CHECK-NOT: !nonnull
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32* %load) ]
|
||||
}
|
||||
|
||||
; Make sure the above canonicalization does not trigger
|
||||
|
@ -254,7 +254,7 @@ entry:
|
|||
|
||||
; CHECK-LABEL: @nonnull4
|
||||
; CHECK-NOT: !nonnull
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32* %load) ]
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -9,7 +9,7 @@ declare void @llvm.assume(i1) #1
|
|||
define i32 @test1(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test1
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %and, i32 %a) ]
|
||||
; CHECK: ret i32 5
|
||||
|
||||
%and = and i32 %a, 15
|
||||
|
@ -24,7 +24,7 @@ entry:
|
|||
define i32 @test2(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test2
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %a.not, i32 %a) ]
|
||||
; CHECK: ret i32 2
|
||||
|
||||
%and = and i32 %a, 15
|
||||
|
@ -40,7 +40,7 @@ entry:
|
|||
define i32 @test3(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test3
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %v, i32 %a) ]
|
||||
; CHECK: ret i32 5
|
||||
|
||||
%v = or i32 %a, 4294967280
|
||||
|
@ -55,7 +55,7 @@ entry:
|
|||
define i32 @test4(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test4
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %a.not, i32 %a) ]
|
||||
; CHECK: ret i32 2
|
||||
|
||||
%v = or i32 %a, 4294967280
|
||||
|
@ -71,7 +71,7 @@ entry:
|
|||
define i32 @test5(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test5
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %a) ]
|
||||
; CHECK: ret i32 4
|
||||
|
||||
%v = xor i32 %a, 1
|
||||
|
@ -86,7 +86,7 @@ entry:
|
|||
define i32 @test6(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test6
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %v.mask, i32 %a) ]
|
||||
; CHECK: ret i32 5
|
||||
|
||||
%v = shl i32 %a, 2
|
||||
|
@ -101,7 +101,7 @@ entry:
|
|||
define i32 @test7(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test7
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %v.mask, i32 %a) ]
|
||||
; CHECK: ret i32 20
|
||||
|
||||
%v = lshr i32 %a, 2
|
||||
|
@ -116,7 +116,7 @@ entry:
|
|||
define i32 @test8(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test8
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %v.mask, i32 %a) ]
|
||||
; CHECK: ret i32 20
|
||||
|
||||
%v = lshr i32 %a, 2
|
||||
|
@ -131,7 +131,7 @@ entry:
|
|||
define i32 @test9(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test9
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %a) ]
|
||||
; CHECK: ret i32 0
|
||||
|
||||
%cmp = icmp sgt i32 %a, 5
|
||||
|
@ -145,7 +145,7 @@ entry:
|
|||
define i32 @test10(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test10
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %a) ]
|
||||
; CHECK: ret i32 -2147483648
|
||||
|
||||
%cmp = icmp sle i32 %a, -2
|
||||
|
@ -159,7 +159,7 @@ entry:
|
|||
define i32 @test11(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test11
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: call void @llvm.assume(i1 %cmp) [ "affected"(i32 %a) ]
|
||||
; CHECK: ret i32 0
|
||||
|
||||
%cmp = icmp ule i32 %a, 256
|
||||
|
|
|
@ -46,7 +46,7 @@ define i1 @test4(i32 %a) {
|
|||
%b = load i32, i32* @B
|
||||
%b.and = and i32 %b, 1
|
||||
%b.cnd = icmp eq i32 %b.and, 1
|
||||
call void @llvm.assume(i1 %b.cnd)
|
||||
call void @llvm.assume(i1 %b.cnd) [ "affected"(i32 %b.and, i32 %b) ]
|
||||
|
||||
%rhs = add i32 %a, %b
|
||||
%and = and i32 %a, %rhs
|
||||
|
|
|
@ -14,12 +14,12 @@ entry:
|
|||
taken:
|
||||
%res1 = call i8* @escape()
|
||||
%a = icmp eq i8* %res1, null
|
||||
tail call void @llvm.assume(i1 %a)
|
||||
tail call void @llvm.assume(i1 %a) [ "affected"(i8* %res1) ]
|
||||
br label %done
|
||||
not_taken:
|
||||
%res2 = call i8* @escape()
|
||||
%b = icmp ne i8* %res2, null
|
||||
tail call void @llvm.assume(i1 %b)
|
||||
tail call void @llvm.assume(i1 %b) [ "affected"(i8* %res2) ]
|
||||
br label %done
|
||||
|
||||
; An assume that can be used to simplify this comparison dominates each
|
||||
|
|
|
@ -6,7 +6,7 @@ target triple = "x86_64-unknown-linux-gnu"
|
|||
define i32 @test1(i32 %a, i32 %b) #0 {
|
||||
entry:
|
||||
%cmp = icmp sgt i32 %a, 5
|
||||
tail call void @llvm.assume(i1 %cmp)
|
||||
tail call void @llvm.assume(i1 %cmp) [ "affected"(i32 %a) ]
|
||||
%cmp1 = icmp sgt i32 %b, 1234
|
||||
br i1 %cmp1, label %if.then, label %if.else
|
||||
|
||||
|
@ -36,7 +36,7 @@ return: ; preds = %if.else, %if.then,
|
|||
define i32 @test2(i32 %a) #0 {
|
||||
entry:
|
||||
%cmp = icmp sgt i32 %a, 5
|
||||
tail call void @llvm.assume(i1 %cmp)
|
||||
tail call void @llvm.assume(i1 %cmp) [ "affected"(i32 %a) ]
|
||||
%cmp1 = icmp sgt i32 %a, 3
|
||||
br i1 %cmp1, label %if.then, label %return
|
||||
|
||||
|
|
|
@ -75,10 +75,10 @@ define void @reassociate_gep_assume(float* %a, i32 %i, i32 %j) {
|
|||
; CHECK-LABEL: @reassociate_gep_assume(
|
||||
; assume(j >= 0)
|
||||
%cmp = icmp sgt i32 %j, -1
|
||||
call void @llvm.assume(i1 %cmp)
|
||||
call void @llvm.assume(i1 %cmp) [ "affected"(i32 %j) ]
|
||||
%1 = add i32 %i, %j
|
||||
%cmp2 = icmp sgt i32 %1, -1
|
||||
call void @llvm.assume(i1 %cmp2)
|
||||
call void @llvm.assume(i1 %cmp2) [ "affected"(i32 %1) ]
|
||||
|
||||
%idxprom.j = zext i32 %j to i64
|
||||
%2 = getelementptr float, float* %a, i64 %idxprom.j
|
||||
|
|
|
@ -91,7 +91,7 @@ define void @test5(i8 %a) {
|
|||
; CHECK-LABEL: @test5
|
||||
; CHECK: br i1 [[IGNORE:%.*]], label %true, label %false
|
||||
%cmp = icmp ult i8 %a, 2
|
||||
call void @llvm.assume(i1 %cmp)
|
||||
call void @llvm.assume(i1 %cmp) [ "affected"(i8 %a) ]
|
||||
switch i8 %a, label %default [i8 1, label %true
|
||||
i8 0, label %false]
|
||||
true:
|
||||
|
@ -112,7 +112,7 @@ define void @test6(i8 %a) {
|
|||
; CHECK: br i1 [[IGNORE:%.*]], label %true, label %false
|
||||
%and = and i8 %a, 254
|
||||
%cmp = icmp eq i8 %and, 254
|
||||
call void @llvm.assume(i1 %cmp)
|
||||
call void @llvm.assume(i1 %cmp) [ "affected"(i8 %and, i8 %a) ]
|
||||
switch i8 %a, label %default [i8 255, label %true
|
||||
i8 254, label %false]
|
||||
true:
|
||||
|
@ -134,7 +134,7 @@ define void @test7(i8 %a) {
|
|||
; CHECK: br i1 [[IGNORE:%.*]], label %true, label %false
|
||||
%and = and i8 %a, 254
|
||||
%cmp = icmp eq i8 %and, 254
|
||||
call void @llvm.assume(i1 %cmp)
|
||||
call void @llvm.assume(i1 %cmp) [ "affected"(i8 %and, i8 %a) ]
|
||||
switch i8 %a, label %default [i8 255, label %true
|
||||
i8 254, label %false
|
||||
i8 0, label %also_dead]
|
||||
|
@ -162,7 +162,7 @@ define void @test8(i8 %a) {
|
|||
; CHECK: switch i8
|
||||
%and = and i8 %a, 254
|
||||
%cmp = icmp eq i8 %and, undef
|
||||
call void @llvm.assume(i1 %cmp)
|
||||
call void @llvm.assume(i1 %cmp) [ "affected"(i8 %and, i8 %a) ]
|
||||
switch i8 %a, label %default [i8 255, label %true
|
||||
i8 254, label %false]
|
||||
true:
|
||||
|
|
Loading…
Reference in New Issue