forked from OSchip/llvm-project
minor spelling tweaks
Closes tensorflow/mlir#250 COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/250 from kiszk:spelling_tweaks_201911 50fc04443723190b764e824b6fcd2469fecb56e6 PiperOrigin-RevId: 283733032
This commit is contained in:
parent
da0b0b1a0e
commit
c8c36e7979
|
@ -241,8 +241,8 @@ struct TransposeOpLowering : public ConversionPattern {
|
|||
// Generate an adaptor for the remapped operands of the TransposeOp.
|
||||
// This allows for using the nice named accessors that are generated
|
||||
// by the ODS.
|
||||
toy::TransposeOpOperandAdaptor tranposeAdaptor(memRefOperands);
|
||||
Value *input = tranposeAdaptor.input();
|
||||
toy::TransposeOpOperandAdaptor transposeAdaptor(memRefOperands);
|
||||
Value *input = transposeAdaptor.input();
|
||||
|
||||
// Transpose the elements by generating a load from the reverse
|
||||
// indices.
|
||||
|
|
|
@ -241,8 +241,8 @@ struct TransposeOpLowering : public ConversionPattern {
|
|||
// Generate an adaptor for the remapped operands of the TransposeOp.
|
||||
// This allows for using the nice named accessors that are generated
|
||||
// by the ODS.
|
||||
toy::TransposeOpOperandAdaptor tranposeAdaptor(memRefOperands);
|
||||
Value *input = tranposeAdaptor.input();
|
||||
toy::TransposeOpOperandAdaptor transposeAdaptor(memRefOperands);
|
||||
Value *input = transposeAdaptor.input();
|
||||
|
||||
// Transpose the elements by generating a load from the reverse
|
||||
// indices.
|
||||
|
|
|
@ -241,8 +241,8 @@ struct TransposeOpLowering : public ConversionPattern {
|
|||
// Generate an adaptor for the remapped operands of the TransposeOp.
|
||||
// This allows for using the nice named accessors that are generated
|
||||
// by the ODS.
|
||||
toy::TransposeOpOperandAdaptor tranposeAdaptor(memRefOperands);
|
||||
Value *input = tranposeAdaptor.input();
|
||||
toy::TransposeOpOperandAdaptor transposeAdaptor(memRefOperands);
|
||||
Value *input = transposeAdaptor.input();
|
||||
|
||||
// Transpose the elements by generating a load from the reverse
|
||||
// indices.
|
||||
|
|
|
@ -50,7 +50,7 @@ features:
|
|||
* Matching and generating ops with block arguments.
|
||||
* Matching multi-result ops in nested patterns.
|
||||
* Matching and generating variadic operand/result ops in nested patterns.
|
||||
* Packing and unpacking variaidc operands/results during generation.
|
||||
* Packing and unpacking variadic operands/results during generation.
|
||||
* [`NativeCodeCall`](#native-code-call-transforming-the-generated-op)
|
||||
returning more than one results.
|
||||
|
||||
|
|
|
@ -474,7 +474,7 @@ the representational differences between SPIR-V dialect and binary format:
|
|||
Similarly, a few transformations are performed during deserialization:
|
||||
|
||||
* Instructions for execution environment requirements will be placed as
|
||||
attribues on `spv.module`.
|
||||
attributes on `spv.module`.
|
||||
* `OpConstant*` instructions are materialized as `spv.constant` at each use
|
||||
site.
|
||||
* `OpPhi` instructions are converted to block arguments.
|
||||
|
|
|
@ -263,7 +263,7 @@ TODO: Design and implement more primitive constraints
|
|||
Similar to operands, results are specified inside the `dag`-typed `results`, led
|
||||
by `outs`:
|
||||
|
||||
```tablgen
|
||||
```tablegen
|
||||
let results = (outs
|
||||
<type-constraint>:$<result-name>,
|
||||
...
|
||||
|
|
|
@ -434,7 +434,7 @@ invariants of the operation have already been verified:
|
|||
```tablegen
|
||||
def ConstantOp : Toy_Op<"constant", [NoSideEffect]> {
|
||||
// Provide a summary and description for this operation. This can be used to
|
||||
// auto-generate documenatation of the operations within our dialect.
|
||||
// auto-generate documentation of the operations within our dialect.
|
||||
let summary = "constant operation";
|
||||
let description = [{
|
||||
Constant operation turns a literal into an SSA value. The data is attached
|
||||
|
|
|
@ -118,8 +118,8 @@ struct TransposeOpLowering : public mlir::ConversionPattern {
|
|||
// This allows for using the nice named accessors that are generated
|
||||
// by the ODS. This adaptor is automatically provided by the ODS
|
||||
// framework.
|
||||
TransposeOpOperandAdaptor tranposeAdaptor(memRefOperands);
|
||||
mlir::Value *input = tranposeAdaptor.input();
|
||||
TransposeOpOperandAdaptor transposeAdaptor(memRefOperands);
|
||||
mlir::Value *input = transposeAdaptor.input();
|
||||
|
||||
// Transpose the elements by generating a load from the reverse
|
||||
// indices.
|
||||
|
|
Loading…
Reference in New Issue