Basic code generation support for std::initializer_list.

We now generate temporary arrays to back std::initializer_list objects
initialized with braces. The initializer_list is then made to point at
the array. We support both ptr+size and start+end forms, although
the latter is untested.

Array lifetime is correct for temporary std::initializer_lists (e.g.
call arguments) and local variables. It is untested for new expressions
and member initializers.

Things left to do:
Massively increase the amount of testing. I need to write tests for
start+end init lists, temporary objects created as a side effect of
initializing init list objects, new expressions, member initialization,
creation of temporary objects (e.g. std::vector) for initializer lists,
and probably more.
Get lifetime "right" for member initializers and new expressions. Not
that either are very useful.
Implement list-initialization of array new expressions.

llvm-svn: 150803
This commit is contained in:
Sebastian Redl 2012-02-17 08:42:25 +00:00
parent 8e7bfceb98
commit c83ed8248e
8 changed files with 377 additions and 141 deletions

View File

@ -3483,10 +3483,6 @@ class InitListExpr : public Expr {
/// field within the union will be initialized.
llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
/// Whether this initializer list originally had a GNU array-range
/// designator in it. This is a temporary marker used by CodeGen.
bool HadArrayRangeDesignator;
public:
InitListExpr(ASTContext &C, SourceLocation lbraceloc,
Expr **initexprs, unsigned numinits,
@ -3585,9 +3581,18 @@ public:
InitListExpr *getSyntacticForm() const { return SyntacticForm; }
void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
bool hadArrayRangeDesignator() const {
return InitListExprBits.HadArrayRangeDesignator != 0;
}
void sawArrayRangeDesignator(bool ARD = true) {
HadArrayRangeDesignator = ARD;
InitListExprBits.HadArrayRangeDesignator = ARD;
}
bool initializesStdInitializerList() const {
return InitListExprBits.InitializesStdInitializerList != 0;
}
void setInitializesStdInitializerList(bool ISIL = true) {
InitListExprBits.InitializesStdInitializerList = ISIL;
}
SourceRange getSourceRange() const;

View File

@ -213,6 +213,20 @@ protected:
unsigned ShouldCopy : 1;
};
class InitListExprBitfields {
friend class InitListExpr;
unsigned : NumExprBits;
/// Whether this initializer list originally had a GNU array-range
/// designator in it. This is a temporary marker used by CodeGen.
unsigned HadArrayRangeDesignator : 1;
/// Whether this initializer list initializes a std::initializer_list
/// object.
unsigned InitializesStdInitializerList : 1;
};
union {
// FIXME: this is wasteful on 64-bit platforms.
void *Aligner;
@ -226,6 +240,7 @@ protected:
ExprWithCleanupsBitfields ExprWithCleanupsBits;
PseudoObjectExprBitfields PseudoObjectExprBits;
ObjCIndirectCopyRestoreExprBitfields ObjCIndirectCopyRestoreExprBits;
InitListExprBitfields InitListExprBits;
};
friend class ASTStmtReader;

View File

@ -1433,9 +1433,10 @@ InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
: Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
false, false),
InitExprs(C, numInits),
LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
HadArrayRangeDesignator(false)
{
LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0)
{
sawArrayRangeDesignator(false);
setInitializesStdInitializerList(false);
for (unsigned I = 0; I != numInits; ++I) {
if (initExprs[I]->isTypeDependent())
ExprBits.TypeDependent = true;

View File

@ -1093,6 +1093,7 @@ void CodeGenFunction::EmitExprAsInit(const Expr *init,
AggValueSlot::IsDestructed,
AggValueSlot::DoesNotNeedGCBarriers,
AggValueSlot::IsNotAliased));
MaybeEmitStdInitializerListCleanup(lvalue, init);
}
}

View File

@ -16,6 +16,7 @@
#include "CGObjCRuntime.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/StmtVisitor.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
@ -79,6 +80,10 @@ public:
void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
void EmitStdInitializerList(InitListExpr *InitList);
void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
QualType elementType, InitListExpr *E);
AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T))
return AggValueSlot::NeedsGCBarriers;
@ -271,6 +276,218 @@ void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity());
}
static QualType GetStdInitializerListElementType(QualType T) {
// Just assume that this is really std::initializer_list.
ClassTemplateSpecializationDecl *specialization =
cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl());
return specialization->getTemplateArgs()[0].getAsType();
}
/// \brief Prepare cleanup for the temporary array.
static void EmitStdInitializerListCleanup(CodeGenFunction &CGF,
QualType arrayType,
llvm::Value *addr,
const InitListExpr *initList) {
QualType::DestructionKind dtorKind = arrayType.isDestructedType();
if (!dtorKind)
return; // Type doesn't need destroying.
if (dtorKind != QualType::DK_cxx_destructor) {
CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list");
return;
}
CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind);
CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer,
/*EHCleanup=*/true);
}
/// \brief Emit the initializer for a std::initializer_list initialized with a
/// real initializer list.
void AggExprEmitter::EmitStdInitializerList(InitListExpr *initList) {
// We emit an array containing the elements, then have the init list point
// at the array.
ASTContext &ctx = CGF.getContext();
unsigned numInits = initList->getNumInits();
QualType element = GetStdInitializerListElementType(initList->getType());
llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0);
llvm::Type *LTy = CGF.ConvertTypeForMem(array);
llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy);
alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity());
alloc->setName(".initlist.");
EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList);
// FIXME: The diagnostics are somewhat out of place here.
RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl();
RecordDecl::field_iterator field = record->field_begin();
if (field == record->field_end()) {
CGF.ErrorUnsupported(initList, "weird std::initializer_list");
}
QualType elementPtr = ctx.getPointerType(element.withConst());
llvm::Value *destPtr = Dest.getAddr();
// Start pointer.
if (!ctx.hasSameType(field->getType(), elementPtr)) {
CGF.ErrorUnsupported(initList, "weird std::initializer_list");
}
LValue start = CGF.EmitLValueForFieldInitialization(destPtr, *field, 0);
llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart");
CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start);
++field;
if (field == record->field_end()) {
CGF.ErrorUnsupported(initList, "weird std::initializer_list");
}
LValue endOrLength = CGF.EmitLValueForFieldInitialization(destPtr, *field, 0);
if (ctx.hasSameType(field->getType(), elementPtr)) {
// End pointer.
llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend");
CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength);
} else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) {
// Length.
CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength);
} else {
CGF.ErrorUnsupported(initList, "weird std::initializer_list");
}
if (!Dest.isExternallyDestructed())
EmitStdInitializerListCleanup(CGF, array, alloc, initList);
}
/// \brief Emit initialization of an array from an initializer list.
void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
QualType elementType, InitListExpr *E) {
uint64_t NumInitElements = E->getNumInits();
uint64_t NumArrayElements = AType->getNumElements();
assert(NumInitElements <= NumArrayElements);
// DestPtr is an array*. Construct an elementType* by drilling
// down a level.
llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
llvm::Value *indices[] = { zero, zero };
llvm::Value *begin =
Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
// Exception safety requires us to destroy all the
// already-constructed members if an initializer throws.
// For that, we'll need an EH cleanup.
QualType::DestructionKind dtorKind = elementType.isDestructedType();
llvm::AllocaInst *endOfInit = 0;
EHScopeStack::stable_iterator cleanup;
llvm::Instruction *cleanupDominator = 0;
if (CGF.needsEHCleanup(dtorKind)) {
// In principle we could tell the cleanup where we are more
// directly, but the control flow can get so varied here that it
// would actually be quite complex. Therefore we go through an
// alloca.
endOfInit = CGF.CreateTempAlloca(begin->getType(),
"arrayinit.endOfInit");
cleanupDominator = Builder.CreateStore(begin, endOfInit);
CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
CGF.getDestroyer(dtorKind));
cleanup = CGF.EHStack.stable_begin();
// Otherwise, remember that we didn't need a cleanup.
} else {
dtorKind = QualType::DK_none;
}
llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
// The 'current element to initialize'. The invariants on this
// variable are complicated. Essentially, after each iteration of
// the loop, it points to the last initialized element, except
// that it points to the beginning of the array before any
// elements have been initialized.
llvm::Value *element = begin;
// Emit the explicit initializers.
for (uint64_t i = 0; i != NumInitElements; ++i) {
// Advance to the next element.
if (i > 0) {
element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
// Tell the cleanup that it needs to destroy up to this
// element. TODO: some of these stores can be trivially
// observed to be unnecessary.
if (endOfInit) Builder.CreateStore(element, endOfInit);
}
LValue elementLV = CGF.MakeAddrLValue(element, elementType);
EmitInitializationToLValue(E->getInit(i), elementLV);
}
// Check whether there's a non-trivial array-fill expression.
// Note that this will be a CXXConstructExpr even if the element
// type is an array (or array of array, etc.) of class type.
Expr *filler = E->getArrayFiller();
bool hasTrivialFiller = true;
if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
assert(cons->getConstructor()->isDefaultConstructor());
hasTrivialFiller = cons->getConstructor()->isTrivial();
}
// Any remaining elements need to be zero-initialized, possibly
// using the filler expression. We can skip this if the we're
// emitting to zeroed memory.
if (NumInitElements != NumArrayElements &&
!(Dest.isZeroed() && hasTrivialFiller &&
CGF.getTypes().isZeroInitializable(elementType))) {
// Use an actual loop. This is basically
// do { *array++ = filler; } while (array != end);
// Advance to the start of the rest of the array.
if (NumInitElements) {
element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
if (endOfInit) Builder.CreateStore(element, endOfInit);
}
// Compute the end of the array.
llvm::Value *end = Builder.CreateInBoundsGEP(begin,
llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
"arrayinit.end");
llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
// Jump into the body.
CGF.EmitBlock(bodyBB);
llvm::PHINode *currentElement =
Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
currentElement->addIncoming(element, entryBB);
// Emit the actual filler expression.
LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
if (filler)
EmitInitializationToLValue(filler, elementLV);
else
EmitNullInitializationToLValue(elementLV);
// Move on to the next element.
llvm::Value *nextElement =
Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
// Tell the EH cleanup that we finished with the last element.
if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
// Leave the loop if we're done.
llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
"arrayinit.done");
llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
Builder.CreateCondBr(done, endBB, bodyBB);
currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
CGF.EmitBlock(endBB);
}
// Leave the partial-array cleanup if we entered one.
if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
}
//===----------------------------------------------------------------------===//
// Visitor Methods
//===----------------------------------------------------------------------===//
@ -657,17 +874,15 @@ void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
if (E->hadArrayRangeDesignator())
CGF.ErrorUnsupported(E, "GNU array range designator extension");
if (E->initializesStdInitializerList()) {
EmitStdInitializerList(E);
return;
}
llvm::Value *DestPtr = Dest.getAddr();
// Handle initialization of an array.
if (E->getType()->isArrayType()) {
llvm::PointerType *APType =
cast<llvm::PointerType>(DestPtr->getType());
llvm::ArrayType *AType =
cast<llvm::ArrayType>(APType->getElementType());
uint64_t NumInitElements = E->getNumInits();
if (E->getNumInits() > 0) {
QualType T1 = E->getType();
QualType T2 = E->getInit(0)->getType();
@ -677,137 +892,17 @@ void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
}
}
uint64_t NumArrayElements = AType->getNumElements();
assert(NumInitElements <= NumArrayElements);
QualType elementType = E->getType().getCanonicalType();
elementType = CGF.getContext().getQualifiedType(
cast<ArrayType>(elementType)->getElementType(),
elementType.getQualifiers() + Dest.getQualifiers());
// DestPtr is an array*. Construct an elementType* by drilling
// down a level.
llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
llvm::Value *indices[] = { zero, zero };
llvm::Value *begin =
Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
// Exception safety requires us to destroy all the
// already-constructed members if an initializer throws.
// For that, we'll need an EH cleanup.
QualType::DestructionKind dtorKind = elementType.isDestructedType();
llvm::AllocaInst *endOfInit = 0;
EHScopeStack::stable_iterator cleanup;
llvm::Instruction *cleanupDominator = 0;
if (CGF.needsEHCleanup(dtorKind)) {
// In principle we could tell the cleanup where we are more
// directly, but the control flow can get so varied here that it
// would actually be quite complex. Therefore we go through an
// alloca.
endOfInit = CGF.CreateTempAlloca(begin->getType(),
"arrayinit.endOfInit");
cleanupDominator = Builder.CreateStore(begin, endOfInit);
CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
CGF.getDestroyer(dtorKind));
cleanup = CGF.EHStack.stable_begin();
// Otherwise, remember that we didn't need a cleanup.
} else {
dtorKind = QualType::DK_none;
}
llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
// The 'current element to initialize'. The invariants on this
// variable are complicated. Essentially, after each iteration of
// the loop, it points to the last initialized element, except
// that it points to the beginning of the array before any
// elements have been initialized.
llvm::Value *element = begin;
// Emit the explicit initializers.
for (uint64_t i = 0; i != NumInitElements; ++i) {
// Advance to the next element.
if (i > 0) {
element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
// Tell the cleanup that it needs to destroy up to this
// element. TODO: some of these stores can be trivially
// observed to be unnecessary.
if (endOfInit) Builder.CreateStore(element, endOfInit);
}
LValue elementLV = CGF.MakeAddrLValue(element, elementType);
EmitInitializationToLValue(E->getInit(i), elementLV);
}
// Check whether there's a non-trivial array-fill expression.
// Note that this will be a CXXConstructExpr even if the element
// type is an array (or array of array, etc.) of class type.
Expr *filler = E->getArrayFiller();
bool hasTrivialFiller = true;
if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
assert(cons->getConstructor()->isDefaultConstructor());
hasTrivialFiller = cons->getConstructor()->isTrivial();
}
// Any remaining elements need to be zero-initialized, possibly
// using the filler expression. We can skip this if the we're
// emitting to zeroed memory.
if (NumInitElements != NumArrayElements &&
!(Dest.isZeroed() && hasTrivialFiller &&
CGF.getTypes().isZeroInitializable(elementType))) {
// Use an actual loop. This is basically
// do { *array++ = filler; } while (array != end);
// Advance to the start of the rest of the array.
if (NumInitElements) {
element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
if (endOfInit) Builder.CreateStore(element, endOfInit);
}
// Compute the end of the array.
llvm::Value *end = Builder.CreateInBoundsGEP(begin,
llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
"arrayinit.end");
llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
// Jump into the body.
CGF.EmitBlock(bodyBB);
llvm::PHINode *currentElement =
Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
currentElement->addIncoming(element, entryBB);
// Emit the actual filler expression.
LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
if (filler)
EmitInitializationToLValue(filler, elementLV);
else
EmitNullInitializationToLValue(elementLV);
// Move on to the next element.
llvm::Value *nextElement =
Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
// Tell the EH cleanup that we finished with the last element.
if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
// Leave the loop if we're done.
llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
"arrayinit.done");
llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
Builder.CreateCondBr(done, endBB, bodyBB);
currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
CGF.EmitBlock(endBB);
}
// Leave the partial-array cleanup if we entered one.
if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
llvm::PointerType *APType =
cast<llvm::PointerType>(DestPtr->getType());
llvm::ArrayType *AType =
cast<llvm::ArrayType>(APType->getElementType());
EmitArrayInit(DestPtr, AType, elementType, E);
return;
}
@ -1160,3 +1255,38 @@ void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
TypeInfo.first.getQuantity()),
Alignment, isVolatile);
}
void CodeGenFunction::MaybeEmitStdInitializerListCleanup(LValue lvalue,
const Expr *init) {
const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init);
if (!cleanups)
return; // Nothing interesting here.
init = cleanups->getSubExpr();
if (isa<InitListExpr>(init) &&
cast<InitListExpr>(init)->initializesStdInitializerList()) {
// We initialized this std::initializer_list with an initializer list.
// A backing array was created. Push a cleanup for it.
EmitStdInitializerListCleanup(lvalue, cast<InitListExpr>(init));
}
}
void CodeGenFunction::EmitStdInitializerListCleanup(LValue lvalue,
const InitListExpr *init) {
ASTContext &ctx = getContext();
QualType element = GetStdInitializerListElementType(init->getType());
unsigned numInits = init->getNumInits();
llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0);
QualType arrayPtr = ctx.getPointerType(array);
llvm::Type *arrayPtrType = ConvertType(arrayPtr);
// lvalue is the location of a std::initializer_list, which as its first
// element has a pointer to the array we want to destroy.
llvm::Value *startPointer = Builder.CreateStructGEP(lvalue.getAddress(), 0,
"startPointer");
llvm::Value *arrayAddress =
Builder.CreateBitCast(startPointer, arrayPtrType, "arrayAddress");
::EmitStdInitializerListCleanup(*this, array, arrayAddress, init);
}

View File

@ -1811,6 +1811,9 @@ public:
llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
void MaybeEmitStdInitializerListCleanup(LValue lvalue, const Expr *init);
void EmitStdInitializerListCleanup(LValue lvalue, const InitListExpr *init);
void EmitCheck(llvm::Value *, unsigned Size);
llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,

View File

@ -5282,6 +5282,7 @@ InitializationSequence::Perform(Sema &S,
Converted.data(), NumInits, ILE->getRBraceLoc());
Semantic->setSyntacticForm(ILE);
Semantic->setType(Dest);
Semantic->setInitializesStdInitializerList();
CurInit = S.Owned(Semantic);
break;
}

View File

@ -0,0 +1,80 @@
// RUN: %clang_cc1 -std=c++11 -S -emit-llvm -o - %s | FileCheck %s
namespace std {
typedef decltype(sizeof(int)) size_t;
// libc++'s implementation
template <class _E>
class initializer_list
{
const _E* __begin_;
size_t __size_;
initializer_list(const _E* __b, size_t __s)
: __begin_(__b),
__size_(__s)
{}
public:
typedef _E value_type;
typedef const _E& reference;
typedef const _E& const_reference;
typedef size_t size_type;
typedef const _E* iterator;
typedef const _E* const_iterator;
initializer_list() : __begin_(nullptr), __size_(0) {}
size_t size() const {return __size_;}
const _E* begin() const {return __begin_;}
const _E* end() const {return __begin_ + __size_;}
};
}
void fn1(int i) {
// CHECK: define void @_Z3fn1i
// temporary array
// CHECK: [[array:%[^ ]+]] = alloca [3 x i32]
// CHECK: getelementptr inbounds [3 x i32]* [[array]], i{{32|64}} 0
// CHECK-NEXT: store i32 1, i32*
// CHECK-NEXT: getelementptr
// CHECK-NEXT: store
// CHECK-NEXT: getelementptr
// CHECK-NEXT: load
// CHECK-NEXT: store
// init the list
// CHECK-NEXT: getelementptr
// CHECK-NEXT: getelementptr inbounds [3 x i32]*
// CHECK-NEXT: store i32*
// CHECK-NEXT: getelementptr
// CHECK-NEXT: store i{{32|64}} 3
std::initializer_list<int> intlist{1, 2, i};
}
struct destroyme1 {
~destroyme1();
};
struct destroyme2 {
~destroyme2();
};
void fn2() {
// CHECK: define void @_Z3fn2v
void target(std::initializer_list<destroyme1>);
// objects should be destroyed before dm2, after call returns
target({ destroyme1(), destroyme1() });
// CHECK: call void @_ZN10destroyme1D1Ev
destroyme2 dm2;
// CHECK: call void @_ZN10destroyme2D1Ev
}
void fn3() {
// CHECK: define void @_Z3fn3v
// objects should be destroyed after dm2
auto list = { destroyme1(), destroyme1() };
destroyme2 dm2;
// CHECK: call void @_ZN10destroyme2D1Ev
// CHECK: call void @_ZN10destroyme1D1Ev
}