some code cleanups, use SwitchInst::findCaseValue, reduce indentation

llvm-svn: 100468
This commit is contained in:
Chris Lattner 2010-04-05 21:18:32 +00:00
parent ba930449a9
commit c832c1bf69
1 changed files with 63 additions and 62 deletions

View File

@ -231,8 +231,7 @@ bool LoopUnswitch::processCurrentLoop() {
// block that is branching on a loop-invariant condition, we can unswitch this // block that is branching on a loop-invariant condition, we can unswitch this
// loop. // loop.
for (Loop::block_iterator I = currentLoop->block_begin(), for (Loop::block_iterator I = currentLoop->block_begin(),
E = currentLoop->block_end(); E = currentLoop->block_end(); I != E; ++I) {
I != E; ++I) {
TerminatorInst *TI = (*I)->getTerminator(); TerminatorInst *TI = (*I)->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
// If this isn't branching on an invariant condition, we can't unswitch // If this isn't branching on an invariant condition, we can't unswitch
@ -474,7 +473,6 @@ static inline void RemapInstruction(Instruction *I,
static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM, static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM,
LoopInfo *LI, LPPassManager *LPM) { LoopInfo *LI, LPPassManager *LPM) {
Loop *New = new Loop(); Loop *New = new Loop();
LPM->insertLoop(New, PL); LPM->insertLoop(New, PL);
// Add all of the blocks in L to the new loop. // Add all of the blocks in L to the new loop.
@ -565,8 +563,7 @@ void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
/// SplitExitEdges - Split all of the edges from inside the loop to their exit /// SplitExitEdges - Split all of the edges from inside the loop to their exit
/// blocks. Update the appropriate Phi nodes as we do so. /// blocks. Update the appropriate Phi nodes as we do so.
void LoopUnswitch::SplitExitEdges(Loop *L, void LoopUnswitch::SplitExitEdges(Loop *L,
const SmallVector<BasicBlock *, 8> &ExitBlocks) const SmallVector<BasicBlock *, 8> &ExitBlocks){
{
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
BasicBlock *ExitBlock = ExitBlocks[i]; BasicBlock *ExitBlock = ExitBlocks[i];
@ -884,65 +881,66 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
U->replaceUsesOfWith(LIC, Replacement); U->replaceUsesOfWith(LIC, Replacement);
Worklist.push_back(U); Worklist.push_back(U);
} }
} else { SimplifyCode(Worklist, L);
// Otherwise, we don't know the precise value of LIC, but we do know that it return;
// is certainly NOT "Val". As such, simplify any uses in the loop that we }
// can. This case occurs when we unswitch switch statements.
for (unsigned i = 0, e = Users.size(); i != e; ++i) // Otherwise, we don't know the precise value of LIC, but we do know that it
if (Instruction *U = cast<Instruction>(Users[i])) { // is certainly NOT "Val". As such, simplify any uses in the loop that we
if (!L->contains(U)) // can. This case occurs when we unswitch switch statements.
continue; for (unsigned i = 0, e = Users.size(); i != e; ++i) {
Instruction *U = cast<Instruction>(Users[i]);
if (!L->contains(U))
continue;
Worklist.push_back(U); Worklist.push_back(U);
// If we know that LIC is not Val, use this info to simplify code. // TODO: We could do other simplifications, for example, turning
if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) { // 'icmp eq LIC, Val' -> false.
for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
if (SI->getCaseValue(i) == Val) { // If we know that LIC is not Val, use this info to simplify code.
// Found a dead case value. Don't remove PHI nodes in the SwitchInst *SI = dyn_cast<SwitchInst>(U);
// successor if they become single-entry, those PHI nodes may if (SI == 0 || !isa<ConstantInt>(Val)) continue;
// be in the Users list.
unsigned DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
// FIXME: This is a hack. We need to keep the successor around if (DeadCase == 0) continue; // Default case is live for multiple values.
// and hooked up so as to preserve the loop structure, because
// trying to update it is complicated. So instead we preserve the // Found a dead case value. Don't remove PHI nodes in the
// loop structure and put the block on a dead code path. // successor if they become single-entry, those PHI nodes may
BasicBlock *Switch = SI->getParent(); // be in the Users list.
SplitEdge(Switch, SI->getSuccessor(i), this);
// Compute the successors instead of relying on the return value
// of SplitEdge, since it may have split the switch successor
// after PHI nodes.
BasicBlock *NewSISucc = SI->getSuccessor(i);
BasicBlock *OldSISucc = *succ_begin(NewSISucc);
// Create an "unreachable" destination.
BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
Switch->getParent(),
OldSISucc);
new UnreachableInst(Context, Abort);
// Force the new case destination to branch to the "unreachable"
// block while maintaining a (dead) CFG edge to the old block.
NewSISucc->getTerminator()->eraseFromParent();
BranchInst::Create(Abort, OldSISucc,
ConstantInt::getTrue(Context), NewSISucc);
// Release the PHI operands for this edge.
for (BasicBlock::iterator II = NewSISucc->begin();
PHINode *PN = dyn_cast<PHINode>(II); ++II)
PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
UndefValue::get(PN->getType()));
// Tell the domtree about the new block. We don't fully update the
// domtree here -- instead we force it to do a full recomputation
// after the pass is complete -- but we do need to inform it of
// new blocks.
if (DT)
DT->addNewBlock(Abort, NewSISucc);
break;
}
}
}
// TODO: We could do other simplifications, for example, turning // FIXME: This is a hack. We need to keep the successor around
// LIC == Val -> false. // and hooked up so as to preserve the loop structure, because
} // trying to update it is complicated. So instead we preserve the
// loop structure and put the block on a dead code path.
BasicBlock *Switch = SI->getParent();
SplitEdge(Switch, SI->getSuccessor(DeadCase), this);
// Compute the successors instead of relying on the return value
// of SplitEdge, since it may have split the switch successor
// after PHI nodes.
BasicBlock *NewSISucc = SI->getSuccessor(DeadCase);
BasicBlock *OldSISucc = *succ_begin(NewSISucc);
// Create an "unreachable" destination.
BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
Switch->getParent(),
OldSISucc);
new UnreachableInst(Context, Abort);
// Force the new case destination to branch to the "unreachable"
// block while maintaining a (dead) CFG edge to the old block.
NewSISucc->getTerminator()->eraseFromParent();
BranchInst::Create(Abort, OldSISucc,
ConstantInt::getTrue(Context), NewSISucc);
// Release the PHI operands for this edge.
for (BasicBlock::iterator II = NewSISucc->begin();
PHINode *PN = dyn_cast<PHINode>(II); ++II)
PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
UndefValue::get(PN->getType()));
// Tell the domtree about the new block. We don't fully update the
// domtree here -- instead we force it to do a full recomputation
// after the pass is complete -- but we do need to inform it of
// new blocks.
if (DT)
DT->addNewBlock(Abort, NewSISucc);
} }
SimplifyCode(Worklist, L); SimplifyCode(Worklist, L);
@ -1054,7 +1052,10 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
LPM->deleteSimpleAnalysisValue(Succ, L); LPM->deleteSimpleAnalysisValue(Succ, L);
Succ->eraseFromParent(); Succ->eraseFromParent();
++NumSimplify; ++NumSimplify;
} else if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){ break;
}
if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
// Conditional branch. Turn it into an unconditional branch, then // Conditional branch. Turn it into an unconditional branch, then
// remove dead blocks. // remove dead blocks.
break; // FIXME: Enable. break; // FIXME: Enable.