[MLIR] Add `and`, `or`, `xor`, `min`, `max` too gpu.all_reduce and the nvvm lowering

Summary:
This patch add some builtin operation for the gpu.all_reduce ops.
- for Integer only: `and`, `or`, `xor`
- for Float and Integer: `min`, `max`

This is useful for higher level dialect like OpenACC or OpenMP that can lower to the GPU dialect.

Differential Revision: https://reviews.llvm.org/D75766
This commit is contained in:
Valentin Clement 2020-03-11 13:56:31 +01:00 committed by Stephan Herhut
parent f6790a1c63
commit c7380995f8
13 changed files with 615 additions and 11 deletions

View File

@ -482,15 +482,25 @@ def GPU_YieldOp : GPU_Op<"yield", [Terminator]>,
}];
}
// These mirror the XLA ComparisonDirection enum.
// add, mul mirror the XLA ComparisonDirection enum.
def GPU_AllReduceOpAdd : StrEnumAttrCase<"add">;
def GPU_AllReduceOpAnd : StrEnumAttrCase<"and">;
def GPU_AllReduceOpMax : StrEnumAttrCase<"max">;
def GPU_AllReduceOpMin : StrEnumAttrCase<"min">;
def GPU_AllReduceOpMul : StrEnumAttrCase<"mul">;
def GPU_AllReduceOpOr : StrEnumAttrCase<"or">;
def GPU_AllReduceOpXor : StrEnumAttrCase<"xor">;
def GPU_AllReduceOperationAttr : StrEnumAttr<"AllReduceOperationAttr",
"built-in reduction operations supported by gpu.allreduce.",
[
GPU_AllReduceOpAdd,
GPU_AllReduceOpAnd,
GPU_AllReduceOpMax,
GPU_AllReduceOpMin,
GPU_AllReduceOpMul,
GPU_AllReduceOpOr,
GPU_AllReduceOpXor
]>;
def GPU_AllReduceOp : GPU_Op<"all_reduce",
@ -514,8 +524,8 @@ def GPU_AllReduceOp : GPU_Op<"all_reduce",
```
compute the sum of each work item's %0 value. The first version specifies
the accumulation as operation, whereas the second version specifies the
accumulation as code region. The accumulation operation must either be
`add` or `mul`.
accumulation as code region. The accumulation operation must be one of:
`add`, `and`, `max`, `min`, `mul`, `or`, `xor`.
Either none or all work items of a workgroup need to execute this op
in convergence.

View File

@ -211,6 +211,8 @@ _mlir_ciface_print_memref_i8(UnrankedMemRefType<int8_t> *M);
extern "C" MLIR_RUNNERUTILS_EXPORT void
_mlir_ciface_print_memref_f32(UnrankedMemRefType<float> *M);
extern "C" MLIR_RUNNERUTILS_EXPORT void print_memref_i32(int64_t rank,
void *ptr);
extern "C" MLIR_RUNNERUTILS_EXPORT void print_memref_f32(int64_t rank,
void *ptr);

View File

@ -123,18 +123,51 @@ private:
return isFloatingPoint ? getFactory<LLVM::FMulOp>()
: getFactory<LLVM::MulOp>();
}
if (opName == "and") {
return getFactory<LLVM::AndOp>();
}
if (opName == "or") {
return getFactory<LLVM::OrOp>();
}
if (opName == "xor") {
return getFactory<LLVM::XOrOp>();
}
if (opName == "max") {
return isFloatingPoint ? getCmpFactory<LLVM::FCmpOp, LLVM::FCmpPredicate,
LLVM::FCmpPredicate::ugt>()
: getCmpFactory<LLVM::ICmpOp, LLVM::ICmpPredicate,
LLVM::ICmpPredicate::ugt>();
}
if (opName == "min") {
return isFloatingPoint ? getCmpFactory<LLVM::FCmpOp, LLVM::FCmpPredicate,
LLVM::FCmpPredicate::ult>()
: getCmpFactory<LLVM::ICmpOp, LLVM::ICmpPredicate,
LLVM::ICmpPredicate::ult>();
}
return AccumulatorFactory();
}
/// Returns an accumulator factory that creates an op of type T.
template <typename T> AccumulatorFactory getFactory() const {
template <typename T>
AccumulatorFactory getFactory() const {
return [](Location loc, Value lhs, Value rhs,
ConversionPatternRewriter &rewriter) {
return rewriter.create<T>(loc, lhs.getType(), lhs, rhs);
};
}
/// Returns an accumulator for comparaison such as min, max. T is the type
/// of the compare op.
template <typename T, typename PredicateEnum, PredicateEnum predicate>
AccumulatorFactory getCmpFactory() const {
return [](Location loc, Value lhs, Value rhs,
ConversionPatternRewriter &rewriter) {
Value cmp = rewriter.create<T>(loc, predicate, lhs, rhs);
return rewriter.create<LLVM::SelectOp>(loc, cmp, lhs, rhs);
};
}
/// Creates an all_reduce across the block.
///
/// First reduce the elements within a warp. The first thread of each warp
@ -705,9 +738,9 @@ void mlir::populateGpuToNVVMConversionPatterns(
GPUAllReduceOpLowering, GPUShuffleOpLowering, GPUFuncOpLowering,
GPUReturnOpLowering>(converter);
patterns.insert<OpToFuncCallLowering<AbsFOp>>(converter, "__nv_fabsf",
"__nv_fabs");
"__nv_fabs");
patterns.insert<OpToFuncCallLowering<CeilFOp>>(converter, "__nv_ceilf",
"__nv_ceil");
"__nv_ceil");
patterns.insert<OpToFuncCallLowering<CosOp>>(converter, "__nv_cosf",
"__nv_cos");
patterns.insert<OpToFuncCallLowering<ExpOp>>(converter, "__nv_expf",

View File

@ -148,6 +148,14 @@ static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) {
}
if (yieldCount == 0)
return allReduce.emitError("expected gpu.yield op in region");
} else {
StringRef opName = *allReduce.op();
if ((opName == "and" || opName == "or" || opName == "xor") &&
!allReduce.getType().isa<IntegerType>()) {
return allReduce.emitError()
<< '`' << opName << '`'
<< " accumulator is only compatible with Integer type";
}
}
return success();
}

View File

@ -212,6 +212,25 @@ private:
return isFloatingPoint ? getFactory<AddFOp>() : getFactory<AddIOp>();
if (opName == "mul")
return isFloatingPoint ? getFactory<MulFOp>() : getFactory<MulIOp>();
if (opName == "and") {
return getFactory<AndOp>();
}
if (opName == "or") {
return getFactory<OrOp>();
}
if (opName == "xor") {
return getFactory<XOrOp>();
}
if (opName == "max") {
return isFloatingPoint
? getCmpFactory<CmpFOp, CmpFPredicate, CmpFPredicate::UGT>()
: getCmpFactory<CmpIOp, CmpIPredicate, CmpIPredicate::ugt>();
}
if (opName == "min") {
return isFloatingPoint
? getCmpFactory<CmpFOp, CmpFPredicate, CmpFPredicate::ULT>()
: getCmpFactory<CmpIOp, CmpIPredicate, CmpIPredicate::ult>();
}
return AccumulatorFactory();
}
@ -222,6 +241,16 @@ private:
};
}
/// Returns an accumulator for comparaison such as min, max. T is the type
/// of the compare op.
template <typename T, typename PredicateEnum, PredicateEnum predicate>
AccumulatorFactory getCmpFactory() const {
return [&](Value lhs, Value rhs) {
Value cmp = rewriter.create<T>(loc, predicate, lhs, rhs);
return rewriter.create<SelectOp>(loc, cmp, lhs, rhs);
};
}
/// Creates an if-block skeleton and calls the two factories to generate the
/// ops in the `then` and `else` block..
///

View File

@ -27,7 +27,7 @@ extern "C" void _mlir_ciface_print_memref_vector_4x4xf32(
extern "C" void _mlir_ciface_print_memref_i8(UnrankedMemRefType<int8_t> *M) {
printUnrankedMemRefMetaData(std::cout, *M);
int rank = M->rank;
int64_t rank = M->rank;
void *ptr = M->descriptor;
switch (rank) {
@ -41,9 +41,25 @@ extern "C" void _mlir_ciface_print_memref_i8(UnrankedMemRefType<int8_t> *M) {
}
}
extern "C" void _mlir_ciface_print_memref_i32(UnrankedMemRefType<int32_t> *M) {
printUnrankedMemRefMetaData(std::cout, *M);
int64_t rank = M->rank;
void *ptr = M->descriptor;
switch (rank) {
MEMREF_CASE(int32_t, 0);
MEMREF_CASE(int32_t, 1);
MEMREF_CASE(int32_t, 2);
MEMREF_CASE(int32_t, 3);
MEMREF_CASE(int32_t, 4);
default:
assert(0 && "Unsupported rank to print");
}
}
extern "C" void _mlir_ciface_print_memref_f32(UnrankedMemRefType<float> *M) {
printUnrankedMemRefMetaData(std::cout, *M);
int rank = M->rank;
int64_t rank = M->rank;
void *ptr = M->descriptor;
switch (rank) {
@ -57,10 +73,13 @@ extern "C" void _mlir_ciface_print_memref_f32(UnrankedMemRefType<float> *M) {
}
}
extern "C" void print_memref_i32(int64_t rank, void *ptr) {
UnrankedMemRefType<int32_t> descriptor = {rank, ptr};
_mlir_ciface_print_memref_i32(&descriptor);
}
extern "C" void print_memref_f32(int64_t rank, void *ptr) {
UnrankedMemRefType<float> descriptor;
descriptor.rank = rank;
descriptor.descriptor = ptr;
UnrankedMemRefType<float> descriptor = {rank, ptr};
_mlir_ciface_print_memref_f32(&descriptor);
}

View File

@ -0,0 +1,203 @@
// RUN: mlir-opt -test-all-reduce-lowering %s | FileCheck %s
// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
// CHECK: module @kernels attributes {gpu.kernel_module} {
module @kernels attributes {gpu.kernel_module} {
// CHECK-LABEL: gpu.func @kernel(
// CHECK-SAME: [[VAL_0:%.*]]: f32) workgroup([[VAL_1:%.*]] : memref<32xf32, 3>) kernel {
gpu.func @kernel(%arg0 : f32) attributes { gpu.kernel } {
// CHECK: [[VAL_2:%.*]] = constant 31 : i32
// CHECK: [[VAL_3:%.*]] = constant 0 : i32
// CHECK: [[VAL_4:%.*]] = constant 0 : index
// CHECK: [[VAL_5:%.*]] = constant 32 : i32
// CHECK: [[VAL_6:%.*]] = constant 1 : i32
// CHECK: [[VAL_7:%.*]] = constant 2 : i32
// CHECK: [[VAL_8:%.*]] = constant 4 : i32
// CHECK: [[VAL_9:%.*]] = constant 8 : i32
// CHECK: [[VAL_10:%.*]] = constant 16 : i32
// CHECK: [[VAL_11:%.*]] = "gpu.block_dim"() {dimension = "x"} : () -> index
// CHECK: [[VAL_12:%.*]] = index_cast [[VAL_11]] : index to i32
// CHECK: [[VAL_13:%.*]] = "gpu.block_dim"() {dimension = "y"} : () -> index
// CHECK: [[VAL_14:%.*]] = index_cast [[VAL_13]] : index to i32
// CHECK: [[VAL_15:%.*]] = "gpu.block_dim"() {dimension = "z"} : () -> index
// CHECK: [[VAL_16:%.*]] = index_cast [[VAL_15]] : index to i32
// CHECK: [[VAL_17:%.*]] = "gpu.thread_id"() {dimension = "x"} : () -> index
// CHECK: [[VAL_18:%.*]] = index_cast [[VAL_17]] : index to i32
// CHECK: [[VAL_19:%.*]] = "gpu.thread_id"() {dimension = "y"} : () -> index
// CHECK: [[VAL_20:%.*]] = index_cast [[VAL_19]] : index to i32
// CHECK: [[VAL_21:%.*]] = "gpu.thread_id"() {dimension = "z"} : () -> index
// CHECK: [[VAL_22:%.*]] = index_cast [[VAL_21]] : index to i32
// CHECK: [[VAL_23:%.*]] = muli [[VAL_22]], [[VAL_14]] : i32
// CHECK: [[VAL_24:%.*]] = addi [[VAL_23]], [[VAL_20]] : i32
// CHECK: [[VAL_25:%.*]] = muli [[VAL_24]], [[VAL_12]] : i32
// CHECK: [[VAL_26:%.*]] = muli [[VAL_12]], [[VAL_14]] : i32
// CHECK: [[VAL_27:%.*]] = addi [[VAL_25]], [[VAL_18]] : i32
// CHECK: [[VAL_28:%.*]] = muli [[VAL_26]], [[VAL_16]] : i32
// CHECK: [[VAL_29:%.*]] = and [[VAL_27]], [[VAL_2]] : i32
// CHECK: [[VAL_30:%.*]] = cmpi "eq", [[VAL_29]], [[VAL_3]] : i32
// CHECK: [[VAL_31:%.*]] = subi [[VAL_27]], [[VAL_29]] : i32
// CHECK: [[VAL_32:%.*]] = subi [[VAL_28]], [[VAL_31]] : i32
// CHECK: [[VAL_33:%.*]] = cmpi "slt", [[VAL_32]], [[VAL_5]] : i32
// CHECK: cond_br [[VAL_33]], ^bb1, ^bb17
// CHECK: ^bb1:
// CHECK: [[VAL_34:%.*]], [[VAL_35:%.*]] = gpu.shuffle [[VAL_0]], [[VAL_6]], [[VAL_32]] xor : f32
// CHECK: cond_br [[VAL_35]], ^bb2, ^bb3
// CHECK: ^bb2:
// CHECK: [[VAL_36:%.*]] = cmpf "ugt", [[VAL_0]], [[VAL_34]] : f32
// CHECK: [[VAL_37:%.*]] = select [[VAL_36]], [[VAL_0]], [[VAL_34]] : f32
// CHECK: br ^bb4([[VAL_37]] : f32)
// CHECK: ^bb3:
// CHECK: br ^bb4([[VAL_0]] : f32)
// CHECK: ^bb4([[VAL_38:%.*]]: f32):
// CHECK: [[VAL_39:%.*]], [[VAL_40:%.*]] = gpu.shuffle [[VAL_38]], [[VAL_7]], [[VAL_32]] xor : f32
// CHECK: cond_br [[VAL_40]], ^bb5, ^bb6
// CHECK: ^bb5:
// CHECK: [[VAL_41:%.*]] = cmpf "ugt", [[VAL_38]], [[VAL_39]] : f32
// CHECK: [[VAL_42:%.*]] = select [[VAL_41]], [[VAL_38]], [[VAL_39]] : f32
// CHECK: br ^bb7([[VAL_42]] : f32)
// CHECK: ^bb6:
// CHECK: br ^bb7([[VAL_38]] : f32)
// CHECK: ^bb7([[VAL_43:%.*]]: f32):
// CHECK: [[VAL_44:%.*]], [[VAL_45:%.*]] = gpu.shuffle [[VAL_43]], [[VAL_8]], [[VAL_32]] xor : f32
// CHECK: cond_br [[VAL_45]], ^bb8, ^bb9
// CHECK: ^bb8:
// CHECK: [[VAL_46:%.*]] = cmpf "ugt", [[VAL_43]], [[VAL_44]] : f32
// CHECK: [[VAL_47:%.*]] = select [[VAL_46]], [[VAL_43]], [[VAL_44]] : f32
// CHECK: br ^bb10([[VAL_47]] : f32)
// CHECK: ^bb9:
// CHECK: br ^bb10([[VAL_43]] : f32)
// CHECK: ^bb10([[VAL_48:%.*]]: f32):
// CHECK: [[VAL_49:%.*]], [[VAL_50:%.*]] = gpu.shuffle [[VAL_48]], [[VAL_9]], [[VAL_32]] xor : f32
// CHECK: cond_br [[VAL_50]], ^bb11, ^bb12
// CHECK: ^bb11:
// CHECK: [[VAL_51:%.*]] = cmpf "ugt", [[VAL_48]], [[VAL_49]] : f32
// CHECK: [[VAL_52:%.*]] = select [[VAL_51]], [[VAL_48]], [[VAL_49]] : f32
// CHECK: br ^bb13([[VAL_52]] : f32)
// CHECK: ^bb12:
// CHECK: br ^bb13([[VAL_48]] : f32)
// CHECK: ^bb13([[VAL_53:%.*]]: f32):
// CHECK: [[VAL_54:%.*]], [[VAL_55:%.*]] = gpu.shuffle [[VAL_53]], [[VAL_10]], [[VAL_32]] xor : f32
// CHECK: cond_br [[VAL_55]], ^bb14, ^bb15
// CHECK: ^bb14:
// CHECK: [[VAL_56:%.*]] = cmpf "ugt", [[VAL_53]], [[VAL_54]] : f32
// CHECK: [[VAL_57:%.*]] = select [[VAL_56]], [[VAL_53]], [[VAL_54]] : f32
// CHECK: br ^bb16([[VAL_57]] : f32)
// CHECK: ^bb15:
// CHECK: br ^bb16([[VAL_53]] : f32)
// CHECK: ^bb16([[VAL_58:%.*]]: f32):
// CHECK: br ^bb18([[VAL_58]] : f32)
// CHECK: ^bb17:
// CHECK: [[VAL_59:%.*]], [[VAL_60:%.*]] = gpu.shuffle [[VAL_0]], [[VAL_6]], [[VAL_5]] xor : f32
// CHECK: [[VAL_61:%.*]] = cmpf "ugt", [[VAL_0]], [[VAL_59]] : f32
// CHECK: [[VAL_62:%.*]] = select [[VAL_61]], [[VAL_0]], [[VAL_59]] : f32
// CHECK: [[VAL_63:%.*]], [[VAL_64:%.*]] = gpu.shuffle [[VAL_62]], [[VAL_7]], [[VAL_5]] xor : f32
// CHECK: [[VAL_65:%.*]] = cmpf "ugt", [[VAL_62]], [[VAL_63]] : f32
// CHECK: [[VAL_66:%.*]] = select [[VAL_65]], [[VAL_62]], [[VAL_63]] : f32
// CHECK: [[VAL_67:%.*]], [[VAL_68:%.*]] = gpu.shuffle [[VAL_66]], [[VAL_8]], [[VAL_5]] xor : f32
// CHECK: [[VAL_69:%.*]] = cmpf "ugt", [[VAL_66]], [[VAL_67]] : f32
// CHECK: [[VAL_70:%.*]] = select [[VAL_69]], [[VAL_66]], [[VAL_67]] : f32
// CHECK: [[VAL_71:%.*]], [[VAL_72:%.*]] = gpu.shuffle [[VAL_70]], [[VAL_9]], [[VAL_5]] xor : f32
// CHECK: [[VAL_73:%.*]] = cmpf "ugt", [[VAL_70]], [[VAL_71]] : f32
// CHECK: [[VAL_74:%.*]] = select [[VAL_73]], [[VAL_70]], [[VAL_71]] : f32
// CHECK: [[VAL_75:%.*]], [[VAL_76:%.*]] = gpu.shuffle [[VAL_74]], [[VAL_10]], [[VAL_5]] xor : f32
// CHECK: [[VAL_77:%.*]] = cmpf "ugt", [[VAL_74]], [[VAL_75]] : f32
// CHECK: [[VAL_78:%.*]] = select [[VAL_77]], [[VAL_74]], [[VAL_75]] : f32
// CHECK: br ^bb18([[VAL_78]] : f32)
// CHECK: ^bb18([[VAL_79:%.*]]: f32):
// CHECK: cond_br [[VAL_30]], ^bb19, ^bb20
// CHECK: ^bb19:
// CHECK: [[VAL_80:%.*]] = divi_signed [[VAL_27]], [[VAL_5]] : i32
// CHECK: [[VAL_81:%.*]] = index_cast [[VAL_80]] : i32 to index
// CHECK: store [[VAL_79]], [[VAL_1]]{{\[}}[[VAL_81]]] : memref<32xf32, 3>
// CHECK: br ^bb21
// CHECK: ^bb20:
// CHECK: br ^bb21
// CHECK: ^bb21:
// CHECK: gpu.barrier
// CHECK: [[VAL_82:%.*]] = addi [[VAL_28]], [[VAL_2]] : i32
// CHECK: [[VAL_83:%.*]] = divi_signed [[VAL_82]], [[VAL_5]] : i32
// CHECK: [[VAL_84:%.*]] = cmpi "slt", [[VAL_27]], [[VAL_83]] : i32
// CHECK: cond_br [[VAL_84]], ^bb22, ^bb41
// CHECK: ^bb22:
// CHECK: [[VAL_85:%.*]] = index_cast [[VAL_27]] : i32 to index
// CHECK: [[VAL_86:%.*]] = load [[VAL_1]]{{\[}}[[VAL_85]]] : memref<32xf32, 3>
// CHECK: [[VAL_87:%.*]] = cmpi "slt", [[VAL_83]], [[VAL_5]] : i32
// CHECK: cond_br [[VAL_87]], ^bb23, ^bb39
// CHECK: ^bb23:
// CHECK: [[VAL_88:%.*]], [[VAL_89:%.*]] = gpu.shuffle [[VAL_86]], [[VAL_6]], [[VAL_83]] xor : f32
// CHECK: cond_br [[VAL_89]], ^bb24, ^bb25
// CHECK: ^bb24:
// CHECK: [[VAL_90:%.*]] = cmpf "ugt", [[VAL_86]], [[VAL_88]] : f32
// CHECK: [[VAL_91:%.*]] = select [[VAL_90]], [[VAL_86]], [[VAL_88]] : f32
// CHECK: br ^bb26([[VAL_91]] : f32)
// CHECK: ^bb25:
// CHECK: br ^bb26([[VAL_86]] : f32)
// CHECK: ^bb26([[VAL_92:%.*]]: f32):
// CHECK: [[VAL_93:%.*]], [[VAL_94:%.*]] = gpu.shuffle [[VAL_92]], [[VAL_7]], [[VAL_83]] xor : f32
// CHECK: cond_br [[VAL_94]], ^bb27, ^bb28
// CHECK: ^bb27:
// CHECK: [[VAL_95:%.*]] = cmpf "ugt", [[VAL_92]], [[VAL_93]] : f32
// CHECK: [[VAL_96:%.*]] = select [[VAL_95]], [[VAL_92]], [[VAL_93]] : f32
// CHECK: br ^bb29([[VAL_96]] : f32)
// CHECK: ^bb28:
// CHECK: br ^bb29([[VAL_92]] : f32)
// CHECK: ^bb29([[VAL_97:%.*]]: f32):
// CHECK: [[VAL_98:%.*]], [[VAL_99:%.*]] = gpu.shuffle [[VAL_97]], [[VAL_8]], [[VAL_83]] xor : f32
// CHECK: cond_br [[VAL_99]], ^bb30, ^bb31
// CHECK: ^bb30:
// CHECK: [[VAL_100:%.*]] = cmpf "ugt", [[VAL_97]], [[VAL_98]] : f32
// CHECK: [[VAL_101:%.*]] = select [[VAL_100]], [[VAL_97]], [[VAL_98]] : f32
// CHECK: br ^bb32([[VAL_101]] : f32)
// CHECK: ^bb31:
// CHECK: br ^bb32([[VAL_97]] : f32)
// CHECK: ^bb32([[VAL_102:%.*]]: f32):
// CHECK: [[VAL_103:%.*]], [[VAL_104:%.*]] = gpu.shuffle [[VAL_102]], [[VAL_9]], [[VAL_83]] xor : f32
// CHECK: cond_br [[VAL_104]], ^bb33, ^bb34
// CHECK: ^bb33:
// CHECK: [[VAL_105:%.*]] = cmpf "ugt", [[VAL_102]], [[VAL_103]] : f32
// CHECK: [[VAL_106:%.*]] = select [[VAL_105]], [[VAL_102]], [[VAL_103]] : f32
// CHECK: br ^bb35([[VAL_106]] : f32)
// CHECK: ^bb34:
// CHECK: br ^bb35([[VAL_102]] : f32)
// CHECK: ^bb35([[VAL_107:%.*]]: f32):
// CHECK: [[VAL_108:%.*]], [[VAL_109:%.*]] = gpu.shuffle [[VAL_107]], [[VAL_10]], [[VAL_83]] xor : f32
// CHECK: cond_br [[VAL_109]], ^bb36, ^bb37
// CHECK: ^bb36:
// CHECK: [[VAL_110:%.*]] = cmpf "ugt", [[VAL_107]], [[VAL_108]] : f32
// CHECK: [[VAL_111:%.*]] = select [[VAL_110]], [[VAL_107]], [[VAL_108]] : f32
// CHECK: br ^bb38([[VAL_111]] : f32)
// CHECK: ^bb37:
// CHECK: br ^bb38([[VAL_107]] : f32)
// CHECK: ^bb38([[VAL_112:%.*]]: f32):
// CHECK: br ^bb40([[VAL_112]] : f32)
// CHECK: ^bb39:
// CHECK: [[VAL_113:%.*]], [[VAL_114:%.*]] = gpu.shuffle [[VAL_86]], [[VAL_6]], [[VAL_5]] xor : f32
// CHECK: [[VAL_115:%.*]] = cmpf "ugt", [[VAL_86]], [[VAL_113]] : f32
// CHECK: [[VAL_116:%.*]] = select [[VAL_115]], [[VAL_86]], [[VAL_113]] : f32
// CHECK: [[VAL_117:%.*]], [[VAL_118:%.*]] = gpu.shuffle [[VAL_116]], [[VAL_7]], [[VAL_5]] xor : f32
// CHECK: [[VAL_119:%.*]] = cmpf "ugt", [[VAL_116]], [[VAL_117]] : f32
// CHECK: [[VAL_120:%.*]] = select [[VAL_119]], [[VAL_116]], [[VAL_117]] : f32
// CHECK: [[VAL_121:%.*]], [[VAL_122:%.*]] = gpu.shuffle [[VAL_120]], [[VAL_8]], [[VAL_5]] xor : f32
// CHECK: [[VAL_123:%.*]] = cmpf "ugt", [[VAL_120]], [[VAL_121]] : f32
// CHECK: [[VAL_124:%.*]] = select [[VAL_123]], [[VAL_120]], [[VAL_121]] : f32
// CHECK: [[VAL_125:%.*]], [[VAL_126:%.*]] = gpu.shuffle [[VAL_124]], [[VAL_9]], [[VAL_5]] xor : f32
// CHECK: [[VAL_127:%.*]] = cmpf "ugt", [[VAL_124]], [[VAL_125]] : f32
// CHECK: [[VAL_128:%.*]] = select [[VAL_127]], [[VAL_124]], [[VAL_125]] : f32
// CHECK: [[VAL_129:%.*]], [[VAL_130:%.*]] = gpu.shuffle [[VAL_128]], [[VAL_10]], [[VAL_5]] xor : f32
// CHECK: [[VAL_131:%.*]] = cmpf "ugt", [[VAL_128]], [[VAL_129]] : f32
// CHECK: [[VAL_132:%.*]] = select [[VAL_131]], [[VAL_128]], [[VAL_129]] : f32
// CHECK: br ^bb40([[VAL_132]] : f32)
// CHECK: ^bb40([[VAL_133:%.*]]: f32):
// CHECK: store [[VAL_133]], [[VAL_1]]{{\[}}[[VAL_4]]] : memref<32xf32, 3>
// CHECK: br ^bb42
// CHECK: ^bb41:
// CHECK: br ^bb42
// CHECK: ^bb42:
// CHECK: gpu.barrier
// CHECK: [[VAL_134:%.*]] = load [[VAL_1]]{{\[}}[[VAL_4]]] : memref<32xf32, 3>
%sum = "gpu.all_reduce"(%arg0) ({}) {op = "max"} : (f32) -> (f32)
gpu.return
}
}

View File

@ -255,6 +255,14 @@ func @reduce_invalid_op(%arg0 : f32) {
// -----
func @reduce_invalid_op_type(%arg0 : f32) {
// expected-error@+1 {{`and` accumulator is only compatible with Integer type}}
%res = "gpu.all_reduce"(%arg0) ({}) {op = "and"} : (f32) -> (f32)
return
}
// -----
func @reduce_incorrect_region_arguments(%arg0 : f32) {
// expected-error@+1 {{expected two region arguments}}
%res = "gpu.all_reduce"(%arg0) ({

View File

@ -0,0 +1,60 @@
// RUN: mlir-cuda-runner %s --shared-libs=%cuda_wrapper_library_dir/libcuda-runtime-wrappers%shlibext,%linalg_test_lib_dir/libmlir_runner_utils%shlibext --entry-point-result=void | FileCheck %s
func @main() {
%data = alloc() : memref<2x6xi32>
%sum_and = alloc() : memref<2xi32>
%sum_or = alloc() : memref<2xi32>
%sum_min = alloc() : memref<2xi32>
%cst0 = constant 0 : i32
%cst1 = constant 1 : i32
%cst2 = constant 2 : i32
%cst4 = constant 4 : i32
%cst8 = constant 8 : i32
%cst16 = constant 16 : i32
%cst3 = constant 3 : i32
%cst6 = constant 6 : i32
%cst7 = constant 7 : i32
%cst10 = constant 10 : i32
%cst11 = constant 11 : i32
%c0 = constant 0 : index
%c1 = constant 1 : index
%c2 = constant 2 : index
%c3 = constant 3 : index
%c4 = constant 4 : index
%c5 = constant 5 : index
%c6 = constant 6 : index
store %cst0, %data[%c0, %c0] : memref<2x6xi32>
store %cst1, %data[%c0, %c1] : memref<2x6xi32>
store %cst2, %data[%c0, %c2] : memref<2x6xi32>
store %cst4, %data[%c0, %c3] : memref<2x6xi32>
store %cst8, %data[%c0, %c4] : memref<2x6xi32>
store %cst16, %data[%c0, %c5] : memref<2x6xi32>
store %cst2, %data[%c1, %c0] : memref<2x6xi32>
store %cst3, %data[%c1, %c1] : memref<2x6xi32>
store %cst6, %data[%c1, %c2] : memref<2x6xi32>
store %cst7, %data[%c1, %c3] : memref<2x6xi32>
store %cst10, %data[%c1, %c4] : memref<2x6xi32>
store %cst11, %data[%c1, %c5] : memref<2x6xi32>
// AND
gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %c2, %grid_y = %c1, %grid_z = %c1)
threads(%tx, %ty, %tz) in (%block_x = %c6, %block_y = %c1, %block_z = %c1) {
%val = load %data[%bx, %tx] : memref<2x6xi32>
%reduced_and = "gpu.all_reduce"(%val) ({}) { op = "and" } : (i32) -> (i32)
store %reduced_and, %sum_and[%bx] : memref<2xi32>
gpu.terminator
}
%ptr_and = memref_cast %sum_and : memref<2xi32> to memref<*xi32>
call @print_memref_i32(%ptr_and) : (memref<*xi32>) -> ()
// CHECK: [0, 2]
return
}
func @print_memref_i32(memref<*xi32>)

View File

@ -0,0 +1,58 @@
// RUN: mlir-cuda-runner %s --shared-libs=%cuda_wrapper_library_dir/libcuda-runtime-wrappers%shlibext,%linalg_test_lib_dir/libmlir_runner_utils%shlibext --entry-point-result=void | FileCheck %s
func @main() {
%data = alloc() : memref<2x6xi32>
%sum = alloc() : memref<2xi32>
%cst0 = constant 0 : i32
%cst1 = constant 1 : i32
%cst2 = constant 2 : i32
%cst4 = constant 4 : i32
%cst8 = constant 8 : i32
%cst16 = constant 16 : i32
%cst3 = constant 3 : i32
%cst6 = constant 6 : i32
%cst7 = constant 7 : i32
%cst10 = constant 10 : i32
%cst11 = constant 11 : i32
%c0 = constant 0 : index
%c1 = constant 1 : index
%c2 = constant 2 : index
%c3 = constant 3 : index
%c4 = constant 4 : index
%c5 = constant 5 : index
%c6 = constant 6 : index
store %cst0, %data[%c0, %c0] : memref<2x6xi32>
store %cst1, %data[%c0, %c1] : memref<2x6xi32>
store %cst2, %data[%c0, %c2] : memref<2x6xi32>
store %cst4, %data[%c0, %c3] : memref<2x6xi32>
store %cst8, %data[%c0, %c4] : memref<2x6xi32>
store %cst16, %data[%c0, %c5] : memref<2x6xi32>
store %cst2, %data[%c1, %c0] : memref<2x6xi32>
store %cst3, %data[%c1, %c1] : memref<2x6xi32>
store %cst6, %data[%c1, %c2] : memref<2x6xi32>
store %cst7, %data[%c1, %c3] : memref<2x6xi32>
store %cst10, %data[%c1, %c4] : memref<2x6xi32>
store %cst11, %data[%c1, %c5] : memref<2x6xi32>
// MAX
gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %c2, %grid_y = %c1, %grid_z = %c1)
threads(%tx, %ty, %tz) in (%block_x = %c6, %block_y = %c1, %block_z = %c1) {
%val = load %data[%bx, %tx] : memref<2x6xi32>
%reduced = "gpu.all_reduce"(%val) ({}) { op = "max" } : (i32) -> (i32)
store %reduced, %sum[%bx] : memref<2xi32>
gpu.terminator
}
%ptr = memref_cast %sum : memref<2xi32> to memref<*xi32>
call @print_memref_i32(%ptr) : (memref<*xi32>) -> ()
// CHECK: [16, 11]
return
}
func @print_memref_i32(memref<*xi32>)

View File

@ -0,0 +1,58 @@
// RUN: mlir-cuda-runner %s --shared-libs=%cuda_wrapper_library_dir/libcuda-runtime-wrappers%shlibext,%linalg_test_lib_dir/libmlir_runner_utils%shlibext --entry-point-result=void | FileCheck %s
func @main() {
%data = alloc() : memref<2x6xi32>
%sum = alloc() : memref<2xi32>
%cst0 = constant 0 : i32
%cst1 = constant 1 : i32
%cst2 = constant 2 : i32
%cst4 = constant 4 : i32
%cst8 = constant 8 : i32
%cst16 = constant 16 : i32
%cst3 = constant 3 : i32
%cst6 = constant 6 : i32
%cst7 = constant 7 : i32
%cst10 = constant 10 : i32
%cst11 = constant 11 : i32
%c0 = constant 0 : index
%c1 = constant 1 : index
%c2 = constant 2 : index
%c3 = constant 3 : index
%c4 = constant 4 : index
%c5 = constant 5 : index
%c6 = constant 6 : index
store %cst0, %data[%c0, %c0] : memref<2x6xi32>
store %cst1, %data[%c0, %c1] : memref<2x6xi32>
store %cst2, %data[%c0, %c2] : memref<2x6xi32>
store %cst4, %data[%c0, %c3] : memref<2x6xi32>
store %cst8, %data[%c0, %c4] : memref<2x6xi32>
store %cst16, %data[%c0, %c5] : memref<2x6xi32>
store %cst2, %data[%c1, %c0] : memref<2x6xi32>
store %cst3, %data[%c1, %c1] : memref<2x6xi32>
store %cst6, %data[%c1, %c2] : memref<2x6xi32>
store %cst7, %data[%c1, %c3] : memref<2x6xi32>
store %cst10, %data[%c1, %c4] : memref<2x6xi32>
store %cst11, %data[%c1, %c5] : memref<2x6xi32>
// MIN
gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %c2, %grid_y = %c1, %grid_z = %c1)
threads(%tx, %ty, %tz) in (%block_x = %c6, %block_y = %c1, %block_z = %c1) {
%val = load %data[%bx, %tx] : memref<2x6xi32>
%reduced = "gpu.all_reduce"(%val) ({}) { op = "min" } : (i32) -> (i32)
store %reduced, %sum[%bx] : memref<2xi32>
gpu.terminator
}
%ptr = memref_cast %sum : memref<2xi32> to memref<*xi32>
call @print_memref_i32(%ptr) : (memref<*xi32>) -> ()
// CHECK: [0, 2]
return
}
func @print_memref_i32(memref<*xi32>)

View File

@ -0,0 +1,58 @@
// RUN: mlir-cuda-runner %s --shared-libs=%cuda_wrapper_library_dir/libcuda-runtime-wrappers%shlibext,%linalg_test_lib_dir/libmlir_runner_utils%shlibext --entry-point-result=void | FileCheck %s
func @main() {
%data = alloc() : memref<2x6xi32>
%sum = alloc() : memref<2xi32>
%cst0 = constant 0 : i32
%cst1 = constant 1 : i32
%cst2 = constant 2 : i32
%cst4 = constant 4 : i32
%cst8 = constant 8 : i32
%cst16 = constant 16 : i32
%cst3 = constant 3 : i32
%cst6 = constant 6 : i32
%cst7 = constant 7 : i32
%cst10 = constant 10 : i32
%cst11 = constant 11 : i32
%c0 = constant 0 : index
%c1 = constant 1 : index
%c2 = constant 2 : index
%c3 = constant 3 : index
%c4 = constant 4 : index
%c5 = constant 5 : index
%c6 = constant 6 : index
store %cst0, %data[%c0, %c0] : memref<2x6xi32>
store %cst1, %data[%c0, %c1] : memref<2x6xi32>
store %cst2, %data[%c0, %c2] : memref<2x6xi32>
store %cst4, %data[%c0, %c3] : memref<2x6xi32>
store %cst8, %data[%c0, %c4] : memref<2x6xi32>
store %cst16, %data[%c0, %c5] : memref<2x6xi32>
store %cst2, %data[%c1, %c0] : memref<2x6xi32>
store %cst3, %data[%c1, %c1] : memref<2x6xi32>
store %cst6, %data[%c1, %c2] : memref<2x6xi32>
store %cst7, %data[%c1, %c3] : memref<2x6xi32>
store %cst10, %data[%c1, %c4] : memref<2x6xi32>
store %cst11, %data[%c1, %c5] : memref<2x6xi32>
// OR
gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %c2, %grid_y = %c1, %grid_z = %c1)
threads(%tx, %ty, %tz) in (%block_x = %c6, %block_y = %c1, %block_z = %c1) {
%val = load %data[%bx, %tx] : memref<2x6xi32>
%reduced = "gpu.all_reduce"(%val) ({}) { op = "or" } : (i32) -> (i32)
store %reduced, %sum[%bx] : memref<2xi32>
gpu.terminator
}
%ptr = memref_cast %sum : memref<2xi32> to memref<*xi32>
call @print_memref_i32(%ptr) : (memref<*xi32>) -> ()
// CHECK: [31, 15]
return
}
func @print_memref_i32(memref<*xi32>)

View File

@ -0,0 +1,58 @@
// RUN: mlir-cuda-runner %s --shared-libs=%cuda_wrapper_library_dir/libcuda-runtime-wrappers%shlibext,%linalg_test_lib_dir/libmlir_runner_utils%shlibext --entry-point-result=void | FileCheck %s
func @main() {
%data = alloc() : memref<2x6xi32>
%sum = alloc() : memref<2xi32>
%cst0 = constant 0 : i32
%cst1 = constant 1 : i32
%cst2 = constant 2 : i32
%cst4 = constant 4 : i32
%cst8 = constant 8 : i32
%cst16 = constant 16 : i32
%cst3 = constant 3 : i32
%cst6 = constant 6 : i32
%cst7 = constant 7 : i32
%cst10 = constant 10 : i32
%cst11 = constant 11 : i32
%c0 = constant 0 : index
%c1 = constant 1 : index
%c2 = constant 2 : index
%c3 = constant 3 : index
%c4 = constant 4 : index
%c5 = constant 5 : index
%c6 = constant 6 : index
store %cst0, %data[%c0, %c0] : memref<2x6xi32>
store %cst1, %data[%c0, %c1] : memref<2x6xi32>
store %cst2, %data[%c0, %c2] : memref<2x6xi32>
store %cst4, %data[%c0, %c3] : memref<2x6xi32>
store %cst8, %data[%c0, %c4] : memref<2x6xi32>
store %cst16, %data[%c0, %c5] : memref<2x6xi32>
store %cst2, %data[%c1, %c0] : memref<2x6xi32>
store %cst3, %data[%c1, %c1] : memref<2x6xi32>
store %cst6, %data[%c1, %c2] : memref<2x6xi32>
store %cst7, %data[%c1, %c3] : memref<2x6xi32>
store %cst10, %data[%c1, %c4] : memref<2x6xi32>
store %cst11, %data[%c1, %c5] : memref<2x6xi32>
// XOR
gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %c2, %grid_y = %c1, %grid_z = %c1)
threads(%tx, %ty, %tz) in (%block_x = %c6, %block_y = %c1, %block_z = %c1) {
%val = load %data[%bx, %tx] : memref<2x6xi32>
%reduced = "gpu.all_reduce"(%val) ({}) { op = "xor" } : (i32) -> (i32)
store %reduced, %sum[%bx] : memref<2xi32>
gpu.terminator
}
%ptr = memref_cast %sum : memref<2xi32> to memref<*xi32>
call @print_memref_i32(%ptr) : (memref<*xi32>) -> ()
// CHECK: [31, 1]
return
}
func @print_memref_i32(memref<*xi32>)