forked from OSchip/llvm-project
[SVE] Make ElementCount and TypeSize use a new PolySize class
I have introduced a new template PolySize class, where the template parameter determines the type of quantity, i.e. for an element count this is just an unsigned value. The ElementCount class is now just a simple derivation of PolySize<unsigned>, whereas TypeSize is more complicated because it still needs to contain the uint64_t cast operator, since there are still many places in the code that rely upon this implicit cast. As such the class also still needs some of it's own operators. I've tried to minimise the amount of code in the base PolySize class, which led to a couple of changes: 1. In some places we were relying on '==' operator comparisons between ElementCounts and the scalar value 1. I didn't put this operator in the new PolySize class, and thought it was actually clearer to use the isScalar() function instead. 2. I removed the isByteSized function and replaced it with calls to isKnownMultipleOf(8). I've also renamed NextPowerOf2 to be coefficientNextPowerOf2 so that it's more consistent with coefficientDivideBy. Differential Revision: https://reviews.llvm.org/D88409
This commit is contained in:
parent
6bf25f45a9
commit
c5ba0d33cc
|
@ -427,7 +427,7 @@ public:
|
|||
virtual TargetLoweringBase::LegalizeTypeAction
|
||||
getPreferredVectorAction(MVT VT) const {
|
||||
// The default action for one element vectors is to scalarize
|
||||
if (VT.getVectorElementCount() == 1)
|
||||
if (VT.getVectorElementCount().isScalar())
|
||||
return TypeScalarizeVector;
|
||||
// The default action for an odd-width vector is to widen.
|
||||
if (!VT.isPow2VectorType())
|
||||
|
|
|
@ -214,9 +214,7 @@ namespace llvm {
|
|||
}
|
||||
|
||||
/// Return true if the bit size is a multiple of 8.
|
||||
bool isByteSized() const {
|
||||
return getSizeInBits().isByteSized();
|
||||
}
|
||||
bool isByteSized() const { return getSizeInBits().isKnownMultipleOf(8); }
|
||||
|
||||
/// Return true if the size is a power-of-two number of bytes.
|
||||
bool isRound() const {
|
||||
|
|
|
@ -188,8 +188,7 @@ namespace Intrinsic {
|
|||
}
|
||||
|
||||
static IITDescriptor getVector(unsigned Width, bool IsScalable) {
|
||||
IITDescriptor Result;
|
||||
Result.Kind = Vector;
|
||||
IITDescriptor Result = {Vector, 0};
|
||||
Result.Vector_Width = ElementCount::get(Width, IsScalable);
|
||||
return Result;
|
||||
}
|
||||
|
|
|
@ -980,9 +980,7 @@ namespace llvm {
|
|||
|
||||
/// Returns true if the number of bits for the type is a multiple of an
|
||||
/// 8-bit byte.
|
||||
bool isByteSized() const {
|
||||
return getSizeInBits().isByteSized();
|
||||
}
|
||||
bool isByteSized() const { return getSizeInBits().isKnownMultipleOf(8); }
|
||||
|
||||
/// Return true if we know at compile time this has more bits than VT.
|
||||
bool knownBitsGT(MVT VT) const {
|
||||
|
|
|
@ -25,148 +25,58 @@ namespace llvm {
|
|||
|
||||
template <typename T> struct DenseMapInfo;
|
||||
|
||||
class ElementCount {
|
||||
private:
|
||||
unsigned Min; // Minimum number of vector elements.
|
||||
bool Scalable; // If true, NumElements is a multiple of 'Min' determined
|
||||
// at runtime rather than compile time.
|
||||
// TODO: This class will be redesigned in a later patch that introduces full
|
||||
// polynomial behaviour, i.e. the ability to have composites made up of both
|
||||
// fixed and scalable sizes.
|
||||
template <typename T> class PolySize {
|
||||
protected:
|
||||
T MinVal; // The minimum value that it could be.
|
||||
bool IsScalable; // If true, the total value is determined by multiplying
|
||||
// 'MinVal' by a runtime determinded quantity, 'vscale'.
|
||||
|
||||
/// Prevent code from using initializer-list contructors like
|
||||
/// ElementCount EC = {<unsigned>, <bool>}. The static `get*`
|
||||
/// methods below are preferred, as users should always make a
|
||||
/// conscious choice on the type of `ElementCount` they are
|
||||
/// requesting.
|
||||
ElementCount(unsigned Min, bool Scalable) : Min(Min), Scalable(Scalable) {}
|
||||
constexpr PolySize(T MinVal, bool IsScalable)
|
||||
: MinVal(MinVal), IsScalable(IsScalable) {}
|
||||
|
||||
public:
|
||||
ElementCount() = default;
|
||||
|
||||
ElementCount operator*(unsigned RHS) {
|
||||
return { Min * RHS, Scalable };
|
||||
static constexpr PolySize getFixed(T MinVal) { return {MinVal, false}; }
|
||||
static constexpr PolySize getScalable(T MinVal) { return {MinVal, true}; }
|
||||
static constexpr PolySize get(T MinVal, bool IsScalable) {
|
||||
return {MinVal, IsScalable};
|
||||
}
|
||||
|
||||
friend ElementCount operator-(const ElementCount &LHS,
|
||||
const ElementCount &RHS) {
|
||||
assert(LHS.Scalable == RHS.Scalable &&
|
||||
"Arithmetic using mixed scalable and fixed types");
|
||||
return {LHS.Min - RHS.Min, LHS.Scalable};
|
||||
}
|
||||
static constexpr PolySize getNull() { return {0, false}; }
|
||||
|
||||
bool operator==(const ElementCount& RHS) const {
|
||||
return Min == RHS.Min && Scalable == RHS.Scalable;
|
||||
}
|
||||
bool operator!=(const ElementCount& RHS) const {
|
||||
return !(*this == RHS);
|
||||
}
|
||||
bool operator==(unsigned RHS) const { return Min == RHS && !Scalable; }
|
||||
bool operator!=(unsigned RHS) const { return !(*this == RHS); }
|
||||
|
||||
ElementCount &operator*=(unsigned RHS) {
|
||||
Min *= RHS;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// We do not provide the '/' operator here because division for polynomial
|
||||
/// types does not work in the same way as for normal integer types. We can
|
||||
/// only divide the minimum value (or coefficient) by RHS, which is not the
|
||||
/// same as
|
||||
/// (Min * Vscale) / RHS
|
||||
/// The caller is recommended to use this function in combination with
|
||||
/// isKnownMultipleOf(RHS), which lets the caller know if it's possible to
|
||||
/// perform a lossless divide by RHS.
|
||||
ElementCount divideCoefficientBy(unsigned RHS) const {
|
||||
return ElementCount(Min / RHS, Scalable);
|
||||
}
|
||||
|
||||
ElementCount NextPowerOf2() const {
|
||||
return {(unsigned)llvm::NextPowerOf2(Min), Scalable};
|
||||
}
|
||||
|
||||
/// This function tells the caller whether the element count is known at
|
||||
/// compile time to be a multiple of the scalar value RHS.
|
||||
bool isKnownMultipleOf(unsigned RHS) const {
|
||||
return Min % RHS == 0;
|
||||
}
|
||||
|
||||
static ElementCount getFixed(unsigned Min) { return {Min, false}; }
|
||||
static ElementCount getScalable(unsigned Min) { return {Min, true}; }
|
||||
static ElementCount get(unsigned Min, bool Scalable) {
|
||||
return {Min, Scalable};
|
||||
}
|
||||
|
||||
/// Printing function.
|
||||
void print(raw_ostream &OS) const {
|
||||
if (Scalable)
|
||||
OS << "vscale x ";
|
||||
OS << Min;
|
||||
}
|
||||
/// Counting predicates.
|
||||
///
|
||||
/// Notice that Min = 1 and Scalable = true is considered more than
|
||||
/// one element.
|
||||
///
|
||||
///@{ No elements..
|
||||
bool isZero() const { return Min == 0; }
|
||||
bool isZero() const { return MinVal == 0; }
|
||||
/// At least one element.
|
||||
bool isNonZero() const { return Min != 0; }
|
||||
bool isNonZero() const { return !isZero(); }
|
||||
/// A return value of true indicates we know at compile time that the number
|
||||
/// of elements (vscale * Min) is definitely even. However, returning false
|
||||
/// does not guarantee that the total number of elements is odd.
|
||||
bool isKnownEven() const { return (Min & 0x1) == 0; }
|
||||
/// Exactly one element.
|
||||
bool isScalar() const { return !Scalable && Min == 1; }
|
||||
/// One or more elements.
|
||||
bool isVector() const { return (Scalable && Min != 0) || Min > 1; }
|
||||
bool isKnownEven() const { return (MinVal & 0x1) == 0; }
|
||||
///@}
|
||||
|
||||
unsigned getKnownMinValue() const { return Min; }
|
||||
T getKnownMinValue() const { return MinVal; }
|
||||
|
||||
// Return the minimum value with the assumption that the count is exact.
|
||||
// Use in places where a scalable count doesn't make sense (e.g. non-vector
|
||||
// types, or vectors in backends which don't support scalable vectors).
|
||||
unsigned getFixedValue() const {
|
||||
assert(!Scalable &&
|
||||
T getFixedValue() const {
|
||||
assert(!IsScalable &&
|
||||
"Request for a fixed element count on a scalable object");
|
||||
return Min;
|
||||
return MinVal;
|
||||
}
|
||||
|
||||
bool isScalable() const { return Scalable; }
|
||||
};
|
||||
bool isScalable() const { return IsScalable; }
|
||||
|
||||
/// Stream operator function for `ElementCount`.
|
||||
inline raw_ostream &operator<<(raw_ostream &OS, const ElementCount &EC) {
|
||||
EC.print(OS);
|
||||
return OS;
|
||||
}
|
||||
|
||||
// This class is used to represent the size of types. If the type is of fixed
|
||||
// size, it will represent the exact size. If the type is a scalable vector,
|
||||
// it will represent the known minimum size.
|
||||
class TypeSize {
|
||||
uint64_t MinSize; // The known minimum size.
|
||||
bool IsScalable; // If true, then the runtime size is an integer multiple
|
||||
// of MinSize.
|
||||
|
||||
public:
|
||||
constexpr TypeSize(uint64_t MinSize, bool Scalable)
|
||||
: MinSize(MinSize), IsScalable(Scalable) {}
|
||||
|
||||
static constexpr TypeSize Fixed(uint64_t Size) {
|
||||
return TypeSize(Size, /*Scalable=*/false);
|
||||
bool operator==(const PolySize &RHS) const {
|
||||
return MinVal == RHS.MinVal && IsScalable == RHS.IsScalable;
|
||||
}
|
||||
|
||||
static constexpr TypeSize Scalable(uint64_t MinSize) {
|
||||
return TypeSize(MinSize, /*Scalable=*/true);
|
||||
}
|
||||
|
||||
// Scalable vector types with the same minimum size as a fixed size type are
|
||||
// not guaranteed to be the same size at runtime, so they are never
|
||||
// considered to be equal.
|
||||
bool operator==(const TypeSize &RHS) const {
|
||||
return MinSize == RHS.MinSize && IsScalable == RHS.IsScalable;
|
||||
}
|
||||
|
||||
bool operator!=(const TypeSize &RHS) const { return !(*this == RHS); }
|
||||
bool operator!=(const PolySize &RHS) const { return !(*this == RHS); }
|
||||
|
||||
// For some cases, size ordering between scalable and fixed size types cannot
|
||||
// be determined at compile time, so such comparisons aren't allowed.
|
||||
|
@ -178,43 +88,129 @@ public:
|
|||
// All the functions below make use of the fact vscale is always >= 1, which
|
||||
// means that <vscale x 4 x i32> is guaranteed to be >= <4 x i32>, etc.
|
||||
|
||||
static bool isKnownLT(const TypeSize &LHS, const TypeSize &RHS) {
|
||||
static bool isKnownLT(const PolySize &LHS, const PolySize &RHS) {
|
||||
if (!LHS.IsScalable || RHS.IsScalable)
|
||||
return LHS.MinSize < RHS.MinSize;
|
||||
return LHS.MinVal < RHS.MinVal;
|
||||
|
||||
// LHS.IsScalable = true, RHS.IsScalable = false
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool isKnownGT(const TypeSize &LHS, const TypeSize &RHS) {
|
||||
static bool isKnownGT(const PolySize &LHS, const PolySize &RHS) {
|
||||
if (LHS.IsScalable || !RHS.IsScalable)
|
||||
return LHS.MinSize > RHS.MinSize;
|
||||
return LHS.MinVal > RHS.MinVal;
|
||||
|
||||
// LHS.IsScalable = false, RHS.IsScalable = true
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool isKnownLE(const TypeSize &LHS, const TypeSize &RHS) {
|
||||
static bool isKnownLE(const PolySize &LHS, const PolySize &RHS) {
|
||||
if (!LHS.IsScalable || RHS.IsScalable)
|
||||
return LHS.MinSize <= RHS.MinSize;
|
||||
return LHS.MinVal <= RHS.MinVal;
|
||||
|
||||
// LHS.IsScalable = true, RHS.IsScalable = false
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool isKnownGE(const TypeSize &LHS, const TypeSize &RHS) {
|
||||
static bool isKnownGE(const PolySize &LHS, const PolySize &RHS) {
|
||||
if (LHS.IsScalable || !RHS.IsScalable)
|
||||
return LHS.MinSize >= RHS.MinSize;
|
||||
return LHS.MinVal >= RHS.MinVal;
|
||||
|
||||
// LHS.IsScalable = false, RHS.IsScalable = true
|
||||
return false;
|
||||
}
|
||||
|
||||
PolySize operator*(T RHS) { return {MinVal * RHS, IsScalable}; }
|
||||
|
||||
PolySize &operator*=(T RHS) {
|
||||
MinVal *= RHS;
|
||||
return *this;
|
||||
}
|
||||
|
||||
friend PolySize operator-(const PolySize &LHS, const PolySize &RHS) {
|
||||
assert(LHS.IsScalable == RHS.IsScalable &&
|
||||
"Arithmetic using mixed scalable and fixed types");
|
||||
return {LHS.MinVal - RHS.MinVal, LHS.IsScalable};
|
||||
}
|
||||
|
||||
/// This function tells the caller whether the element count is known at
|
||||
/// compile time to be a multiple of the scalar value RHS.
|
||||
bool isKnownMultipleOf(T RHS) const { return MinVal % RHS == 0; }
|
||||
|
||||
/// We do not provide the '/' operator here because division for polynomial
|
||||
/// types does not work in the same way as for normal integer types. We can
|
||||
/// only divide the minimum value (or coefficient) by RHS, which is not the
|
||||
/// same as
|
||||
/// (Min * Vscale) / RHS
|
||||
/// The caller is recommended to use this function in combination with
|
||||
/// isKnownMultipleOf(RHS), which lets the caller know if it's possible to
|
||||
/// perform a lossless divide by RHS.
|
||||
PolySize divideCoefficientBy(T RHS) const {
|
||||
return PolySize(MinVal / RHS, IsScalable);
|
||||
}
|
||||
|
||||
PolySize coefficientNextPowerOf2() const {
|
||||
return PolySize(static_cast<T>(llvm::NextPowerOf2(MinVal)), IsScalable);
|
||||
}
|
||||
|
||||
/// Printing function.
|
||||
void print(raw_ostream &OS) const {
|
||||
if (IsScalable)
|
||||
OS << "vscale x ";
|
||||
OS << MinVal;
|
||||
}
|
||||
};
|
||||
|
||||
/// Stream operator function for `PolySize`.
|
||||
template <typename T>
|
||||
inline raw_ostream &operator<<(raw_ostream &OS, const PolySize<T> &PS) {
|
||||
PS.print(OS);
|
||||
return OS;
|
||||
}
|
||||
|
||||
class ElementCount : public PolySize<unsigned> {
|
||||
public:
|
||||
|
||||
constexpr ElementCount(PolySize<unsigned> V) : PolySize(V) {}
|
||||
|
||||
/// Counting predicates.
|
||||
///
|
||||
/// Notice that MinVal = 1 and IsScalable = true is considered more than
|
||||
/// one element.
|
||||
///
|
||||
///@{ No elements..
|
||||
/// Exactly one element.
|
||||
bool isScalar() const { return !IsScalable && MinVal == 1; }
|
||||
/// One or more elements.
|
||||
bool isVector() const { return (IsScalable && MinVal != 0) || MinVal > 1; }
|
||||
///@}
|
||||
};
|
||||
|
||||
// This class is used to represent the size of types. If the type is of fixed
|
||||
// size, it will represent the exact size. If the type is a scalable vector,
|
||||
// it will represent the known minimum size.
|
||||
class TypeSize : public PolySize<uint64_t> {
|
||||
public:
|
||||
constexpr TypeSize(PolySize<uint64_t> V) : PolySize(V) {}
|
||||
|
||||
constexpr TypeSize(uint64_t MinVal, bool IsScalable)
|
||||
: PolySize(MinVal, IsScalable) {}
|
||||
|
||||
static constexpr TypeSize Fixed(uint64_t MinVal) {
|
||||
return TypeSize(MinVal, false);
|
||||
}
|
||||
static constexpr TypeSize Scalable(uint64_t MinVal) {
|
||||
return TypeSize(MinVal, true);
|
||||
}
|
||||
|
||||
uint64_t getFixedSize() const { return getFixedValue(); }
|
||||
uint64_t getKnownMinSize() const { return getKnownMinValue(); }
|
||||
|
||||
friend bool operator<(const TypeSize &LHS, const TypeSize &RHS) {
|
||||
assert(LHS.IsScalable == RHS.IsScalable &&
|
||||
"Ordering comparison of scalable and fixed types");
|
||||
|
||||
return LHS.MinSize < RHS.MinSize;
|
||||
return LHS.MinVal < RHS.MinVal;
|
||||
}
|
||||
|
||||
friend bool operator>(const TypeSize &LHS, const TypeSize &RHS) {
|
||||
|
@ -229,83 +225,26 @@ public:
|
|||
return !(LHS < RHS);
|
||||
}
|
||||
|
||||
// Convenience operators to obtain relative sizes independently of
|
||||
// the scalable flag.
|
||||
TypeSize operator*(unsigned RHS) const {
|
||||
return { MinSize * RHS, IsScalable };
|
||||
}
|
||||
|
||||
friend TypeSize operator*(const unsigned LHS, const TypeSize &RHS) {
|
||||
return { LHS * RHS.MinSize, RHS.IsScalable };
|
||||
}
|
||||
|
||||
/// We do not provide the '/' operator here because division for polynomial
|
||||
/// types does not work in the same way as for normal integer types. We can
|
||||
/// only divide the minimum value (or coefficient) by RHS, which is not the
|
||||
/// same as
|
||||
/// (MinSize * Vscale) / RHS
|
||||
/// The caller is recommended to use this function in combination with
|
||||
/// isKnownMultipleOf(RHS), which lets the caller know if it's possible to
|
||||
/// perform a lossless divide by RHS.
|
||||
TypeSize divideCoefficientBy(uint64_t RHS) const {
|
||||
return {MinSize / RHS, IsScalable};
|
||||
}
|
||||
|
||||
TypeSize &operator-=(TypeSize RHS) {
|
||||
assert(IsScalable == RHS.IsScalable &&
|
||||
"Subtraction using mixed scalable and fixed types");
|
||||
MinSize -= RHS.MinSize;
|
||||
MinVal -= RHS.MinVal;
|
||||
return *this;
|
||||
}
|
||||
|
||||
TypeSize &operator+=(TypeSize RHS) {
|
||||
assert(IsScalable == RHS.IsScalable &&
|
||||
"Addition using mixed scalable and fixed types");
|
||||
MinSize += RHS.MinSize;
|
||||
MinVal += RHS.MinVal;
|
||||
return *this;
|
||||
}
|
||||
|
||||
friend TypeSize operator-(const TypeSize &LHS, const TypeSize &RHS) {
|
||||
assert(LHS.IsScalable == RHS.IsScalable &&
|
||||
"Arithmetic using mixed scalable and fixed types");
|
||||
return {LHS.MinSize - RHS.MinSize, LHS.IsScalable};
|
||||
return {LHS.MinVal - RHS.MinVal, LHS.IsScalable};
|
||||
}
|
||||
|
||||
// Return the minimum size with the assumption that the size is exact.
|
||||
// Use in places where a scalable size doesn't make sense (e.g. non-vector
|
||||
// types, or vectors in backends which don't support scalable vectors).
|
||||
uint64_t getFixedSize() const {
|
||||
assert(!IsScalable && "Request for a fixed size on a scalable object");
|
||||
return MinSize;
|
||||
}
|
||||
|
||||
// Return the known minimum size. Use in places where the scalable property
|
||||
// doesn't matter (e.g. determining alignment) or in conjunction with the
|
||||
// isScalable method below.
|
||||
uint64_t getKnownMinSize() const {
|
||||
return MinSize;
|
||||
}
|
||||
|
||||
// Return whether or not the size is scalable.
|
||||
bool isScalable() const {
|
||||
return IsScalable;
|
||||
}
|
||||
|
||||
// Returns true if the number of bits is a multiple of an 8-bit byte.
|
||||
bool isByteSized() const {
|
||||
return (MinSize & 7) == 0;
|
||||
}
|
||||
|
||||
// Returns true if the type size is non-zero.
|
||||
bool isNonZero() const { return MinSize != 0; }
|
||||
|
||||
// Returns true if the type size is zero.
|
||||
bool isZero() const { return MinSize == 0; }
|
||||
|
||||
/// This function tells the caller whether the type size is known at
|
||||
/// compile time to be a multiple of the scalar value RHS.
|
||||
bool isKnownMultipleOf(uint64_t RHS) const { return MinSize % RHS == 0; }
|
||||
|
||||
// Casts to a uint64_t if this is a fixed-width size.
|
||||
//
|
||||
// This interface is deprecated and will be removed in a future version
|
||||
|
@ -317,53 +256,51 @@ public:
|
|||
// To determine how to upgrade the code:
|
||||
//
|
||||
// if (<algorithm works for both scalable and fixed-width vectors>)
|
||||
// use getKnownMinSize()
|
||||
// use getKnownMinValue()
|
||||
// else if (<algorithm works only for fixed-width vectors>) {
|
||||
// if <algorithm can be adapted for both scalable and fixed-width vectors>
|
||||
// update the algorithm and use getKnownMinSize()
|
||||
// update the algorithm and use getKnownMinValue()
|
||||
// else
|
||||
// bail out early for scalable vectors and use getFixedSize()
|
||||
// bail out early for scalable vectors and use getFixedValue()
|
||||
// }
|
||||
operator uint64_t() const {
|
||||
#ifdef STRICT_FIXED_SIZE_VECTORS
|
||||
return getFixedSize();
|
||||
return getFixedValue();
|
||||
#else
|
||||
if (isScalable())
|
||||
WithColor::warning() << "Compiler has made implicit assumption that "
|
||||
"TypeSize is not scalable. This may or may not "
|
||||
"lead to broken code.\n";
|
||||
return getKnownMinSize();
|
||||
return getKnownMinValue();
|
||||
#endif
|
||||
}
|
||||
|
||||
// Convenience operators to obtain relative sizes independently of
|
||||
// the scalable flag.
|
||||
TypeSize operator*(unsigned RHS) const { return {MinVal * RHS, IsScalable}; }
|
||||
|
||||
friend TypeSize operator*(const unsigned LHS, const TypeSize &RHS) {
|
||||
return {LHS * RHS.MinVal, RHS.IsScalable};
|
||||
}
|
||||
|
||||
// Additional convenience operators needed to avoid ambiguous parses.
|
||||
// TODO: Make uint64_t the default operator?
|
||||
TypeSize operator*(uint64_t RHS) const {
|
||||
return { MinSize * RHS, IsScalable };
|
||||
}
|
||||
TypeSize operator*(uint64_t RHS) const { return {MinVal * RHS, IsScalable}; }
|
||||
|
||||
TypeSize operator*(int RHS) const {
|
||||
return { MinSize * RHS, IsScalable };
|
||||
}
|
||||
TypeSize operator*(int RHS) const { return {MinVal * RHS, IsScalable}; }
|
||||
|
||||
TypeSize operator*(int64_t RHS) const {
|
||||
return { MinSize * RHS, IsScalable };
|
||||
}
|
||||
TypeSize operator*(int64_t RHS) const { return {MinVal * RHS, IsScalable}; }
|
||||
|
||||
friend TypeSize operator*(const uint64_t LHS, const TypeSize &RHS) {
|
||||
return { LHS * RHS.MinSize, RHS.IsScalable };
|
||||
return {LHS * RHS.MinVal, RHS.IsScalable};
|
||||
}
|
||||
|
||||
friend TypeSize operator*(const int LHS, const TypeSize &RHS) {
|
||||
return { LHS * RHS.MinSize, RHS.IsScalable };
|
||||
return {LHS * RHS.MinVal, RHS.IsScalable};
|
||||
}
|
||||
|
||||
friend TypeSize operator*(const int64_t LHS, const TypeSize &RHS) {
|
||||
return { LHS * RHS.MinSize, RHS.IsScalable };
|
||||
}
|
||||
|
||||
TypeSize NextPowerOf2() const {
|
||||
return TypeSize(llvm::NextPowerOf2(MinSize), IsScalable);
|
||||
return {LHS * RHS.MinVal, RHS.IsScalable};
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -374,7 +311,7 @@ public:
|
|||
/// Similar to the alignTo functions in MathExtras.h
|
||||
inline TypeSize alignTo(TypeSize Size, uint64_t Align) {
|
||||
assert(Align != 0u && "Align must be non-zero");
|
||||
return {(Size.getKnownMinSize() + Align - 1) / Align * Align,
|
||||
return {(Size.getKnownMinValue() + Align - 1) / Align * Align,
|
||||
Size.isScalable()};
|
||||
}
|
||||
|
||||
|
|
|
@ -19573,7 +19573,7 @@ SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) {
|
|||
V.getOperand(0), NewIndex);
|
||||
return DAG.getBitcast(NVT, NewExtract);
|
||||
}
|
||||
if (NewExtEC == 1 &&
|
||||
if (NewExtEC.isScalar() &&
|
||||
TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) {
|
||||
SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL);
|
||||
SDValue NewExtract =
|
||||
|
|
|
@ -862,7 +862,7 @@ TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
|
|||
EVT EltVT = VT.getVectorElementType();
|
||||
|
||||
// Vectors with only one element are always scalarized.
|
||||
if (NumElts == 1)
|
||||
if (NumElts.isScalar())
|
||||
return LegalizeKind(TypeScalarizeVector, EltVT);
|
||||
|
||||
if (VT.getVectorElementCount() == ElementCount::getScalable(1))
|
||||
|
@ -875,7 +875,7 @@ TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
|
|||
// Vectors with a number of elements that is not a power of two are always
|
||||
// widened, for example <3 x i8> -> <4 x i8>.
|
||||
if (!VT.isPow2VectorType()) {
|
||||
NumElts = NumElts.NextPowerOf2();
|
||||
NumElts = NumElts.coefficientNextPowerOf2();
|
||||
EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
|
||||
return LegalizeKind(TypeWidenVector, NVT);
|
||||
}
|
||||
|
@ -924,7 +924,7 @@ TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
|
|||
// If there is no wider legal type, split the vector.
|
||||
while (true) {
|
||||
// Round up to the next power of 2.
|
||||
NumElts = NumElts.NextPowerOf2();
|
||||
NumElts = NumElts.coefficientNextPowerOf2();
|
||||
|
||||
// If there is no simple vector type with this many elements then there
|
||||
// cannot be a larger legal vector type. Note that this assumes that
|
||||
|
@ -1499,7 +1499,7 @@ unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT
|
|||
TypeSize NewVTSize = NewVT.getSizeInBits();
|
||||
// Convert sizes such as i33 to i64.
|
||||
if (!isPowerOf2_32(NewVTSize.getKnownMinSize()))
|
||||
NewVTSize = NewVTSize.NextPowerOf2();
|
||||
NewVTSize = NewVTSize.coefficientNextPowerOf2();
|
||||
return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
|
||||
}
|
||||
|
||||
|
|
|
@ -23,7 +23,7 @@ LLT::LLT(MVT VT) {
|
|||
} else if (VT.isValid()) {
|
||||
// Aggregates are no different from real scalars as far as GlobalISel is
|
||||
// concerned.
|
||||
assert(VT.getSizeInBits() != 0 && "invalid zero-sized type");
|
||||
assert(VT.getSizeInBits().isNonZero() && "invalid zero-sized type");
|
||||
init(/*IsPointer=*/false, /*IsVector=*/false, /*NumElements=*/0,
|
||||
VT.getSizeInBits(), /*AddressSpace=*/0);
|
||||
} else {
|
||||
|
|
|
@ -211,7 +211,7 @@ void X86InterleavedAccessGroup::decompose(
|
|||
VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy);
|
||||
}
|
||||
// Generate N loads of T type.
|
||||
assert(VecBaseTy->getPrimitiveSizeInBits().isByteSized() &&
|
||||
assert(VecBaseTy->getPrimitiveSizeInBits().isKnownMultipleOf(8) &&
|
||||
"VecBaseTy's size must be a multiple of 8");
|
||||
const Align FirstAlignment = LI->getAlign();
|
||||
const Align SubsequentAlignment = commonAlignment(
|
||||
|
|
|
@ -353,7 +353,9 @@ static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) {
|
|||
// with a <VF x Ty> vector.
|
||||
if (VF.isVector()) {
|
||||
auto *VectorTy = VectorType::get(Ty, VF);
|
||||
return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
|
||||
return TypeSize::get(VF.getKnownMinValue() *
|
||||
DL.getTypeAllocSize(Ty).getFixedValue(),
|
||||
VF.isScalable()) != DL.getTypeStoreSize(VectorTy);
|
||||
}
|
||||
|
||||
// If the vectorization factor is one, we just check if an array of type Ty
|
||||
|
@ -2166,7 +2168,7 @@ Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
|
|||
|
||||
// If we aren't vectorizing, we can just copy the scalar map values over to
|
||||
// the vector map.
|
||||
if (VF == 1) {
|
||||
if (VF.isScalar()) {
|
||||
VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
|
||||
return ScalarValue;
|
||||
}
|
||||
|
@ -2242,7 +2244,7 @@ InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
|
|||
// extractelement instruction.
|
||||
auto *U = getOrCreateVectorValue(V, Instance.Part);
|
||||
if (!U->getType()->isVectorTy()) {
|
||||
assert(VF == 1 && "Value not scalarized has non-vector type");
|
||||
assert(VF.isScalar() && "Value not scalarized has non-vector type");
|
||||
return U;
|
||||
}
|
||||
|
||||
|
@ -3933,7 +3935,7 @@ void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
|
|||
if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
|
||||
RK == RecurrenceDescriptor::RK_FloatMinMax) {
|
||||
// MinMax reduction have the start value as their identify.
|
||||
if (VF == 1 || IsInLoopReductionPhi) {
|
||||
if (VF.isScalar() || IsInLoopReductionPhi) {
|
||||
VectorStart = Identity = ReductionStartValue;
|
||||
} else {
|
||||
VectorStart = Identity =
|
||||
|
@ -3943,7 +3945,7 @@ void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
|
|||
// Handle other reduction kinds:
|
||||
Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
|
||||
RK, MinMaxKind, VecTy->getScalarType());
|
||||
if (VF == 1 || IsInLoopReductionPhi) {
|
||||
if (VF.isScalar() || IsInLoopReductionPhi) {
|
||||
Identity = Iden;
|
||||
// This vector is the Identity vector where the first element is the
|
||||
// incoming scalar reduction.
|
||||
|
@ -4343,7 +4345,7 @@ void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPUser &Operands,
|
|||
? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
|
||||
Indices)
|
||||
: Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
|
||||
assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
|
||||
assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
|
||||
"NewGEP is not a pointer vector");
|
||||
VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP);
|
||||
addMetadata(NewGEP, GEP);
|
||||
|
@ -8413,7 +8415,7 @@ bool LoopVectorizePass::processLoop(Loop *L) {
|
|||
return false;
|
||||
}
|
||||
|
||||
if (VF.Width == 1) {
|
||||
if (VF.Width.isScalar()) {
|
||||
LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
|
||||
VecDiagMsg = std::make_pair(
|
||||
"VectorizationNotBeneficial",
|
||||
|
|
|
@ -536,7 +536,7 @@ void VPlan::execute(VPTransformState *State) {
|
|||
"trip.count.minus.1");
|
||||
auto VF = State->VF;
|
||||
Value *VTCMO =
|
||||
VF == 1 ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
|
||||
VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
|
||||
for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
|
||||
State->set(BackedgeTakenCount, VTCMO, Part);
|
||||
}
|
||||
|
@ -930,7 +930,8 @@ void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
|
|||
ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
|
||||
// If VF == 1, there is only one iteration in the loop above, thus the
|
||||
// element pushed back into Indices is ConstantInt::get(STy, Part)
|
||||
Constant *VStep = VF == 1 ? Indices.back() : ConstantVector::get(Indices);
|
||||
Constant *VStep =
|
||||
VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
|
||||
// Add the consecutive indices to the vector value.
|
||||
Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
|
||||
State.set(getVPValue(), CanonicalVectorIV, Part);
|
||||
|
|
Loading…
Reference in New Issue