first half of a pass through IndVarSimplify::HandleFloatingPointIV,

this cleans up a bunch of code and also fixes several crashes and
miscompiles.  More to come unfortunately, this optimization
is quite broken.

llvm-svn: 100270
This commit is contained in:
Chris Lattner 2010-04-03 05:54:59 +00:00
parent 2e23e5284c
commit c558b49f14
2 changed files with 54 additions and 47 deletions

View File

@ -625,10 +625,10 @@ void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
/// Return true if it is OK to use SIToFPInst for an induction variable
/// with given initial and exit values.
static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
static bool useSIToFPInst(ConstantFP *InitV, ConstantFP *ExitV,
uint64_t intIV, uint64_t intEV) {
if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
if (InitV->getValueAPF().isNegative() || ExitV->getValueAPF().isNegative())
return true;
// If the iteration range can be handled by SIToFPInst then use it.
@ -640,19 +640,16 @@ static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
}
/// convertToInt - Convert APF to an integer, if possible.
static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
static bool convertToInt(const APFloat &APF, uint64_t &intVal) {
bool isExact = false;
if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
return false;
if (APF.convertToInteger(intVal, 32, APF.isNegative(),
APFloat::rmTowardZero, &isExact)
!= APFloat::opOK)
if (APF.convertToInteger(&intVal, 32, APF.isNegative(),
APFloat::rmTowardZero, &isExact) != APFloat::opOK)
return false;
if (!isExact)
return false;
return true;
}
/// HandleFloatingPointIV - If the loop has floating induction variable
@ -665,64 +662,53 @@ static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
/// bar((double)i);
///
void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
unsigned BackEdge = IncomingEdge^1;
// Check incoming value.
ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
ConstantFP *InitValue =
dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
if (!InitValue) return;
uint64_t newInitValue =
Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
uint64_t newInitValue;
if (!convertToInt(InitValue->getValueAPF(), newInitValue))
return;
// Check IV increment. Reject this PH if increment operation is not
// an add or increment value can not be represented by an integer.
BinaryOperator *Incr =
dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
if (!Incr) return;
if (Incr->getOpcode() != Instruction::FAdd) return;
ConstantFP *IncrValue = NULL;
unsigned IncrVIndex = 1;
if (Incr->getOperand(1) == PH)
IncrVIndex = 0;
IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
if (!IncrValue) return;
uint64_t newIncrValue =
Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
// If this is not an add of the PHI with a constantfp, or if the constant fp
// is not an integer, bail out.
ConstantFP *IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(1));
uint64_t newIncrValue;
if (IncrValue == 0 || Incr->getOperand(0) != PH ||
!convertToInt(IncrValue->getValueAPF(), newIncrValue))
return;
// Check Incr uses. One user is PH and the other users is exit condition used
// by the conditional terminator.
// Check Incr uses. One user is PH and the other user is an exit condition
// used by the conditional terminator.
Value::use_iterator IncrUse = Incr->use_begin();
Instruction *U1 = cast<Instruction>(IncrUse++);
if (IncrUse == Incr->use_end()) return;
Instruction *U2 = cast<Instruction>(IncrUse++);
if (IncrUse != Incr->use_end()) return;
// Find exit condition.
// Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
// only used by a branch, we can't transform it.
FCmpInst *EC = dyn_cast<FCmpInst>(U1);
if (!EC)
EC = dyn_cast<FCmpInst>(U2);
if (!EC) return;
if (EC == 0 || !EC->hasOneUse() || !isa<BranchInst>(EC->use_back()))
return;
if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
if (!BI->isConditional()) return;
if (BI->getCondition() != EC) return;
}
// Find exit value. If exit value can not be represented as an integer then
// do not handle this floating point PH.
ConstantFP *EV = NULL;
unsigned EVIndex = 1;
if (EC->getOperand(1) == Incr)
EVIndex = 0;
EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
if (!EV) return;
uint64_t intEV = Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
if (!convertToInt(EV->getValueAPF(), &intEV))
// If it isn't a comparison with an integer-as-fp (the exit value), we can't
// transform it.
ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(EC->getOperand(1));
uint64_t ExitValue;
if (ExitValueVal == 0 || !convertToInt(ExitValueVal->getValueAPF(),ExitValue))
return;
// Find new predicate for integer comparison.
@ -769,9 +755,11 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
// The back edge is edge 1 of newPHI, whatever it may have been in the
// original PHI.
ConstantInt *NewEV = ConstantInt::get(Type::getInt32Ty(PH->getContext()),
intEV);
Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV);
Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1));
ExitValue);
// FIXME: This is probably wrong.
Value *LHS = NewPHI->getIncomingValue(1);
Value *RHS = NewEV;
ICmpInst *NewEC = new ICmpInst(EC->getParent()->getTerminator(),
NewPred, LHS, RHS, EC->getName());
@ -792,7 +780,7 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
// Give SIToFPInst preference over UIToFPInst because it is faster on
// platforms that are widely used.
if (WeakPH && !PH->use_empty()) {
if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
if (useSIToFPInst(InitValue, ExitValueVal, newInitValue, ExitValue)) {
SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
PH->getParent()->getFirstNonPHI());
PH->replaceAllUsesWith(Conv);

View File

@ -0,0 +1,19 @@
; RUN: opt -indvars %s -disable-output
declare i32 @putchar(i8) nounwind
define void @t2(i1* %P) nounwind {
; <label>:0
br label %1
; <label>:1 ; preds = %1, %0
%2 = phi double [ 9.000000e+00, %0 ], [ %4, %1 ] ; <double> [#uses=1]
%3 = tail call i32 @putchar(i8 72) ; <i32> [#uses=0]
%4 = fadd double %2, -1.000000e+00 ; <double> [#uses=2]
%5 = fcmp ult double %4, 0.000000e+00 ; <i1> [#uses=1]
store i1 %5, i1* %P
br i1 %5, label %6, label %1
; <label>:6 ; preds = %1
ret void
}