[mlir] Fix masked vector transfer ops with broadcasts

Broadcast dimensions of a vector transfer op have no corresponding dimension in the mask vector. E.g., a 2-D TransferReadOp, where one dimension is a broadcast, can have a 1-D `mask` attribute.

This commit also adds a few additional transfer op integration tests for various combinations of broadcasts, masking, dim transposes, etc.

Differential Revision: https://reviews.llvm.org/D101745
This commit is contained in:
Matthias Springer 2021-05-13 11:57:10 +09:00
parent a0ca4c46ca
commit c52cbe63e4
10 changed files with 350 additions and 114 deletions

View File

@ -17,6 +17,18 @@
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/OpDefinition.h"
namespace mlir {
namespace vector {
namespace detail {
/// Given the vector type and the permutation map of a vector transfer op,
/// compute the expected mask type.
VectorType transferMaskType(VectorType vecType, AffineMap map);
} // namespace detail
} // namespace vector
} // namespace mlir
/// Include the generated interface declarations.
#include "mlir/Interfaces/VectorInterfaces.h.inc"

View File

@ -114,6 +114,18 @@ def VectorTransferOpInterface : OpInterface<"VectorTransferOpInterface"> {
/*methodBody=*/"return $_op.permutation_map();"
/*defaultImplementation=*/
>,
InterfaceMethod<
/*desc=*/[{ Returns true if the specified dimension is a broadcast. }],
/*retTy=*/"bool",
/*methodName=*/"isBroadcastDim",
/*args=*/(ins "unsigned":$idx),
/*methodBody=*/"",
/*defaultImplementation=*/[{
auto expr = $_op.permutation_map().getResult(idx);
return expr.template isa<AffineConstantExpr>() &&
expr.template dyn_cast<AffineConstantExpr>().getValue() == 0;
}]
>,
InterfaceMethod<
/*desc=*/[{ Returns true if at least one of the dimensions in the
permutation map is a broadcast.}],
@ -122,11 +134,11 @@ def VectorTransferOpInterface : OpInterface<"VectorTransferOpInterface"> {
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
return llvm::any_of(
$_op.permutation_map().getResults(),
[](AffineExpr e) {
return e.isa<AffineConstantExpr>() &&
e.dyn_cast<AffineConstantExpr>().getValue() == 0; });
for (unsigned i = 0; i < $_op.permutation_map().getNumResults(); ++i) {
if ($_op.isBroadcastDim(i))
return true;
}
return false;
}]
>,
InterfaceMethod<
@ -156,6 +168,19 @@ def VectorTransferOpInterface : OpInterface<"VectorTransferOpInterface"> {
return $_op.vector().getType().template dyn_cast<VectorType>();
}]
>,
InterfaceMethod<
/*desc=*/"Return the mask type if the op has a mask.",
/*retTy=*/"VectorType",
/*methodName=*/"getMaskType",
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
return $_op.mask()
? mlir::vector::detail::transferMaskType(
$_op.getVectorType(), $_op.permutation_map())
: VectorType();
}]
>,
InterfaceMethod<
/*desc=*/[{ Return the number of dimensions that participate in the
permutation map.}],

View File

@ -79,8 +79,9 @@ static BufferAllocs allocBuffers(OpTy xferOp) {
if (xferOp.mask()) {
auto maskType = MemRefType::get({}, xferOp.mask().getType());
result.maskBuffer = memref_alloca(maskType).value;
memref_store(xferOp.mask(), result.maskBuffer);
Value maskBuffer = memref_alloca(maskType);
memref_store(xferOp.mask(), maskBuffer);
result.maskBuffer = memref_load(maskBuffer);
}
return result;
@ -95,7 +96,7 @@ static Optional<int64_t> unpackedDim(OpTy xferOp) {
if (auto expr = map.getResult(0).template dyn_cast<AffineDimExpr>()) {
return expr.getPosition();
}
assert(map.getResult(0).template isa<AffineConstantExpr>() &&
assert(xferOp.isBroadcastDim(0) &&
"Expected AffineDimExpr or AffineConstantExpr");
return None;
}
@ -143,14 +144,19 @@ static void maybeYieldValue(
}
/// Generates a boolean Value that is true if the iv-th bit in xferOp's mask
/// is set to true. Does not return a Value if the transfer op is not 1D or
/// if the transfer op does not have a mask.
/// is set to true. No such check is generated under following circumstances:
/// * xferOp does not have a mask.
/// * xferOp's mask is not 1D. (In case of (N>1)-D, a subvector of the mask is
/// computed and attached to the new transfer op in the pattern.)
/// * The to-be-unpacked dim of xferOp is a broadcast.
template <typename OpTy>
static Value maybeGenerateMaskCheck(OpBuilder &builder, OpTy xferOp, Value iv) {
if (xferOp.getVectorType().getRank() != 1)
return Value();
static Value generateMaskCheck(OpBuilder &builder, OpTy xferOp, Value iv) {
if (!xferOp.mask())
return Value();
if (xferOp.getMaskType().getRank() != 1)
return Value();
if (xferOp.isBroadcastDim(0))
return Value();
auto ivI32 = std_index_cast(IntegerType::get(builder.getContext(), 32), iv);
return vector_extract_element(xferOp.mask(), ivI32).value;
@ -200,7 +206,7 @@ static Value generateInBoundsCheck(
}
// Condition check 2: Masked in?
if (auto maskCond = maybeGenerateMaskCheck(builder, xferOp, iv)) {
if (auto maskCond = generateMaskCheck(builder, xferOp, iv)) {
if (cond) {
cond = builder.create<AndOp>(xferOp.getLoc(), cond, maskCond);
} else {
@ -488,8 +494,8 @@ struct PrepareTransferReadConversion
auto *newXfer = rewriter.clone(*xferOp.getOperation());
newXfer->setAttr(kPassLabel, rewriter.getUnitAttr());
if (xferOp.mask()) {
auto loadedMask = memref_load(buffers.maskBuffer);
dyn_cast<TransferReadOp>(newXfer).maskMutable().assign(loadedMask);
dyn_cast<TransferReadOp>(newXfer).maskMutable().assign(
buffers.maskBuffer);
}
memref_store(newXfer->getResult(0), buffers.dataBuffer);
@ -541,9 +547,8 @@ struct PrepareTransferWriteConversion
});
if (xferOp.mask()) {
auto loadedMask = memref_load(buffers.maskBuffer);
rewriter.updateRootInPlace(
xferOp, [&]() { xferOp.maskMutable().assign(loadedMask); });
xferOp, [&]() { xferOp.maskMutable().assign(buffers.maskBuffer); });
}
return success();
@ -590,8 +595,17 @@ struct TransferOpConversion : public OpRewritePattern<OpTy> {
auto maskBuffer = getMaskBuffer(xferOp);
auto maskBufferType =
maskBuffer.getType().template dyn_cast<MemRefType>();
auto castedMaskType = unpackOneDim(maskBufferType);
castedMaskBuffer = vector_type_cast(castedMaskType, maskBuffer);
if (xferOp.isBroadcastDim(0) || xferOp.getMaskType().getRank() == 1) {
// Do not unpack a dimension of the mask, if:
// * To-be-unpacked transfer op dimension is a broadcast.
// * Mask is 1D, i.e., the mask cannot be further unpacked.
// (That means that all remaining dimensions of the transfer op must
// be broadcasted.)
castedMaskBuffer = maskBuffer;
} else {
auto castedMaskType = unpackOneDim(maskBufferType);
castedMaskBuffer = vector_type_cast(castedMaskType, maskBuffer);
}
}
// Loop bounds and step.
@ -616,13 +630,20 @@ struct TransferOpConversion : public OpRewritePattern<OpTy> {
Strategy<OpTy>::rewriteOp(b, xferOp, castedDataBuffer, iv);
// If old transfer op has a mask: Set mask on new transfer op.
if (xferOp.mask()) {
// Special case: If the mask of the old transfer op is 1D and the
// unpacked dim is not a broadcast, no mask is needed
// on the new transfer op.
if (xferOp.mask() && (xferOp.isBroadcastDim(0) ||
xferOp.getMaskType().getRank() > 1)) {
OpBuilder::InsertionGuard guard(b);
b.setInsertionPoint(newXfer); // Insert load before newXfer.
SmallVector<Value, 8> loadIndices;
Strategy<OpTy>::getBufferIndices(xferOp, loadIndices);
loadIndices.push_back(iv);
// In case of broadcast: Use same indices to load from memref as
// before.
if (!xferOp.isBroadcastDim(0))
loadIndices.push_back(iv);
auto mask = memref_load(castedMaskBuffer, loadIndices);
rewriter.updateRootInPlace(
@ -661,7 +682,7 @@ static Optional<int64_t> get1dMemrefIndices(
return dim;
}
assert(map.getResult(0).template isa<AffineConstantExpr>() &&
assert(xferOp.isBroadcastDim(0) &&
"Expected AffineDimExpr or AffineConstantExpr");
return None;
}

View File

@ -2306,6 +2306,7 @@ static LogicalResult verifyPermutationMap(AffineMap permutationMap,
static LogicalResult verifyTransferOp(Operation *op, ShapedType shapedType,
VectorType vectorType,
VectorType maskType,
AffineMap permutationMap,
ArrayAttr inBounds) {
if (op->hasAttr("masked")) {
@ -2341,6 +2342,9 @@ static LogicalResult verifyTransferOp(Operation *op, ShapedType shapedType,
if (permutationMap.getNumResults() != rankOffset)
return op->emitOpError("requires a permutation_map with result dims of "
"the same rank as the vector type");
if (maskType)
return op->emitOpError("does not support masks with vector element type");
} else {
// Memref or tensor has scalar element type.
unsigned resultVecSize =
@ -2355,6 +2359,13 @@ static LogicalResult verifyTransferOp(Operation *op, ShapedType shapedType,
if (permutationMap.getNumResults() != vectorType.getRank())
return op->emitOpError("requires a permutation_map with result dims of "
"the same rank as the vector type");
VectorType expectedMaskType =
vector::detail::transferMaskType(vectorType, permutationMap);
if (maskType && expectedMaskType != maskType)
return op->emitOpError("expects mask type consistent with permutation "
"map: ")
<< maskType;
}
if (permutationMap.getNumSymbols() != 0)
@ -2491,10 +2502,11 @@ static ParseResult parseTransferReadOp(OpAsmParser &parser,
if (!vectorType)
return parser.emitError(typesLoc, "requires vector type");
auto permutationAttrName = TransferReadOp::getPermutationMapAttrName();
auto attr = result.attributes.get(permutationAttrName);
if (!attr) {
Attribute mapAttr = result.attributes.get(permutationAttrName);
if (!mapAttr) {
auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
mapAttr = AffineMapAttr::get(permMap);
result.attributes.set(permutationAttrName, mapAttr);
}
if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
parser.resolveOperands(indexInfo, indexType, result.operands) ||
@ -2502,7 +2514,13 @@ static ParseResult parseTransferReadOp(OpAsmParser &parser,
result.operands))
return failure();
if (hasMask.succeeded()) {
auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
if (shapedType.getElementType().dyn_cast<VectorType>())
return parser.emitError(
maskInfo.location, "does not support masks with vector element type");
auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue();
// Instead of adding the mask type as an op type, compute it based on the
// vector type and the permutation map (to keep the type signature small).
auto maskType = mlir::vector::detail::transferMaskType(vectorType, map);
if (parser.resolveOperand(maskInfo, maskType, result.operands))
return failure();
}
@ -2517,6 +2535,7 @@ static LogicalResult verify(TransferReadOp op) {
// Consistency of elemental types in source and vector.
ShapedType shapedType = op.getShapedType();
VectorType vectorType = op.getVectorType();
VectorType maskType = op.getMaskType();
auto paddingType = op.padding().getType();
auto permutationMap = op.permutation_map();
auto sourceElementType = shapedType.getElementType();
@ -2525,7 +2544,7 @@ static LogicalResult verify(TransferReadOp op) {
return op.emitOpError("requires ") << shapedType.getRank() << " indices";
if (failed(verifyTransferOp(op.getOperation(), shapedType, vectorType,
permutationMap,
maskType, permutationMap,
op.in_bounds() ? *op.in_bounds() : ArrayAttr())))
return failure();
@ -2768,6 +2787,9 @@ static ParseResult parseTransferWriteOp(OpAsmParser &parser,
parser.resolveOperands(indexInfo, indexType, result.operands))
return failure();
if (hasMask.succeeded()) {
if (shapedType.getElementType().dyn_cast<VectorType>())
return parser.emitError(
maskInfo.location, "does not support masks with vector element type");
auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
if (parser.resolveOperand(maskInfo, maskType, result.operands))
return failure();
@ -2793,6 +2815,7 @@ static LogicalResult verify(TransferWriteOp op) {
// Consistency of elemental types in shape and vector.
ShapedType shapedType = op.getShapedType();
VectorType vectorType = op.getVectorType();
VectorType maskType = op.getMaskType();
auto permutationMap = op.permutation_map();
if (llvm::size(op.indices()) != shapedType.getRank())
@ -2804,7 +2827,7 @@ static LogicalResult verify(TransferWriteOp op) {
return op.emitOpError("should not have broadcast dimensions");
if (failed(verifyTransferOp(op.getOperation(), shapedType, vectorType,
permutationMap,
maskType, permutationMap,
op.in_bounds() ? *op.in_bounds() : ArrayAttr())))
return failure();

View File

@ -10,6 +10,19 @@
using namespace mlir;
VectorType mlir::vector::detail::transferMaskType(VectorType vecType,
AffineMap map) {
auto i1Type = IntegerType::get(map.getContext(), 1);
SmallVector<int64_t, 8> shape;
for (int64_t i = 0; i < vecType.getRank(); ++i) {
// Only result dims have a corresponding dim in the mask.
if (auto expr = map.getResult(i).template isa<AffineDimExpr>()) {
shape.push_back(vecType.getDimSize(i));
}
}
return shape.empty() ? VectorType() : VectorType::get(shape, i1Type);
}
//===----------------------------------------------------------------------===//
// VectorUnroll Interfaces
//===----------------------------------------------------------------------===//

View File

@ -339,6 +339,18 @@ func @test_vector.transfer_read(%arg0: memref<?x?x?xf32>) {
// -----
func @test_vector.transfer_read(%arg0: memref<?x?x?xf32>) {
%c1 = constant 1 : i1
%c3 = constant 3 : index
%cst = constant 3.0 : f32
// expected-note@+1 {{prior use here}}
%mask = splat %c1 : vector<3x8x7xi1>
// expected-error@+1 {{expects different type than prior uses: 'vector<3x7xi1>' vs 'vector<3x8x7xi1>'}}
%0 = vector.transfer_read %arg0[%c3, %c3, %c3], %cst, %mask {permutation_map = affine_map<(d0, d1, d2)->(d0, 0, d2)>} : memref<?x?x?xf32>, vector<3x8x7xf32>
}
// -----
func @test_vector.transfer_read(%arg0: memref<?x?xvector<4x3xf32>>) {
%c3 = constant 3 : index
%f0 = constant 0.0 : f32
@ -369,6 +381,17 @@ func @test_vector.transfer_read(%arg0: memref<?x?xvector<2x3xf32>>) {
// -----
func @test_vector.transfer_read(%arg0: memref<?x?xvector<2x3xf32>>) {
%c3 = constant 3 : index
%f0 = constant 0.0 : f32
%vf0 = splat %f0 : vector<2x3xf32>
%mask = splat %c1 : vector<2x3xi1>
// expected-error@+1 {{does not support masks with vector element type}}
%0 = vector.transfer_read %arg0[%c3, %c3], %vf0, %mask {permutation_map = affine_map<(d0, d1)->(d0, d1)>} : memref<?x?xvector<2x3xf32>>, vector<1x1x2x3xf32>
}
// -----
func @test_vector.transfer_write(%arg0: memref<?x?xf32>) {
%c3 = constant 3 : index
%cst = constant 3.0 : f32

View File

@ -4,19 +4,21 @@
func @vector_transfer_ops(%arg0: memref<?x?xf32>,
%arg1 : memref<?x?xvector<4x3xf32>>,
%arg2 : memref<?x?xvector<4x3xi32>>,
%arg3 : memref<?x?xvector<4x3xindex>>) {
%arg3 : memref<?x?xvector<4x3xindex>>,
%arg4 : memref<?x?x?xf32>) {
// CHECK: %[[C3:.*]] = constant 3 : index
%c3 = constant 3 : index
%cst = constant 3.0 : f32
%f0 = constant 0.0 : f32
%c0 = constant 0 : i32
%i0 = constant 0 : index
%i1 = constant 1 : i1
%vf0 = splat %f0 : vector<4x3xf32>
%v0 = splat %c0 : vector<4x3xi32>
%vi0 = splat %i0 : vector<4x3xindex>
%m = constant dense<[0, 0, 1, 0, 1]> : vector<5xi1>
%m2 = splat %i1 : vector<5x4xi1>
//
// CHECK: vector.transfer_read
%0 = vector.transfer_read %arg0[%c3, %c3], %f0 {permutation_map = affine_map<(d0, d1)->(d0)>} : memref<?x?xf32>, vector<128xf32>
@ -36,6 +38,8 @@ func @vector_transfer_ops(%arg0: memref<?x?xf32>,
%7 = vector.transfer_read %arg3[%c3, %c3], %vi0 : memref<?x?xvector<4x3xindex>>, vector<5x48xi8>
// CHECK: vector.transfer_read %{{.*}}[%[[C3]], %[[C3]]], %{{.*}}, %{{.*}} : memref<?x?xf32>, vector<5xf32>
%8 = vector.transfer_read %arg0[%c3, %c3], %f0, %m : memref<?x?xf32>, vector<5xf32>
// CHECK: vector.transfer_read %{{.*}}[%[[C3]], %[[C3]], %[[C3]]], %{{.*}}, %{{.*}} : memref<?x?x?xf32>, vector<5x4x8xf32>
%9 = vector.transfer_read %arg4[%c3, %c3, %c3], %f0, %m2 {permutation_map = affine_map<(d0, d1, d2)->(d1, d0, 0)>} : memref<?x?x?xf32>, vector<5x4x8xf32>
// CHECK: vector.transfer_write
vector.transfer_write %0, %arg0[%c3, %c3] {permutation_map = affine_map<(d0, d1)->(d0)>} : vector<128xf32>, memref<?x?xf32>

View File

@ -5,6 +5,14 @@
// Test for special cases of 1D vector transfer ops.
memref.global "private" @gv : memref<5x6xf32> =
dense<[[0. , 1. , 2. , 3. , 4. , 5. ],
[10., 11., 12., 13., 14., 15.],
[20., 21., 22., 23., 24., 25.],
[30., 31., 32., 33., 34., 35.],
[40., 41., 42., 43., 44., 45.]]>
// Non-contiguous, strided load.
func @transfer_read_1d(%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
%fm42 = constant -42.0: f32
%f = vector.transfer_read %A[%base1, %base2], %fm42
@ -14,6 +22,7 @@ func @transfer_read_1d(%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
return
}
// Broadcast.
func @transfer_read_1d_broadcast(
%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
%fm42 = constant -42.0: f32
@ -24,6 +33,7 @@ func @transfer_read_1d_broadcast(
return
}
// Non-contiguous, strided load.
func @transfer_read_1d_in_bounds(
%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
%fm42 = constant -42.0: f32
@ -34,6 +44,7 @@ func @transfer_read_1d_in_bounds(
return
}
// Non-contiguous, strided load.
func @transfer_read_1d_mask(
%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
%fm42 = constant -42.0: f32
@ -45,6 +56,7 @@ func @transfer_read_1d_mask(
return
}
// Non-contiguous, strided load.
func @transfer_read_1d_mask_in_bounds(
%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
%fm42 = constant -42.0: f32
@ -56,6 +68,7 @@ func @transfer_read_1d_mask_in_bounds(
return
}
// Non-contiguous, strided store.
func @transfer_write_1d(%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
%fn1 = constant -1.0 : f32
%vf0 = splat %fn1 : vector<7xf32>
@ -65,57 +78,68 @@ func @transfer_write_1d(%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
return
}
// Non-contiguous, strided store.
func @transfer_write_1d_mask(%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
%fn1 = constant -2.0 : f32
%vf0 = splat %fn1 : vector<7xf32>
%mask = constant dense<[1, 0, 1, 0, 1, 1, 1]> : vector<7xi1>
vector.transfer_write %vf0, %A[%base1, %base2], %mask
{permutation_map = affine_map<(d0, d1) -> (d0)>}
: vector<7xf32>, memref<?x?xf32>
return
}
func @entry() {
%c0 = constant 0: index
%c1 = constant 1: index
%c2 = constant 2: index
%c3 = constant 3: index
%f10 = constant 10.0: f32
// work with dims of 4, not of 3
%first = constant 5: index
%second = constant 6: index
%A = memref.alloc(%first, %second) : memref<?x?xf32>
scf.for %i = %c0 to %first step %c1 {
%i32 = index_cast %i : index to i32
%fi = sitofp %i32 : i32 to f32
%fi10 = mulf %fi, %f10 : f32
scf.for %j = %c0 to %second step %c1 {
%j32 = index_cast %j : index to i32
%fj = sitofp %j32 : i32 to f32
%fres = addf %fi10, %fj : f32
memref.store %fres, %A[%i, %j] : memref<?x?xf32>
}
}
%0 = memref.get_global @gv : memref<5x6xf32>
%A = memref.cast %0 : memref<5x6xf32> to memref<?x?xf32>
// Read from 2D memref on first dimension. Cannot be lowered to an LLVM
// vector load. Instead, generates scalar loads.
// 1. Read from 2D memref on first dimension. Cannot be lowered to an LLVM
// vector load. Instead, generates scalar loads.
call @transfer_read_1d(%A, %c1, %c2) : (memref<?x?xf32>, index, index) -> ()
// Write to 2D memref on first dimension. Cannot be lowered to an LLVM
// vector store. Instead, generates scalar stores.
// CHECK: ( 12, 22, 32, 42, -42, -42, -42, -42, -42 )
// 2. Write to 2D memref on first dimension. Cannot be lowered to an LLVM
// vector store. Instead, generates scalar stores.
call @transfer_write_1d(%A, %c3, %c2) : (memref<?x?xf32>, index, index) -> ()
// (Same as above.)
// 3. (Same as 1. To check if 2 works correctly.)
call @transfer_read_1d(%A, %c0, %c2) : (memref<?x?xf32>, index, index) -> ()
// Read a scalar from a 2D memref and broadcast the value to a 1D vector.
// Generates a loop with vector.insertelement.
// CHECK: ( 2, 12, 22, -1, -1, -42, -42, -42, -42 )
// 4. Read a scalar from a 2D memref and broadcast the value to a 1D vector.
// Generates a loop with vector.insertelement.
call @transfer_read_1d_broadcast(%A, %c1, %c2)
: (memref<?x?xf32>, index, index) -> ()
// Read from 2D memref on first dimension. Accesses are in-bounds, so no
// if-check is generated inside the generated loop.
// CHECK: ( 12, 12, 12, 12, 12, 12, 12, 12, 12 )
// 5. Read from 2D memref on first dimension. Accesses are in-bounds, so no
// if-check is generated inside the generated loop.
call @transfer_read_1d_in_bounds(%A, %c1, %c2)
: (memref<?x?xf32>, index, index) -> ()
// Optional mask attribute is specified and, in addition, there may be
// out-of-bounds accesses.
// CHECK: ( 12, 22, -1 )
// 6. Optional mask attribute is specified and, in addition, there may be
// out-of-bounds accesses.
call @transfer_read_1d_mask(%A, %c1, %c2)
: (memref<?x?xf32>, index, index) -> ()
// Same as above, but accesses are in-bounds.
// CHECK: ( 12, -42, -1, -42, -42, -42, -42, -42, -42 )
// 7. Same as 6, but accesses are in-bounds.
call @transfer_read_1d_mask_in_bounds(%A, %c1, %c2)
: (memref<?x?xf32>, index, index) -> ()
// CHECK: ( 12, -42, -1 )
// 8. Write to 2D memref on first dimension with a mask.
call @transfer_write_1d_mask(%A, %c1, %c0)
: (memref<?x?xf32>, index, index) -> ()
// 9. (Same as 1. To check if 8 works correctly.)
call @transfer_read_1d(%A, %c0, %c0) : (memref<?x?xf32>, index, index) -> ()
// CHECK: ( 0, -2, 20, -2, 40, -42, -42, -42, -42 )
return
}
// CHECK: ( 12, 22, 32, 42, -42, -42, -42, -42, -42 )
// CHECK: ( 2, 12, 22, -1, -1, -42, -42, -42, -42 )
// CHECK: ( 12, 12, 12, 12, 12, 12, 12, 12, 12 )
// CHECK: ( 12, 22, -1 )
// CHECK: ( 12, -42, -1, -42, -42, -42, -42, -42, -42 )
// CHECK: ( 12, -42, -1 )

View File

@ -3,6 +3,11 @@
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
memref.global "private" @gv : memref<3x4xf32> = dense<[[0. , 1. , 2. , 3. ],
[10., 11., 12., 13.],
[20., 21., 22., 23.]]>
// Vector load.
func @transfer_read_2d(%A : memref<?x?xf32>, %base1: index, %base2: index) {
%fm42 = constant -42.0: f32
%f = vector.transfer_read %A[%base1, %base2], %fm42
@ -12,6 +17,7 @@ func @transfer_read_2d(%A : memref<?x?xf32>, %base1: index, %base2: index) {
return
}
// Vector load with mask.
func @transfer_read_2d_mask(%A : memref<?x?xf32>, %base1: index, %base2: index) {
%fm42 = constant -42.0: f32
%mask = constant dense<[[1, 0, 1, 0, 1, 1, 1, 0, 1],
@ -25,6 +31,47 @@ func @transfer_read_2d_mask(%A : memref<?x?xf32>, %base1: index, %base2: index)
return
}
// Vector load with mask + transpose.
func @transfer_read_2d_mask_transposed(
%A : memref<?x?xf32>, %base1: index, %base2: index) {
%fm42 = constant -42.0: f32
%mask = constant dense<[[1, 0, 1, 0], [0, 0, 1, 0],
[1, 1, 1, 1], [0, 1, 1, 0],
[1, 1, 1, 1], [1, 1, 1, 1],
[1, 1, 1, 1], [0, 0, 0, 0],
[1, 1, 1, 1]]> : vector<9x4xi1>
%f = vector.transfer_read %A[%base1, %base2], %fm42, %mask
{permutation_map = affine_map<(d0, d1) -> (d1, d0)>} :
memref<?x?xf32>, vector<9x4xf32>
vector.print %f: vector<9x4xf32>
return
}
// Vector load with mask + broadcast.
func @transfer_read_2d_mask_broadcast(
%A : memref<?x?xf32>, %base1: index, %base2: index) {
%fm42 = constant -42.0: f32
%mask = constant dense<[1, 0, 1, 0, 1, 1, 1, 0, 1]> : vector<9xi1>
%f = vector.transfer_read %A[%base1, %base2], %fm42, %mask
{permutation_map = affine_map<(d0, d1) -> (0, d1)>} :
memref<?x?xf32>, vector<4x9xf32>
vector.print %f: vector<4x9xf32>
return
}
// Transpose + vector load with mask + broadcast.
func @transfer_read_2d_mask_transpose_broadcast_last_dim(
%A : memref<?x?xf32>, %base1: index, %base2: index) {
%fm42 = constant -42.0: f32
%mask = constant dense<[1, 0, 1, 1]> : vector<4xi1>
%f = vector.transfer_read %A[%base1, %base2], %fm42, %mask
{permutation_map = affine_map<(d0, d1) -> (d1, 0)>} :
memref<?x?xf32>, vector<4x9xf32>
vector.print %f: vector<4x9xf32>
return
}
// Load + transpose.
func @transfer_read_2d_transposed(
%A : memref<?x?xf32>, %base1: index, %base2: index) {
%fm42 = constant -42.0: f32
@ -35,6 +82,7 @@ func @transfer_read_2d_transposed(
return
}
// Load 1D + broadcast to 2D.
func @transfer_read_2d_broadcast(
%A : memref<?x?xf32>, %base1: index, %base2: index) {
%fm42 = constant -42.0: f32
@ -45,6 +93,7 @@ func @transfer_read_2d_broadcast(
return
}
// Vector store.
func @transfer_write_2d(%A : memref<?x?xf32>, %base1: index, %base2: index) {
%fn1 = constant -1.0 : f32
%vf0 = splat %fn1 : vector<1x4xf32>
@ -54,55 +103,79 @@ func @transfer_write_2d(%A : memref<?x?xf32>, %base1: index, %base2: index) {
return
}
// Vector store with mask.
func @transfer_write_2d_mask(%A : memref<?x?xf32>, %base1: index, %base2: index) {
%fn1 = constant -2.0 : f32
%mask = constant dense<[[1, 0, 1, 0]]> : vector<1x4xi1>
%vf0 = splat %fn1 : vector<1x4xf32>
vector.transfer_write %vf0, %A[%base1, %base2], %mask
{permutation_map = affine_map<(d0, d1) -> (d0, d1)>} :
vector<1x4xf32>, memref<?x?xf32>
return
}
func @entry() {
%c0 = constant 0: index
%c1 = constant 1: index
%c2 = constant 2: index
%c3 = constant 3: index
%c4 = constant 4: index
%c5 = constant 5: index
%c8 = constant 5: index
%f10 = constant 10.0: f32
// work with dims of 4, not of 3
%first = constant 3: index
%second = constant 4: index
%A = memref.alloc(%first, %second) : memref<?x?xf32>
scf.for %i = %c0 to %first step %c1 {
%i32 = index_cast %i : index to i32
%fi = sitofp %i32 : i32 to f32
%fi10 = mulf %fi, %f10 : f32
scf.for %j = %c0 to %second step %c1 {
%j32 = index_cast %j : index to i32
%fj = sitofp %j32 : i32 to f32
%fres = addf %fi10, %fj : f32
memref.store %fres, %A[%i, %j] : memref<?x?xf32>
}
}
// On input, memory contains [[ 0, 1, 2, ...], [10, 11, 12, ...], ...]
// Read shifted by 2 and pad with -42:
%0 = memref.get_global @gv : memref<3x4xf32>
%A = memref.cast %0 : memref<3x4xf32> to memref<?x?xf32>
// 1. Read 2D vector from 2D memref.
call @transfer_read_2d(%A, %c1, %c2) : (memref<?x?xf32>, index, index) -> ()
// Same as above, but transposed
// CHECK: ( ( 12, 13, -42, -42, -42, -42, -42, -42, -42 ), ( 22, 23, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
// 2. Read 2D vector from 2D memref at specified location and transpose the
// result.
call @transfer_read_2d_transposed(%A, %c1, %c2)
: (memref<?x?xf32>, index, index) -> ()
// Write into memory shifted by 3
call @transfer_write_2d(%A, %c3, %c1) : (memref<?x?xf32>, index, index) -> ()
// Read shifted by 0 and pad with -42:
call @transfer_read_2d(%A, %c0, %c0) : (memref<?x?xf32>, index, index) -> ()
// Same as above, but apply a mask
// CHECK: ( ( 12, 22, -42, -42, -42, -42, -42, -42, -42 ), ( 13, 23, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
// 3. Read 2D vector from 2D memref with a 2D mask. In addition, some
// accesses are out-of-bounds.
call @transfer_read_2d_mask(%A, %c0, %c0)
: (memref<?x?xf32>, index, index) -> ()
// Same as above, but without mask and transposed
call @transfer_read_2d_transposed(%A, %c0, %c0)
// CHECK: ( ( 0, -42, 2, -42, -42, -42, -42, -42, -42 ), ( -42, -42, 12, 13, -42, -42, -42, -42, -42 ), ( 20, 21, 22, 23, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
// 4. Same as 3, but transpose the result.
call @transfer_read_2d_mask_transposed(%A, %c0, %c0)
: (memref<?x?xf32>, index, index) -> ()
// Second vector dimension is a broadcast
// CHECK: ( ( 0, -42, 20, -42 ), ( -42, -42, 21, -42 ), ( 2, 12, 22, -42 ), ( -42, 13, 23, -42 ), ( -42, -42, -42, -42 ), ( -42, -42, -42, -42 ), ( -42, -42, -42, -42 ), ( -42, -42, -42, -42 ), ( -42, -42, -42, -42 ) )
// 5. Read 1D vector from 2D memref at specified location and broadcast the
// result to 2D.
call @transfer_read_2d_broadcast(%A, %c1, %c2)
: (memref<?x?xf32>, index, index) -> ()
// CHECK: ( ( 12, 12, 12, 12, 12, 12, 12, 12, 12 ), ( 13, 13, 13, 13, 13, 13, 13, 13, 13 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
// 6. Read 1D vector from 2D memref at specified location with mask and
// broadcast the result to 2D.
call @transfer_read_2d_mask_broadcast(%A, %c2, %c1)
: (memref<?x?xf32>, index, index) -> ()
// CHECK: ( ( 21, -42, 23, -42, -42, -42, -42, -42, -42 ), ( 21, -42, 23, -42, -42, -42, -42, -42, -42 ), ( 21, -42, 23, -42, -42, -42, -42, -42, -42 ), ( 21, -42, 23, -42, -42, -42, -42, -42, -42 ) )
// 7. Read 1D vector from 2D memref (second dimension) at specified location
// with mask and broadcast the result to 2D. In this test case, mask
// elements must be evaluated before lowering to an (N>1)-D transfer.
call @transfer_read_2d_mask_transpose_broadcast_last_dim(%A, %c0, %c1)
: (memref<?x?xf32>, index, index) -> ()
// CHECK: ( ( 1, 1, 1, 1, 1, 1, 1, 1, 1 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ), ( 3, 3, 3, 3, 3, 3, 3, 3, 3 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
// 8. Write 2D vector into 2D memref at specified location.
call @transfer_write_2d(%A, %c1, %c2) : (memref<?x?xf32>, index, index) -> ()
// 9. Read memref to verify step 8.
call @transfer_read_2d(%A, %c0, %c0) : (memref<?x?xf32>, index, index) -> ()
// CHECK: ( ( 0, 1, 2, 3, -42, -42, -42, -42, -42 ), ( 10, 11, -1, -1, -42, -42, -42, -42, -42 ), ( 20, 21, 22, 23, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
// 10. Write 2D vector into 2D memref at specified location with mask.
call @transfer_write_2d_mask(%A, %c0, %c2) : (memref<?x?xf32>, index, index) -> ()
// 11. Read memref to verify step 10.
call @transfer_read_2d(%A, %c0, %c0) : (memref<?x?xf32>, index, index) -> ()
// CHECK: ( ( 0, 1, -2, 3, -42, -42, -42, -42, -42 ), ( 10, 11, -1, -1, -42, -42, -42, -42, -42 ), ( 20, 21, 22, 23, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
return
}
// CHECK: ( ( 12, 13, -42, -42, -42, -42, -42, -42, -42 ), ( 22, 23, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
// CHECK: ( ( 12, 22, -42, -42, -42, -42, -42, -42, -42 ), ( 13, 23, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
// CHECK: ( ( 0, 1, 2, 3, -42, -42, -42, -42, -42 ), ( 10, 11, 12, 13, -42, -42, -42, -42, -42 ), ( 20, 21, 22, 23, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
// CHECK: ( ( 0, -42, 2, -42, -42, -42, -42, -42, -42 ), ( -42, -42, 12, 13, -42, -42, -42, -42, -42 ), ( 20, 21, 22, 23, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
// CHECK: ( ( 0, 10, 20, -42, -42, -42, -42, -42, -42 ), ( 1, 11, 21, -42, -42, -42, -42, -42, -42 ), ( 2, 12, 22, -42, -42, -42, -42, -42, -42 ), ( 3, 13, 23, -42, -42, -42, -42, -42, -42 ) )
// CHECK: ( ( 12, 12, 12, 12, 12, 12, 12, 12, 12 ), ( 13, 13, 13, 13, 13, 13, 13, 13, 13 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )

View File

@ -1,15 +1,8 @@
// RUN: mlir-opt %s -convert-vector-to-scf -lower-affine -convert-scf-to-std -convert-vector-to-llvm -convert-std-to-llvm | \
// RUN: mlir-cpu-runner -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
// RUN: mlir-opt %s -test-progressive-convert-vector-to-scf -lower-affine -convert-scf-to-std -convert-vector-to-llvm -convert-std-to-llvm | \
// RUN: mlir-cpu-runner -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
// Test case is based on test-transfer-read-2d.
func @transfer_read_3d(%A : memref<?x?x?x?xf32>,
%o: index, %a: index, %b: index, %c: index) {
%fm42 = constant -42.0: f32
@ -29,6 +22,17 @@ func @transfer_read_3d_broadcast(%A : memref<?x?x?x?xf32>,
return
}
func @transfer_read_3d_mask_broadcast(
%A : memref<?x?x?x?xf32>, %o: index, %a: index, %b: index, %c: index) {
%fm42 = constant -42.0: f32
%mask = constant dense<[0, 1]> : vector<2xi1>
%f = vector.transfer_read %A[%o, %a, %b, %c], %fm42, %mask
{permutation_map = affine_map<(d0, d1, d2, d3) -> (d1, 0, 0)>}
: memref<?x?x?x?xf32>, vector<2x5x3xf32>
vector.print %f: vector<2x5x3xf32>
return
}
func @transfer_read_3d_transposed(%A : memref<?x?x?x?xf32>,
%o: index, %a: index, %b: index, %c: index) {
%fm42 = constant -42.0: f32
@ -80,20 +84,34 @@ func @entry() {
}
}
// 1. Read 3D vector from 4D memref.
call @transfer_read_3d(%A, %c0, %c0, %c0, %c0)
: (memref<?x?x?x?xf32>, index, index, index, index) -> ()
// CHECK: ( ( ( 0, 0, -42 ), ( 2, 3, -42 ), ( 4, 6, -42 ), ( 6, 9, -42 ), ( -42, -42, -42 ) ), ( ( 20, 30, -42 ), ( 22, 33, -42 ), ( 24, 36, -42 ), ( 26, 39, -42 ), ( -42, -42, -42 ) ) )
// 2. Write 3D vector to 4D memref.
call @transfer_write_3d(%A, %c0, %c0, %c1, %c1)
: (memref<?x?x?x?xf32>, index, index, index, index) -> ()
// 3. Read memref to verify step 2.
call @transfer_read_3d(%A, %c0, %c0, %c0, %c0)
: (memref<?x?x?x?xf32>, index, index, index, index) -> ()
// CHECK: ( ( ( 0, 0, -42 ), ( 2, -1, -42 ), ( 4, -1, -42 ), ( 6, -1, -42 ), ( -42, -42, -42 ) ), ( ( 20, 30, -42 ), ( 22, -1, -42 ), ( 24, -1, -42 ), ( 26, -1, -42 ), ( -42, -42, -42 ) ) )
// 4. Read 3D vector from 4D memref and transpose vector.
call @transfer_read_3d_transposed(%A, %c0, %c0, %c0, %c0)
: (memref<?x?x?x?xf32>, index, index, index, index) -> ()
// CHECK: ( ( ( 0, 20, 40 ), ( 0, 20, 40 ), ( 0, 20, 40 ), ( 0, 20, 40 ), ( 0, 20, 40 ) ), ( ( 0, 30, 60 ), ( 0, 30, 60 ), ( 0, 30, 60 ), ( 0, 30, 60 ), ( 0, 30, 60 ) ), ( ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ) ) )
// 5. Read 1D vector from 4D memref and broadcast vector to 3D.
call @transfer_read_3d_broadcast(%A, %c0, %c0, %c0, %c0)
: (memref<?x?x?x?xf32>, index, index, index, index) -> ()
// CHECK: ( ( ( 0, 0, -42 ), ( 0, 0, -42 ), ( 0, 0, -42 ), ( 0, 0, -42 ), ( 0, 0, -42 ) ), ( ( 20, 30, -42 ), ( 20, 30, -42 ), ( 20, 30, -42 ), ( 20, 30, -42 ), ( 20, 30, -42 ) ) )
// 6. Read 1D vector from 4D memref with mask and broadcast vector to 3D.
call @transfer_read_3d_mask_broadcast(%A, %c0, %c0, %c0, %c0)
: (memref<?x?x?x?xf32>, index, index, index, index) -> ()
// CHECK: ( ( ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ) ), ( ( 20, 20, 20 ), ( 20, 20, 20 ), ( 20, 20, 20 ), ( 20, 20, 20 ), ( 20, 20, 20 ) ) )
return
}
// CHECK: ( ( ( 0, 0, -42 ), ( 2, 3, -42 ), ( 4, 6, -42 ), ( 6, 9, -42 ), ( -42, -42, -42 ) ), ( ( 20, 30, -42 ), ( 22, 33, -42 ), ( 24, 36, -42 ), ( 26, 39, -42 ), ( -42, -42, -42 ) ) )
// CHECK: ( ( ( 0, 0, -42 ), ( 2, -1, -42 ), ( 4, -1, -42 ), ( 6, -1, -42 ), ( -42, -42, -42 ) ), ( ( 20, 30, -42 ), ( 22, -1, -42 ), ( 24, -1, -42 ), ( 26, -1, -42 ), ( -42, -42, -42 ) ) )
// CHECK: ( ( ( 0, 20, 40 ), ( 0, 20, 40 ), ( 0, 20, 40 ), ( 0, 20, 40 ), ( 0, 20, 40 ) ), ( ( 0, 30, 60 ), ( 0, 30, 60 ), ( 0, 30, 60 ), ( 0, 30, 60 ), ( 0, 30, 60 ) ), ( ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ) ) )
// CHECK: ( ( ( 0, 0, -42 ), ( 0, 0, -42 ), ( 0, 0, -42 ), ( 0, 0, -42 ), ( 0, 0, -42 ) ), ( ( 20, 30, -42 ), ( 20, 30, -42 ), ( 20, 30, -42 ), ( 20, 30, -42 ), ( 20, 30, -42 ) ) )