Revert r345114

Investigating fails.

llvm-svn: 345123
This commit is contained in:
Gil Rapaport 2018-10-24 08:41:22 +00:00
parent 47e06bb81f
commit c523036fd2
2 changed files with 67 additions and 60 deletions

View File

@ -3638,60 +3638,32 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
Formula Base) {
// This method is only interesting on a plurality of registers.
if (Base.BaseRegs.size() + (Base.Scale == 1) +
(Base.UnfoldedOffset != 0) <= 1)
if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
return;
// Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
// processing the formula.
Base.unscale();
Formula F = Base;
F.BaseRegs.clear();
SmallVector<const SCEV *, 4> Ops;
Formula NewBase = Base;
NewBase.BaseRegs.clear();
Type *CombinedIntegerType = nullptr;
for (const SCEV *BaseReg : Base.BaseRegs) {
if (SE.properlyDominates(BaseReg, L->getHeader()) &&
!SE.hasComputableLoopEvolution(BaseReg, L)) {
if (!CombinedIntegerType)
CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
!SE.hasComputableLoopEvolution(BaseReg, L))
Ops.push_back(BaseReg);
}
else
NewBase.BaseRegs.push_back(BaseReg);
F.BaseRegs.push_back(BaseReg);
}
// If no register is relevant, we're done.
if (Ops.size() == 0)
return;
// Utility function for generating the required variants of the combined
// registers.
auto GenerateFormula = [&](const SCEV *Sum) {
Formula F = NewBase;
if (Ops.size() > 1) {
const SCEV *Sum = SE.getAddExpr(Ops);
// TODO: If Sum is zero, it probably means ScalarEvolution missed an
// opportunity to fold something. For now, just ignore such cases
// rather than proceed with zero in a register.
if (Sum->isZero())
return;
F.BaseRegs.push_back(Sum);
F.canonicalize(*L);
(void)InsertFormula(LU, LUIdx, F);
};
// If we collected at least two registers, generate a formula combining them.
if (Ops.size() > 1)
GenerateFormula(SE.getAddExpr(Ops));
// If we have an unfolded offset, generate a formula combining it with the
// registers collected.
if (NewBase.UnfoldedOffset) {
assert(CombinedIntegerType && "Missing a type for the unfolded offset");
Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
true));
NewBase.UnfoldedOffset = 0;
GenerateFormula(SE.getAddExpr(Ops));
if (!Sum->isZero()) {
F.BaseRegs.push_back(Sum);
F.canonicalize(*L);
(void)InsertFormula(LU, LUIdx, F);
}
}
}

View File

@ -2,10 +2,45 @@
; RUN: llc < %s -mtriple=aarch64-unknown-unknown | FileCheck %s
; Test LSR for giving small constants, which get re-associated as unfolded
; offset, a chance to get combined with loop-invariant registers (same as
; large constants which do not fit as add immediate operands). LSR
; favors here to bump the base pointer outside the loop.
; LSR doesn't consider bumping a pointer by constants outside the loop when the
; constants fit as immediate add operands. The constants are re-associated as an
; unfolded offset rather than a register and are not combined later with
; loop-invariant registers. For large-enough constants LSR produces better
; solutions for these test cases, with test1 switching from:
;
; The chosen solution requires 2 instructions 2 regs, with addrec cost 1, plus 1 scale cost, plus 4 imm cost, plus 1 setup cost:
; LSR Use: Kind=ICmpZero, Offsets={0}, widest fixup type: i64
; -7 + reg({(7 + %start)<nsw>,+,1}<nsw><%for.body>)
; LSR Use: Kind=Address of float in addrspace(0), Offsets={0}, widest fixup type: float*
; reg(%arr) + 4*reg({(7 + %start)<nsw>,+,1}<nsw><%for.body>)
;
; to:
;
; The chosen solution requires 1 instruction 2 regs, with addrec cost 1, plus 1 scale cost, plus 1 setup cost:
; LSR Use: Kind=ICmpZero, Offsets={0}, widest fixup type: i64
; reg({%start,+,1}<nsw><%for.body>)
; LSR Use: Kind=Address of float in addrspace(0), Offsets={0}, widest fixup type: float*
; reg((88888 + %arr)) + 4*reg({%start,+,1}<nsw><%for.body>)
;
; and test2 switching from:
;
; The chosen solution requires 2 instructions 2 regs, with addrec cost 1, plus 1 base add, plus 1 scale cost:
; LSR Use: Kind=ICmpZero, Offsets={0}, widest fixup type: i64
; reg({%start,+,1}<nsw><%for.body>)
; LSR Use: Kind=Basic, Offsets={0}, widest fixup type: i64
; reg({%start,+,1}<nsw><%for.body>)
; LSR Use: Kind=Address of float in addrspace(0), Offsets={0}, widest fixup type: float*
; reg(%arr) + 4*reg({%start,+,1}<nsw><%for.body>) + imm(28)
;
; to:
;
; The chosen solution requires 1 instruction 2 regs, with addrec cost 1, plus 1 scale cost, plus 1 setup cost:
; LSR Use: Kind=ICmpZero, Offsets={0}, widest fixup type: i64
; reg({%start,+,1}<nsw><%for.body>)
; LSR Use: Kind=Basic, Offsets={0}, widest fixup type: i64
; reg({%start,+,1}<nsw><%for.body>)
; LSR Use: Kind=Address of float in addrspace(0), Offsets={0}, widest fixup type: float*
; reg((88888 + %arr)) + 4*reg({%start,+,1}<nsw><%for.body>)
; float test(float *arr, long long start, float threshold) {
; for (long long i = start; i != 0; ++i) {
@ -21,16 +56,17 @@ define float @test1(float* nocapture readonly %arr, i64 %start, float %threshold
; CHECK-NEXT: fmov s2, #-7.00000000
; CHECK-NEXT: cbz x1, .LBB0_5
; CHECK-NEXT: // %bb.1: // %for.body.preheader
; CHECK-NEXT: add x8, x0, #28 // =28
; CHECK-NEXT: add x8, x1, #7 // =7
; CHECK-NEXT: .LBB0_2: // %for.body
; CHECK-NEXT: // =>This Inner Loop Header: Depth=1
; CHECK-NEXT: ldr s1, [x8, x1, lsl #2]
; CHECK-NEXT: ldr s1, [x0, x8, lsl #2]
; CHECK-NEXT: fcmp s1, s0
; CHECK-NEXT: b.gt .LBB0_6
; CHECK-NEXT: // %bb.3: // %for.cond
; CHECK-NEXT: // in Loop: Header=BB0_2 Depth=1
; CHECK-NEXT: add x1, x1, #1 // =1
; CHECK-NEXT: cbnz x1, .LBB0_2
; CHECK-NEXT: add x8, x8, #1 // =1
; CHECK-NEXT: cmp x8, #7 // =7
; CHECK-NEXT: b.ne .LBB0_2
; CHECK-NEXT: // %bb.4:
; CHECK-NEXT: mov v0.16b, v2.16b
; CHECK-NEXT: ret
@ -68,27 +104,26 @@ define float @test2(float* nocapture readonly %arr, i64 %start, float %threshold
; CHECK-LABEL: test2:
; CHECK: // %bb.0: // %entry
; CHECK-NEXT: fmov s2, #-7.00000000
; CHECK-NEXT: cbz x1, .LBB1_5
; CHECK-NEXT: // %bb.1: // %for.body.preheader
; CHECK-NEXT: add x8, x0, #28 // =28
; CHECK-NEXT: .LBB1_2: // %for.body
; CHECK-NEXT: cbz x1, .LBB1_4
; CHECK-NEXT: .LBB1_1: // %for.body
; CHECK-NEXT: // =>This Inner Loop Header: Depth=1
; CHECK-NEXT: ldr s1, [x8, x1, lsl #2]
; CHECK-NEXT: add x8, x0, x1, lsl #2
; CHECK-NEXT: ldr s1, [x8, #28]
; CHECK-NEXT: scvtf s3, x1
; CHECK-NEXT: fadd s3, s3, s0
; CHECK-NEXT: fcmp s1, s3
; CHECK-NEXT: b.gt .LBB1_6
; CHECK-NEXT: // %bb.3: // %for.cond
; CHECK-NEXT: // in Loop: Header=BB1_2 Depth=1
; CHECK-NEXT: b.gt .LBB1_5
; CHECK-NEXT: // %bb.2: // %for.cond
; CHECK-NEXT: // in Loop: Header=BB1_1 Depth=1
; CHECK-NEXT: add x1, x1, #1 // =1
; CHECK-NEXT: cbnz x1, .LBB1_2
; CHECK-NEXT: // %bb.4:
; CHECK-NEXT: cbnz x1, .LBB1_1
; CHECK-NEXT: // %bb.3:
; CHECK-NEXT: mov v0.16b, v2.16b
; CHECK-NEXT: ret
; CHECK-NEXT: .LBB1_5:
; CHECK-NEXT: .LBB1_4:
; CHECK-NEXT: mov v0.16b, v2.16b
; CHECK-NEXT: ret
; CHECK-NEXT: .LBB1_6: // %cleanup4
; CHECK-NEXT: .LBB1_5: // %cleanup4
; CHECK-NEXT: mov v0.16b, v1.16b
; CHECK-NEXT: ret
entry: