ARM: HFAs must be passed in consecutive registers

When using the ARM AAPCS, HFAs (Homogeneous Floating-point Aggregates) must
be passed in a block of consecutive floating-point registers, or on the stack.
This means that unused floating-point registers cannot be back-filled with
part of an HFA, however this can currently happen. This patch, along with the
corresponding clang patch (http://reviews.llvm.org/D3083) prevents this.

llvm-svn: 208413
This commit is contained in:
Oliver Stannard 2014-05-09 14:01:47 +00:00
parent d6a20e5115
commit c24f2171ca
11 changed files with 569 additions and 28 deletions

View File

@ -112,6 +112,23 @@ public:
return Ret;
}
// There is no need to differentiate between a pending CCValAssign and other
// kinds, as they are stored in a different list.
static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT,
LocInfo HTP) {
return getReg(ValNo, ValVT, 0, LocVT, HTP);
}
void convertToReg(unsigned RegNo) {
Loc = RegNo;
isMem = false;
}
void convertToMem(unsigned Offset) {
Loc = Offset;
isMem = true;
}
unsigned getValNo() const { return ValNo; }
MVT getValVT() const { return ValVT; }
@ -164,6 +181,7 @@ private:
unsigned StackOffset;
SmallVector<uint32_t, 16> UsedRegs;
SmallVector<CCValAssign, 4> PendingLocs;
// ByValInfo and SmallVector<ByValInfo, 4> ByValRegs:
//
@ -317,6 +335,31 @@ public:
return Reg;
}
/// AllocateRegBlock - Attempt to allocate a block of RegsRequired consecutive
/// registers. If this is not possible, return zero. Otherwise, return the first
/// register of the block that were allocated, marking the entire block as allocated.
unsigned AllocateRegBlock(const uint16_t *Regs, unsigned NumRegs, unsigned RegsRequired) {
for (unsigned StartIdx = 0; StartIdx <= NumRegs - RegsRequired; ++StartIdx) {
bool BlockAvailable = true;
// Check for already-allocated regs in this block
for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
if (isAllocated(Regs[StartIdx + BlockIdx])) {
BlockAvailable = false;
break;
}
}
if (BlockAvailable) {
// Mark the entire block as allocated
for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
MarkAllocated(Regs[StartIdx + BlockIdx]);
}
return Regs[StartIdx];
}
}
// No block was available
return 0;
}
/// Version of AllocateReg with list of registers to be shadowed.
unsigned AllocateReg(const MCPhysReg *Regs, const MCPhysReg *ShadowRegs,
unsigned NumRegs) {
@ -411,6 +454,11 @@ public:
ParmContext getCallOrPrologue() const { return CallOrPrologue; }
// Get list of pending assignments
SmallVectorImpl<llvm::CCValAssign> &getPendingLocs() {
return PendingLocs;
}
private:
/// MarkAllocated - Mark a register and all of its aliases as allocated.
void MarkAllocated(unsigned Reg);

View File

@ -47,8 +47,12 @@ namespace ISD {
static const uint64_t InAllocaOffs = 12;
static const uint64_t OrigAlign = 0x1FULL<<27;
static const uint64_t OrigAlignOffs = 27;
static const uint64_t ByValSize = 0xffffffffULL<<32; ///< Struct size
static const uint64_t ByValSize = 0x3fffffffULL<<32; ///< Struct size
static const uint64_t ByValSizeOffs = 32;
static const uint64_t InConsecutiveRegsLast = 0x1ULL<<62; ///< Struct size
static const uint64_t InConsecutiveRegsLastOffs = 62;
static const uint64_t InConsecutiveRegs = 0x1ULL<<63; ///< Struct size
static const uint64_t InConsecutiveRegsOffs = 63;
static const uint64_t One = 1ULL; ///< 1 of this type, for shifts
@ -80,6 +84,12 @@ namespace ISD {
bool isReturned() const { return Flags & Returned; }
void setReturned() { Flags |= One << ReturnedOffs; }
bool isInConsecutiveRegs() const { return Flags & InConsecutiveRegs; }
void setInConsecutiveRegs() { Flags |= One << InConsecutiveRegsOffs; }
bool isInConsecutiveRegsLast() const { return Flags & InConsecutiveRegsLast; }
void setInConsecutiveRegsLast() { Flags |= One << InConsecutiveRegsLastOffs; }
unsigned getByValAlign() const {
return (unsigned)
((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);

View File

@ -42,6 +42,11 @@ class CCIf<string predicate, CCAction A> : CCPredicateAction<A> {
class CCIfByVal<CCAction A> : CCIf<"ArgFlags.isByVal()", A> {
}
/// CCIfConsecutiveRegs - If the current argument has InConsecutiveRegs
/// parameter attribute, apply Action A.
class CCIfConsecutiveRegs<CCAction A> : CCIf<"ArgFlags.isInConsecutiveRegs()", A> {
}
/// CCIfCC - Match if the current calling convention is 'CC'.
class CCIfCC<string CC, CCAction A>
: CCIf<!strconcat("State.getCallingConv() == ", CC), A> {}

View File

@ -2233,6 +2233,15 @@ public:
return VT.bitsLT(MinVT) ? MinVT : VT;
}
/// For some targets, an LLVM struct type must be broken down into multiple
/// simple types, but the calling convention specifies that the entire struct
/// must be passed in a block of consecutive registers.
virtual bool
functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
bool isVarArg) const {
return false;
}
/// Returns a 0 terminated array of registers that can be safely used as
/// scratch registers.
virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {

View File

@ -7128,8 +7128,13 @@ TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
for (unsigned Value = 0, NumValues = ValueVTs.size();
Value != NumValues; ++Value) {
Type *FinalType = Args[i].Ty;
if (Args[i].isByVal)
FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
FinalType, CLI.CallConv, CLI.IsVarArg);
for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
++Value) {
EVT VT = ValueVTs[Value];
Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
SDValue Op = SDValue(Args[i].Node.getNode(),
@ -7171,6 +7176,11 @@ TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
}
if (Args[i].isNest)
Flags.setNest();
if (NeedsRegBlock) {
Flags.setInConsecutiveRegs();
if (Value == NumValues - 1)
Flags.setInConsecutiveRegsLast();
}
Flags.setOrigAlign(OriginalAlignment);
MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
@ -7356,6 +7366,11 @@ void SelectionDAGISel::LowerArguments(const Function &F) {
ComputeValueVTs(*TLI, I->getType(), ValueVTs);
bool isArgValueUsed = !I->use_empty();
unsigned PartBase = 0;
Type *FinalType = I->getType();
if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
FinalType = cast<PointerType>(FinalType)->getElementType();
bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
FinalType, F.getCallingConv(), F.isVarArg());
for (unsigned Value = 0, NumValues = ValueVTs.size();
Value != NumValues; ++Value) {
EVT VT = ValueVTs[Value];
@ -7397,6 +7412,11 @@ void SelectionDAGISel::LowerArguments(const Function &F) {
}
if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
Flags.setNest();
if (NeedsRegBlock) {
Flags.setInConsecutiveRegs();
if (Value == NumValues - 1)
Flags.setInConsecutiveRegsLast();
}
Flags.setOrigAlign(OriginalAlignment);
MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);

View File

@ -160,6 +160,96 @@ static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
State);
}
static const uint16_t SRegList[] = { ARM::S0, ARM::S1, ARM::S2, ARM::S3,
ARM::S4, ARM::S5, ARM::S6, ARM::S7,
ARM::S8, ARM::S9, ARM::S10, ARM::S11,
ARM::S12, ARM::S13, ARM::S14, ARM::S15 };
static const uint16_t DRegList[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3,
ARM::D4, ARM::D5, ARM::D6, ARM::D7 };
static const uint16_t QRegList[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3 };
// Allocate part of an AAPCS HFA or HVA. We assume that each member of the HA
// has InConsecutiveRegs set, and that the last member also has
// InConsecutiveRegsLast set. We must process all members of the HA before
// we can allocate it, as we need to know the total number of registers that
// will be needed in order to (attempt to) allocate a contiguous block.
static bool CC_ARM_AAPCS_Custom_HA(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
SmallVectorImpl<CCValAssign> &PendingHAMembers = State.getPendingLocs();
// AAPCS HFAs must have 1-4 elements, all of the same type
assert(PendingHAMembers.size() < 4);
if (PendingHAMembers.size() > 0)
assert(PendingHAMembers[0].getLocVT() == LocVT);
// Add the argument to the list to be allocated once we know the size of the
// HA
PendingHAMembers.push_back(
CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
if (ArgFlags.isInConsecutiveRegsLast()) {
assert(PendingHAMembers.size() > 0 && PendingHAMembers.size() <= 4 &&
"Homogeneous aggregates must have between 1 and 4 members");
// Try to allocate a contiguous block of registers, each of the correct
// size to hold one member.
const uint16_t *RegList;
unsigned NumRegs;
switch (LocVT.SimpleTy) {
case MVT::f32:
RegList = SRegList;
NumRegs = 16;
break;
case MVT::f64:
RegList = DRegList;
NumRegs = 8;
break;
case MVT::v2f64:
RegList = QRegList;
NumRegs = 4;
break;
default:
llvm_unreachable("Unexpected member type for HA");
break;
}
unsigned RegResult =
State.AllocateRegBlock(RegList, NumRegs, PendingHAMembers.size());
if (RegResult) {
for (SmallVectorImpl<CCValAssign>::iterator It = PendingHAMembers.begin();
It != PendingHAMembers.end(); ++It) {
It->convertToReg(RegResult);
State.addLoc(*It);
++RegResult;
}
PendingHAMembers.clear();
return true;
}
// Register allocation failed, fall back to the stack
// Mark all VFP regs as unavailable (AAPCS rule C.2.vfp)
for (unsigned regNo = 0; regNo < 16; ++regNo)
State.AllocateReg(SRegList[regNo]);
unsigned Size = LocVT.getSizeInBits() / 8;
unsigned Align = LocVT.SimpleTy == MVT::v2f64 ? 8 : Size;
for (auto It : PendingHAMembers) {
It.convertToMem(State.AllocateStack(Size, Align));
State.addLoc(It);
}
// All pending members have now been allocated
PendingHAMembers.clear();
}
// This will be allocated by the last member of the HA
return true;
}
} // End llvm namespace
#endif

View File

@ -174,6 +174,9 @@ def CC_ARM_AAPCS_VFP : CallingConv<[
CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
// HFAs are passed in a contiguous block of registers, or on the stack
CCIfConsecutiveRegs<CCCustom<"CC_ARM_AAPCS_Custom_HA">>,
CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>,
CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8,

View File

@ -43,6 +43,7 @@
#include "llvm/IR/Type.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetOptions.h"
@ -1211,40 +1212,58 @@ static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
#include "ARMGenCallingConv.inc"
/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
/// given CallingConvention value.
CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
bool Return,
bool isVarArg) const {
/// getEffectiveCallingConv - Get the effective calling convention, taking into
/// account presence of floating point hardware and calling convention
/// limitations, such as support for variadic functions.
CallingConv::ID
ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
bool isVarArg) const {
switch (CC) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::Fast:
if (Subtarget->hasVFP2() && !isVarArg) {
if (!Subtarget->isAAPCS_ABI())
return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
// For AAPCS ABI targets, just use VFP variant of the calling convention.
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
}
// Fallthrough
case CallingConv::C: {
// Use target triple & subtarget features to do actual dispatch.
case CallingConv::ARM_AAPCS:
case CallingConv::ARM_APCS:
case CallingConv::GHC:
return CC;
case CallingConv::ARM_AAPCS_VFP:
return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
case CallingConv::C:
if (!Subtarget->isAAPCS_ABI())
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
return CallingConv::ARM_APCS;
else if (Subtarget->hasVFP2() &&
getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
!isVarArg)
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
return CallingConv::ARM_AAPCS_VFP;
else
return CallingConv::ARM_AAPCS;
case CallingConv::Fast:
if (!Subtarget->isAAPCS_ABI()) {
if (Subtarget->hasVFP2() && !isVarArg)
return CallingConv::Fast;
return CallingConv::ARM_APCS;
} else if (Subtarget->hasVFP2() && !isVarArg)
return CallingConv::ARM_AAPCS_VFP;
else
return CallingConv::ARM_AAPCS;
}
case CallingConv::ARM_AAPCS_VFP:
if (!isVarArg)
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
// Fallthrough
case CallingConv::ARM_AAPCS:
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
}
/// CCAssignFnForNode - Selects the correct CCAssignFn for the given
/// CallingConvention.
CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
bool Return,
bool isVarArg) const {
switch (getEffectiveCallingConv(CC, isVarArg)) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::ARM_APCS:
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
case CallingConv::ARM_AAPCS:
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
case CallingConv::ARM_AAPCS_VFP:
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
case CallingConv::Fast:
return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
case CallingConv::GHC:
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
}
@ -10628,3 +10647,77 @@ Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
Val, Strex->getFunctionType()->getParamType(0)),
Addr);
}
enum HABaseType {
HA_UNKNOWN = 0,
HA_FLOAT,
HA_DOUBLE,
HA_VECT64,
HA_VECT128
};
static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
uint64_t &Members) {
if (const StructType *ST = dyn_cast<StructType>(Ty)) {
for (unsigned i = 0; i < ST->getNumElements(); ++i) {
uint64_t SubMembers = 0;
if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
return false;
Members += SubMembers;
}
} else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
uint64_t SubMembers = 0;
if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
return false;
Members += SubMembers * AT->getNumElements();
} else if (Ty->isFloatTy()) {
if (Base != HA_UNKNOWN && Base != HA_FLOAT)
return false;
Members = 1;
Base = HA_FLOAT;
} else if (Ty->isDoubleTy()) {
if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
return false;
Members = 1;
Base = HA_DOUBLE;
} else if (const VectorType *VT = dyn_cast<VectorType>(Ty)) {
Members = 1;
switch (Base) {
case HA_FLOAT:
case HA_DOUBLE:
return false;
case HA_VECT64:
return VT->getBitWidth() == 64;
case HA_VECT128:
return VT->getBitWidth() == 128;
case HA_UNKNOWN:
switch (VT->getBitWidth()) {
case 64:
Base = HA_VECT64;
return true;
case 128:
Base = HA_VECT128;
return true;
default:
return false;
}
}
}
return (Members > 0 && Members <= 4);
}
/// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate.
bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
if (getEffectiveCallingConv(CallConv, isVarArg) ==
CallingConv::ARM_AAPCS_VFP) {
HABaseType Base = HA_UNKNOWN;
uint64_t Members = 0;
bool result = isHomogeneousAggregate(Ty, Base, Members);
DEBUG(dbgs() << "isHA: " << result << " "; Ty->dump(); dbgs() << "\n");
return result;
} else {
return false;
}
}

View File

@ -384,6 +384,11 @@ namespace llvm {
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const override;
/// \brief Returns true if an argument of type Ty needs to be passed in a
/// contiguous block of registers in calling convention CallConv.
bool functionArgumentNeedsConsecutiveRegisters(
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override;
Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
AtomicOrdering Ord) const override;
Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
@ -424,6 +429,8 @@ namespace llvm {
SDValue &Root, SelectionDAG &DAG,
SDLoc dl) const;
CallingConv::ID getEffectiveCallingConv(CallingConv::ID CC,
bool isVarArg) const;
CCAssignFn *CCAssignFnForNode(CallingConv::ID CC, bool Return,
bool isVarArg) const;
SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
@ -577,7 +584,6 @@ namespace llvm {
OtherModImm
};
namespace ARM {
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo);

View File

@ -0,0 +1,163 @@
; RUN: llc < %s -float-abi=hard -debug-only arm-isel 2>&1 | FileCheck %s
; RUN: llc < %s -float-abi=soft -debug-only arm-isel 2>&1 | FileCheck %s --check-prefix=SOFT
target datalayout = "e-m:e-p:32:32-i64:64-v128:64:128-n32-S64"
target triple = "armv7-none--eabi"
; SOFT-NOT: isHA
; CHECK: isHA: 1 { float }
define void @f0b({ float } %a) {
ret void
}
; CHECK: isHA: 1 { float, float }
define void @f1({ float, float } %a) {
ret void
}
; CHECK: isHA: 1 { float, float, float }
define void @f1b({ float, float, float } %a) {
ret void
}
; CHECK: isHA: 1 { float, float, float, float }
define void @f1c({ float, float, float, float } %a) {
ret void
}
; CHECK: isHA: 0 { float, float, float, float, float }
define void @f2({ float, float, float, float, float } %a) {
ret void
}
; CHECK: isHA: 1 { double }
define void @f3({ double } %a) {
ret void
}
; CHECK: isHA: 1 { double, double, double, double }
define void @f4({ double, double, double, double } %a) {
ret void
}
; CHECK: isHA: 0 { double, double, double, double, double }
define void @f5({ double, double, double, double, double } %a) {
ret void
}
; CHECK: isHA: 0 { i32, i32 }
define void @f5b({ i32, i32 } %a) {
ret void
}
; CHECK: isHA: 1 { [1 x float] }
define void @f6({ [1 x float] } %a) {
ret void
}
; CHECK: isHA: 1 { [4 x float] }
define void @f7({ [4 x float] } %a) {
ret void
}
; CHECK: isHA: 0 { [5 x float] }
define void @f8({ [5 x float] } %a) {
ret void
}
; CHECK: isHA: 1 [1 x float]
define void @f6b([1 x float] %a) {
ret void
}
; CHECK: isHA: 1 [4 x float]
define void @f7b([4 x float] %a) {
ret void
}
; CHECK: isHA: 0 [5 x float]
define void @f8b([5 x float] %a) {
ret void
}
; CHECK: isHA: 1 { [2 x float], [2 x float] }
define void @f9({ [2 x float], [2 x float] } %a) {
ret void
}
; CHECK: isHA: 1 { [1 x float], [3 x float] }
define void @f9b({ [1 x float], [3 x float] } %a) {
ret void
}
; CHECK: isHA: 0 { [3 x float], [3 x float] }
define void @f10({ [3 x float], [3 x float] } %a) {
ret void
}
; CHECK: isHA: 1 { <2 x float> }
define void @f11({ <2 x float> } %a) {
ret void
}
; CHECK: isHA: 0 { <3 x float> }
define void @f12({ <3 x float> } %a) {
ret void
}
; CHECK: isHA: 1 { <4 x float> }
define void @f13({ <4 x float> } %a) {
ret void
}
; CHECK: isHA: 1 { <2 x float>, <2 x float> }
define void @f15({ <2 x float>, <2 x float> } %a) {
ret void
}
; CHECK: isHA: 0 { <2 x float>, float }
define void @f15b({ <2 x float>, float } %a) {
ret void
}
; CHECK: isHA: 0 { <2 x float>, [2 x float] }
define void @f15c({ <2 x float>, [2 x float] } %a) {
ret void
}
; CHECK: isHA: 0 { <2 x float>, <4 x float> }
define void @f16({ <2 x float>, <4 x float> } %a) {
ret void
}
; CHECK: isHA: 1 { <2 x double> }
define void @f17({ <2 x double> } %a) {
ret void
}
; CHECK: isHA: 1 { <2 x i32> }
define void @f18({ <2 x i32> } %a) {
ret void
}
; CHECK: isHA: 1 { <2 x i64>, <4 x i32> }
define void @f19({ <2 x i64>, <4 x i32> } %a) {
ret void
}
; CHECK: isHA: 1 { [4 x <4 x float>] }
define void @f20({ [4 x <4 x float>] } %a) {
ret void
}
; CHECK: isHA: 0 { [5 x <4 x float>] }
define void @f21({ [5 x <4 x float>] } %a) {
ret void
}
; CHECK-NOT: isHA
define void @f22({ float } %a, ...) {
ret void
}

View File

@ -0,0 +1,94 @@
; RUN: llc < %s | FileCheck %s
target datalayout = "e-m:e-p:32:32-i64:64-v128:64:128-n32-S64"
target triple = "armv7-none--gnueabihf"
%struct.s = type { float, float }
%union.t = type { [4 x float] }
; Equivalent C code:
; struct s { float a; float b; };
; float foo(float a, double b, struct s c) { return c.a; }
; Argument allocation:
; a -> s0
; b -> d1
; c -> s4, s5
; s1 is unused
; return in s0
define float @test1(float %a, double %b, %struct.s %c) {
entry:
; CHECK-LABEL: test1
; CHECK: vmov.f32 s0, s4
; CHECK-NOT: vmov.f32 s0, s1
%result = extractvalue %struct.s %c, 0
ret float %result
}
; Equivalent C code:
; union t { float a[4] };
; float foo(float a, double b, union s c) { return c.a[0]; }
; Argument allocation:
; a -> s0
; b -> d1
; c -> s4..s7
define float @test2(float %a, double %b, %union.t %c) #0 {
entry:
; CHECK-LABEL: test2
; CHECK: vmov.f32 s0, s4
; CHECK-NOT: vmov.f32 s0, s1
%result = extractvalue %union.t %c, 0, 0
ret float %result
}
; Equivalent C code:
; struct s { float a; float b; };
; float foo(float a, double b, struct s c, float d) { return d; }
; Argument allocation:
; a -> s0
; b -> d1
; c -> s4, s5
; d -> s1
; return in s0
define float @test3(float %a, double %b, %struct.s %c, float %d) {
entry:
; CHECK-LABEL: test3
; CHECK: vmov.f32 s0, s1
; CHECK-NOT: vmov.f32 s0, s5
ret float %d
}
; Equivalent C code:
; struct s { float a; float b; };
; float foo(struct s a, struct s b) { return b.b; }
; Argument allocation:
; a -> s0, s1
; b -> s2, s3
; return in s0
define float @test4(%struct.s %a, %struct.s %b) {
entry:
; CHECK-LABEL: test4
; CHECK: vmov.f32 s0, s3
%result = extractvalue %struct.s %b, 1
ret float %result
}
; Equivalent C code:
; struct s { float a; float b; };
; float foo(struct s a, float b, struct s c) { return c.a; }
; Argument allocation:
; a -> s0, s1
; b -> s2
; c -> s3, s4
; return in s0
define float @test5(%struct.s %a, float %b, %struct.s %c) {
entry:
; CHECK-LABEL: test5
; CHECK: vmov.f32 s0, s3
%result = extractvalue %struct.s %c, 0
ret float %result
}