Convert more expression actions to smart pointers.

Fix type of logical negation for C++.

llvm-svn: 62475
This commit is contained in:
Sebastian Redl 2009-01-19 00:08:26 +00:00
parent e1c01e4e2b
commit c215cfc3e1
8 changed files with 353 additions and 315 deletions

View File

@ -499,50 +499,48 @@ namespace {
}
// Postfix Expressions.
virtual ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind, ExprTy *Input) {
virtual OwningExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind,
ExprArg Input) {
llvm::cout << __FUNCTION__ << "\n";
return 0;
return ExprEmpty();
}
virtual ExprResult ActOnArraySubscriptExpr(Scope *S, ExprTy *Base,
SourceLocation LLoc, ExprTy *Idx,
SourceLocation RLoc) {
virtual OwningExprResult ActOnArraySubscriptExpr(Scope *S, ExprArg Base,
SourceLocation LLoc,
ExprArg Idx,
SourceLocation RLoc) {
llvm::cout << __FUNCTION__ << "\n";
return 0;
return ExprEmpty();
}
virtual ExprResult ActOnMemberReferenceExpr(Scope *S, ExprTy *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation MemberLoc,
IdentifierInfo &Member) {
virtual OwningExprResult ActOnMemberReferenceExpr(Scope *S, ExprArg Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation MemberLoc,
IdentifierInfo &Member) {
llvm::cout << __FUNCTION__ << "\n";
return 0;
return ExprEmpty();
}
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations. There are guaranteed to be one fewer commas than arguments,
/// unless there are zero arguments.
virtual ExprResult ActOnCallExpr(Scope *S, ExprTy *Fn,
SourceLocation LParenLoc,
ExprTy **Args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc) {
virtual OwningExprResult ActOnCallExpr(Scope *S, ExprArg Fn,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation *CommaLocs,
SourceLocation RParenLoc) {
llvm::cout << __FUNCTION__ << "\n";
return 0;
return ExprEmpty();
}
// Unary Operators. 'Tok' is the token for the operator.
virtual ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, ExprTy *Input) {
virtual OwningExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, ExprArg Input) {
llvm::cout << __FUNCTION__ << "\n";
return 0;
return ExprEmpty();
}
virtual ExprResult
ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
void *TyOrEx, const SourceRange &ArgRange) {
virtual OwningExprResult
ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
void *TyOrEx, const SourceRange &ArgRange) {
llvm::cout << __FUNCTION__ << "\n";
return 0;
return ExprEmpty();
}
virtual ExprResult ActOnCompoundLiteral(SourceLocation LParen, TypeTy *Ty,

View File

@ -587,46 +587,48 @@ public:
}
// Postfix Expressions.
virtual ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind, ExprTy *Input) {
return 0;
virtual OwningExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind,
ExprArg Input) {
return ExprEmpty();
}
virtual ExprResult ActOnArraySubscriptExpr(Scope *S,
ExprTy *Base, SourceLocation LLoc,
ExprTy *Idx, SourceLocation RLoc) {
return 0;
virtual OwningExprResult ActOnArraySubscriptExpr(Scope *S, ExprArg Base,
SourceLocation LLoc,
ExprArg Idx,
SourceLocation RLoc) {
return ExprEmpty();
}
virtual ExprResult ActOnMemberReferenceExpr(Scope *S, ExprTy *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation MemberLoc,
IdentifierInfo &Member) {
return 0;
virtual OwningExprResult ActOnMemberReferenceExpr(Scope *S, ExprArg Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation MemberLoc,
IdentifierInfo &Member) {
return ExprEmpty();
}
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations. There are guaranteed to be one fewer commas than arguments,
/// unless there are zero arguments.
virtual ExprResult ActOnCallExpr(Scope *S, ExprTy *Fn,
SourceLocation LParenLoc,
ExprTy **Args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc) {
return 0;
virtual OwningExprResult ActOnCallExpr(Scope *S, ExprArg Fn,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation *CommaLocs,
SourceLocation RParenLoc) {
return ExprEmpty();
}
// Unary Operators. 'Tok' is the token for the operator.
virtual ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, ExprTy *Input) {
return 0;
virtual OwningExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, ExprArg Input) {
return ExprEmpty();
}
virtual ExprResult
virtual OwningExprResult
ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
void *TyOrEx, const SourceRange &ArgRange) {
return 0;
return ExprEmpty();
}
virtual ExprResult ActOnCompoundLiteral(SourceLocation LParen, TypeTy *Ty,
SourceLocation RParen, ExprTy *Op) {
return 0;

View File

@ -548,8 +548,7 @@ Parser::OwningExprResult Parser::ParseCastExpression(bool isUnaryExpression) {
SourceLocation SavedLoc = ConsumeToken();
Res = ParseCastExpression(true);
if (!Res.isInvalid())
Res = Owned(Actions.ActOnUnaryOp(CurScope, SavedLoc, SavedKind,
Res.release()));
Res = Actions.ActOnUnaryOp(CurScope, SavedLoc, SavedKind, move_arg(Res));
return move(Res);
}
case tok::amp: // unary-expression: '&' cast-expression
@ -563,7 +562,7 @@ Parser::OwningExprResult Parser::ParseCastExpression(bool isUnaryExpression) {
SourceLocation SavedLoc = ConsumeToken();
Res = ParseCastExpression(false);
if (!Res.isInvalid())
Res = Actions.ActOnUnaryOp(CurScope, SavedLoc, SavedKind, Res.release());
Res = Actions.ActOnUnaryOp(CurScope, SavedLoc, SavedKind, move_arg(Res));
return move(Res);
}
@ -573,7 +572,7 @@ Parser::OwningExprResult Parser::ParseCastExpression(bool isUnaryExpression) {
SourceLocation SavedLoc = ConsumeToken();
Res = ParseCastExpression(false);
if (!Res.isInvalid())
Res = Actions.ActOnUnaryOp(CurScope, SavedLoc, SavedKind, Res.release());
Res = Actions.ActOnUnaryOp(CurScope, SavedLoc, SavedKind, move_arg(Res));
return move(Res);
}
case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression
@ -736,8 +735,8 @@ Parser::ParsePostfixExpressionSuffix(OwningExprResult LHS) {
SourceLocation RLoc = Tok.getLocation();
if (!LHS.isInvalid() && !Idx.isInvalid() && Tok.is(tok::r_square)) {
LHS = Actions.ActOnArraySubscriptExpr(CurScope, LHS.release(), Loc,
Idx.release(), RLoc);
LHS = Actions.ActOnArraySubscriptExpr(CurScope, move_arg(LHS), Loc,
move_arg(Idx), RLoc);
} else
LHS = ExprError();
@ -763,9 +762,8 @@ Parser::ParsePostfixExpressionSuffix(OwningExprResult LHS) {
if (!LHS.isInvalid() && Tok.is(tok::r_paren)) {
assert((ArgExprs.size() == 0 || ArgExprs.size()-1 == CommaLocs.size())&&
"Unexpected number of commas!");
LHS = Actions.ActOnCallExpr(CurScope, LHS.release(), Loc,
ArgExprs.take(),
ArgExprs.size(), &CommaLocs[0],
LHS = Actions.ActOnCallExpr(CurScope, move_arg(LHS), Loc,
move_arg(ArgExprs), &CommaLocs[0],
Tok.getLocation());
}
@ -783,7 +781,7 @@ Parser::ParsePostfixExpressionSuffix(OwningExprResult LHS) {
}
if (!LHS.isInvalid()) {
LHS = Actions.ActOnMemberReferenceExpr(CurScope, LHS.release(), OpLoc,
LHS = Actions.ActOnMemberReferenceExpr(CurScope, move_arg(LHS), OpLoc,
OpKind, Tok.getLocation(),
*Tok.getIdentifierInfo());
}
@ -794,7 +792,7 @@ Parser::ParsePostfixExpressionSuffix(OwningExprResult LHS) {
case tok::minusminus: // postfix-expression: postfix-expression '--'
if (!LHS.isInvalid()) {
LHS = Actions.ActOnPostfixUnaryOp(CurScope, Tok.getLocation(),
Tok.getKind(), LHS.release());
Tok.getKind(), move_arg(LHS));
}
ConsumeToken();
break;
@ -834,10 +832,10 @@ Parser::OwningExprResult Parser::ParseSizeofAlignofExpression() {
// If ParseParenExpression parsed a '(typename)' sequence only, the this is
// sizeof/alignof a type. Otherwise, it is sizeof/alignof an expression.
if (ExprType == CastExpr)
return Owned(Actions.ActOnSizeOfAlignOfExpr(OpTok.getLocation(),
return Actions.ActOnSizeOfAlignOfExpr(OpTok.getLocation(),
OpTok.is(tok::kw_sizeof),
/*isType=*/true, CastTy,
SourceRange(LParenLoc, RParenLoc)));
SourceRange(LParenLoc, RParenLoc));
// If this is a parenthesized expression, it is the start of a
// unary-expression, but doesn't include any postfix pieces. Parse these

View File

@ -391,8 +391,8 @@ Parser::OwningStmtResult Parser::ParseCompoundStatementBody(bool isStmtExpr) {
}
// Add the __extension__ node to the AST.
Res = Actions.ActOnUnaryOp(CurScope, ExtLoc, tok::kw___extension__,
Res.release());
Res = Actions.ActOnUnaryOp(CurScope, ExtLoc, tok::kw___extension__,
move_arg(Res));
if (Res.isInvalid())
continue;

View File

@ -249,6 +249,9 @@ public:
virtual void DeleteStmt(StmtTy *S);
OwningExprResult Owned(Expr* E) { return OwningExprResult(*this, E); }
OwningExprResult Owned(ExprResult R) {
return R.isInvalid ? ExprError() : OwningExprResult(*this, R.Val);
}
OwningStmtResult Owned(Stmt* S) { return OwningStmtResult(*this, S); }
virtual void ActOnEndOfTranslationUnit();
@ -980,44 +983,47 @@ public:
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz").
virtual OwningExprResult ActOnStringLiteral(const Token *Toks, unsigned NumToks);
virtual OwningExprResult ActOnStringLiteral(const Token *Toks,
unsigned NumToks);
// Binary/Unary Operators. 'Tok' is the token for the operator.
virtual ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, ExprTy *Input);
virtual ExprResult
virtual OwningExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, ExprArg Input);
virtual OwningExprResult
ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
void *TyOrEx, const SourceRange &ArgRange);
bool CheckSizeOfAlignOfOperand(QualType type, SourceLocation OpLoc,
const SourceRange &R, bool isSizeof);
virtual ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind, ExprTy *Input);
virtual ExprResult ActOnArraySubscriptExpr(Scope *S, ExprTy *Base,
SourceLocation LLoc, ExprTy *Idx,
SourceLocation RLoc);
virtual ExprResult ActOnMemberReferenceExpr(Scope *S, ExprTy *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation MemberLoc,
IdentifierInfo &Member);
bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
virtual OwningExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind,
ExprArg Input);
virtual OwningExprResult ActOnArraySubscriptExpr(Scope *S, ExprArg Base,
SourceLocation LLoc,
ExprArg Idx,
SourceLocation RLoc);
virtual OwningExprResult ActOnMemberReferenceExpr(Scope *S, ExprArg Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation MemberLoc,
IdentifierInfo &Member);
bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
FunctionDecl *FDecl,
const FunctionTypeProto *Proto,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc);
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
virtual ExprResult ActOnCallExpr(Scope *S, ExprTy *Fn,
SourceLocation LParenLoc,
ExprTy **Args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc);
virtual OwningExprResult ActOnCallExpr(Scope *S, ExprArg Fn,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation *CommaLocs,
SourceLocation RParenLoc);
virtual ExprResult ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
SourceLocation RParenLoc, ExprTy *Op);
@ -1782,16 +1788,17 @@ public:
/// Returns false on success.
bool VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
QualType FieldTy, const Expr *BitWidth);
//===--------------------------------------------------------------------===//
// Extra semantic analysis beyond the C type system
private:
Action::ExprResult CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall);
Action::OwningExprResult CheckFunctionCall(FunctionDecl *FDecl,
CallExpr *TheCall);
bool CheckBuiltinCFStringArgument(Expr* Arg);
bool SemaBuiltinVAStart(CallExpr *TheCall);
bool SemaBuiltinUnorderedCompare(CallExpr *TheCall);
bool SemaBuiltinStackAddress(CallExpr *TheCall);
Action::ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall);
Action::OwningExprResult SemaBuiltinShuffleVector(CallExpr *TheCall);
bool SemaBuiltinPrefetch(CallExpr *TheCall);
bool SemaBuiltinObjectSize(CallExpr *TheCall);
bool SemaCheckStringLiteral(Expr *E, CallExpr *TheCall, bool HasVAListArg,

View File

@ -24,52 +24,54 @@ using namespace clang;
/// CheckFunctionCall - Check a direct function call for various correctness
/// and safety properties not strictly enforced by the C type system.
Action::ExprResult
Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCallRaw) {
llvm::OwningPtr<CallExpr> TheCall(TheCallRaw);
Action::OwningExprResult
Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
OwningExprResult TheCallResult(Owned(TheCall));
// Get the IdentifierInfo* for the called function.
IdentifierInfo *FnInfo = FDecl->getIdentifier();
// None of the checks below are needed for functions that don't have
// simple names (e.g., C++ conversion functions).
if (!FnInfo)
return TheCall.take();
return move(TheCallResult);
switch (FnInfo->getBuiltinID()) {
case Builtin::BI__builtin___CFStringMakeConstantString:
assert(TheCall->getNumArgs() == 1 &&
"Wrong # arguments to builtin CFStringMakeConstantString");
if (CheckBuiltinCFStringArgument(TheCall->getArg(0)))
return true;
return TheCall.take();
return ExprError();
return move(TheCallResult);
case Builtin::BI__builtin_stdarg_start:
case Builtin::BI__builtin_va_start:
if (SemaBuiltinVAStart(TheCall.get()))
return true;
return TheCall.take();
if (SemaBuiltinVAStart(TheCall))
return ExprError();
return move(TheCallResult);
case Builtin::BI__builtin_isgreater:
case Builtin::BI__builtin_isgreaterequal:
case Builtin::BI__builtin_isless:
case Builtin::BI__builtin_islessequal:
case Builtin::BI__builtin_islessgreater:
case Builtin::BI__builtin_isunordered:
if (SemaBuiltinUnorderedCompare(TheCall.get()))
return true;
return TheCall.take();
if (SemaBuiltinUnorderedCompare(TheCall))
return ExprError();
return move(TheCallResult);
case Builtin::BI__builtin_return_address:
case Builtin::BI__builtin_frame_address:
if (SemaBuiltinStackAddress(TheCall.get()))
return true;
return TheCall.take();
if (SemaBuiltinStackAddress(TheCall))
return ExprError();
return move(TheCallResult);
case Builtin::BI__builtin_shufflevector:
return SemaBuiltinShuffleVector(TheCall.get());
return SemaBuiltinShuffleVector(TheCall);
// TheCall will be freed by the smart pointer here, but that's fine, since
// SemaBuiltinShuffleVector guts it, but then doesn't release it.
case Builtin::BI__builtin_prefetch:
if (SemaBuiltinPrefetch(TheCall.get()))
return true;
return TheCall.take();
if (SemaBuiltinPrefetch(TheCall))
return ExprError();
return move(TheCallResult);
case Builtin::BI__builtin_object_size:
if (SemaBuiltinObjectSize(TheCall.get()))
return true;
if (SemaBuiltinObjectSize(TheCall))
return ExprError();
}
// FIXME: This mechanism should be abstracted to be less fragile and
@ -79,15 +81,15 @@ Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCallRaw) {
// Search the KnownFunctionIDs for the identifier.
unsigned i = 0, e = id_num_known_functions;
for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
if (i == e) return TheCall.take();
if (i == e) return move(TheCallResult);
// Printf checking.
if (i <= id_vprintf) {
// Retrieve the index of the format string parameter and determine
// if the function is passed a va_arg argument.
unsigned format_idx = 0;
bool HasVAListArg = false;
switch (i) {
default: assert(false && "No format string argument index.");
case id_NSLog: format_idx = 0; break;
@ -106,11 +108,11 @@ Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCallRaw) {
case id_vsprintf_chk: format_idx = 3; HasVAListArg = true; break;
case id_vprintf: format_idx = 0; HasVAListArg = true; break;
}
CheckPrintfArguments(TheCall.get(), HasVAListArg, format_idx);
CheckPrintfArguments(TheCall, HasVAListArg, format_idx);
}
return TheCall.take();
return move(TheCallResult);
}
/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
@ -250,10 +252,11 @@ bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
// This is declared to take (...), so we have to check everything.
Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
if (TheCall->getNumArgs() < 3)
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
<< 0 /*function call*/ << TheCall->getSourceRange();
return ExprError(Diag(TheCall->getLocEnd(),
diag::err_typecheck_call_too_few_args)
<< 0 /*function call*/ << TheCall->getSourceRange());
QualType FAType = TheCall->getArg(0)->getType();
QualType SAType = TheCall->getArg(1)->getType();
@ -262,7 +265,7 @@ Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
<< SourceRange(TheCall->getArg(0)->getLocStart(),
TheCall->getArg(1)->getLocEnd());
return true;
return ExprError();
}
if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
@ -270,29 +273,31 @@ Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
<< SourceRange(TheCall->getArg(0)->getLocStart(),
TheCall->getArg(1)->getLocEnd());
return true;
return ExprError();
}
unsigned numElements = FAType->getAsVectorType()->getNumElements();
if (TheCall->getNumArgs() != numElements+2) {
if (TheCall->getNumArgs() < numElements+2)
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
<< 0 /*function call*/ << TheCall->getSourceRange();
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
<< 0 /*function call*/ << TheCall->getSourceRange();
return ExprError(Diag(TheCall->getLocEnd(),
diag::err_typecheck_call_too_few_args)
<< 0 /*function call*/ << TheCall->getSourceRange());
return ExprError(Diag(TheCall->getLocEnd(),
diag::err_typecheck_call_too_many_args)
<< 0 /*function call*/ << TheCall->getSourceRange());
}
for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
llvm::APSInt Result(32);
if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
return Diag(TheCall->getLocStart(),
return ExprError(Diag(TheCall->getLocStart(),
diag::err_shufflevector_nonconstant_argument)
<< TheCall->getArg(i)->getSourceRange();
<< TheCall->getArg(i)->getSourceRange());
if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
return Diag(TheCall->getLocStart(),
return ExprError(Diag(TheCall->getLocStart(),
diag::err_shufflevector_argument_too_large)
<< TheCall->getArg(i)->getSourceRange();
<< TheCall->getArg(i)->getSourceRange());
}
llvm::SmallVector<Expr*, 32> exprs;
@ -302,9 +307,9 @@ Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
TheCall->setArg(i, 0);
}
return new ShuffleVectorExpr(exprs.begin(), numElements+2, FAType,
TheCall->getCallee()->getLocStart(),
TheCall->getRParenLoc());
return Owned(new ShuffleVectorExpr(exprs.begin(), numElements+2, FAType,
TheCall->getCallee()->getLocStart(),
TheCall->getRParenLoc()));
}
/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
@ -1030,12 +1035,12 @@ void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
}
// Check for comparisons with builtin types.
if (EmitWarning)
if (EmitWarning)
if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
if (isCallBuiltin(CL))
EmitWarning = false;
if (EmitWarning)
if (EmitWarning)
if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
if (isCallBuiltin(CR))
EmitWarning = false;

View File

@ -1032,11 +1032,11 @@ bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
/// the same for @c alignof and @c __alignof
/// Note that the ArgRange is invalid if isType is false.
Action::ExprResult
Action::OwningExprResult
Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
void *TyOrEx, const SourceRange &ArgRange) {
// If error parsing type, ignore.
if (TyOrEx == 0) return true;
if (TyOrEx == 0) return ExprError();
QualType ArgTy;
SourceRange Range;
@ -1051,12 +1051,14 @@ Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
}
// Verify that the operand is valid.
// FIXME: This might leak the expression.
if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
return true;
return ExprError();
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
return new SizeOfAlignOfExpr(isSizeof, isType, TyOrEx, Context.getSizeType(),
OpLoc, Range.getEnd());
return Owned(new SizeOfAlignOfExpr(isSizeof, isType, TyOrEx,
Context.getSizeType(), OpLoc,
Range.getEnd()));
}
QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
@ -1077,10 +1079,10 @@ QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
Action::ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind,
ExprTy *Input) {
Expr *Arg = (Expr *)Input;
Action::OwningExprResult
Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind, ExprArg Input) {
Expr *Arg = (Expr *)Input.get();
UnaryOperator::Opcode Opc;
switch (Kind) {
@ -1088,11 +1090,11 @@ Action::ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
case tok::plusplus: Opc = UnaryOperator::PostInc; break;
case tok::minusminus: Opc = UnaryOperator::PostDec; break;
}
if (getLangOptions().CPlusPlus &&
(Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
// Which overloaded operator?
OverloadedOperatorKind OverOp =
OverloadedOperatorKind OverOp =
(Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
// C++ [over.inc]p1:
@ -1129,36 +1131,37 @@ Action::ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
// Convert the arguments.
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
if (PerformObjectArgumentInitialization(Arg, Method))
return true;
return ExprError();
} else {
// Convert the arguments.
if (PerformCopyInitialization(Arg,
if (PerformCopyInitialization(Arg,
FnDecl->getParamDecl(0)->getType(),
"passing"))
return true;
return ExprError();
}
// Determine the result type
QualType ResultTy
QualType ResultTy
= FnDecl->getType()->getAsFunctionType()->getResultType();
ResultTy = ResultTy.getNonReferenceType();
// Build the actual expression node.
Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
SourceLocation());
UsualUnaryConversions(FnExpr);
return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, OpLoc);
Input.release();
return Owned(new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, OpLoc));
} else {
// We matched a built-in operator. Convert the arguments, then
// break out so that we will build the appropriate built-in
// operator node.
if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
"passing"))
return true;
return ExprError();
break;
}
}
}
case OR_No_Viable_Function:
@ -1171,7 +1174,7 @@ Action::ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
<< UnaryOperator::getOpcodeStr(Opc)
<< Arg->getSourceRange();
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return true;
return ExprError();
}
// Either we found no viable overloaded operator or we matched a
@ -1182,17 +1185,19 @@ Action::ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
Opc == UnaryOperator::PostInc);
if (result.isNull())
return true;
return new UnaryOperator(Arg, Opc, result, OpLoc);
return ExprError();
Input.release();
return Owned(new UnaryOperator(Arg, Opc, result, OpLoc));
}
Action::ExprResult Sema::
ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
ExprTy *Idx, SourceLocation RLoc) {
Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
Action::OwningExprResult
Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
ExprArg Idx, SourceLocation RLoc) {
Expr *LHSExp = static_cast<Expr*>(Base.get()),
*RHSExp = static_cast<Expr*>(Idx.get());
if (getLangOptions().CPlusPlus &&
(LHSExp->getType()->isRecordType() ||
(LHSExp->getType()->isRecordType() ||
LHSExp->getType()->isEnumeralType() ||
RHSExp->getType()->isRecordType() ||
RHSExp->getType()->isEnumeralType())) {
@ -1201,7 +1206,7 @@ ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
OverloadCandidateSet CandidateSet;
Expr *Args[2] = { LHSExp, RHSExp };
AddOperatorCandidates(OO_Subscript, S, Args, 2, CandidateSet);
// Perform overload resolution.
OverloadCandidateSet::iterator Best;
switch (BestViableFunction(CandidateSet, Best)) {
@ -1219,7 +1224,7 @@ ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
PerformCopyInitialization(RHSExp,
FnDecl->getParamDecl(0)->getType(),
"passing"))
return true;
return ExprError();
} else {
// Convert the arguments.
if (PerformCopyInitialization(LHSExp,
@ -1228,20 +1233,22 @@ ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
PerformCopyInitialization(RHSExp,
FnDecl->getParamDecl(1)->getType(),
"passing"))
return true;
return ExprError();
}
// Determine the result type
QualType ResultTy
QualType ResultTy
= FnDecl->getType()->getAsFunctionType()->getResultType();
ResultTy = ResultTy.getNonReferenceType();
// Build the actual expression node.
Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
SourceLocation());
UsualUnaryConversions(FnExpr);
return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, LLoc);
Base.release();
Idx.release();
return Owned(new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, LLoc));
} else {
// We matched a built-in operator. Convert the arguments, then
// break out so that we will build the appropriate built-in
@ -1250,7 +1257,7 @@ ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
"passing") ||
PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
"passing"))
return true;
return ExprError();
break;
}
@ -1266,7 +1273,7 @@ ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
<< "[]"
<< LHSExp->getSourceRange() << RHSExp->getSourceRange();
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return true;
return ExprError();
}
// Either we found no viable overloaded operator or we matched a
@ -1277,7 +1284,7 @@ ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
// Perform default conversions.
DefaultFunctionArrayConversion(LHSExp);
DefaultFunctionArrayConversion(RHSExp);
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
@ -1304,24 +1311,26 @@ ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
// FIXME: need to deal with const...
ResultType = VTy->getElementType();
} else {
return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value)
<< RHSExp->getSourceRange();
}
return ExprError(Diag(LHSExp->getLocStart(),
diag::err_typecheck_subscript_value) << RHSExp->getSourceRange());
}
// C99 6.5.2.1p1
if (!IndexExpr->getType()->isIntegerType())
return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript)
<< IndexExpr->getSourceRange();
return ExprError(Diag(IndexExpr->getLocStart(),
diag::err_typecheck_subscript) << IndexExpr->getSourceRange());
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice,
// the following check catches trying to index a pointer to a function (e.g.
// void (*)(int)) and pointers to incomplete types. Functions are not
// objects in C99.
if (!ResultType->isObjectType())
return Diag(BaseExpr->getLocStart(),
return ExprError(Diag(BaseExpr->getLocStart(),
diag::err_typecheck_subscript_not_object)
<< BaseExpr->getType() << BaseExpr->getSourceRange();
<< BaseExpr->getType() << BaseExpr->getSourceRange());
return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
Base.release();
Idx.release();
return Owned(new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc));
}
QualType Sema::
@ -1426,42 +1435,44 @@ static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]);
}
Action::ExprResult Sema::
ActOnMemberReferenceExpr(Scope *S, ExprTy *Base, SourceLocation OpLoc,
tok::TokenKind OpKind, SourceLocation MemberLoc,
IdentifierInfo &Member) {
Expr *BaseExpr = static_cast<Expr *>(Base);
Action::OwningExprResult
Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
tok::TokenKind OpKind, SourceLocation MemberLoc,
IdentifierInfo &Member) {
Expr *BaseExpr = static_cast<Expr *>(Base.release());
assert(BaseExpr && "no record expression");
// Perform default conversions.
DefaultFunctionArrayConversion(BaseExpr);
QualType BaseType = BaseExpr->getType();
assert(!BaseType.isNull() && "no type for member expression");
// Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
// must have pointer type, and the accessed type is the pointee.
if (OpKind == tok::arrow) {
if (const PointerType *PT = BaseType->getAsPointerType())
BaseType = PT->getPointeeType();
else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
return BuildOverloadedArrowExpr(S, BaseExpr, OpLoc, MemberLoc, Member);
return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
MemberLoc, Member));
else
return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
<< BaseType << BaseExpr->getSourceRange();
return ExprError(Diag(MemberLoc,
diag::err_typecheck_member_reference_arrow)
<< BaseType << BaseExpr->getSourceRange());
}
// Handle field access to simple records. This also handles access to fields
// of the ObjC 'id' struct.
if (const RecordType *RTy = BaseType->getAsRecordType()) {
RecordDecl *RDecl = RTy->getDecl();
if (RTy->isIncompleteType())
return Diag(OpLoc, diag::err_typecheck_incomplete_tag)
<< RDecl->getDeclName() << BaseExpr->getSourceRange();
return ExprError(Diag(OpLoc, diag::err_typecheck_incomplete_tag)
<< RDecl->getDeclName() << BaseExpr->getSourceRange());
// The record definition is complete, now make sure the member is valid.
// FIXME: Qualified name lookup for C++ is a bit more complicated
// than this.
LookupResult Result
LookupResult Result
= LookupQualifiedName(RDecl, DeclarationName(&Member),
LookupCriteria(LookupCriteria::Member,
/*RedeclarationOnly=*/false,
@ -1469,12 +1480,13 @@ ActOnMemberReferenceExpr(Scope *S, ExprTy *Base, SourceLocation OpLoc,
Decl *MemberDecl = 0;
if (!Result)
return Diag(MemberLoc, diag::err_typecheck_no_member)
<< &Member << BaseExpr->getSourceRange();
else if (Result.isAmbiguous())
return DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
MemberLoc, BaseExpr->getSourceRange());
else
return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
<< &Member << BaseExpr->getSourceRange());
else if (Result.isAmbiguous()) {
DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
MemberLoc, BaseExpr->getSourceRange());
return ExprError();
} else
MemberDecl = Result;
if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
@ -1482,8 +1494,7 @@ ActOnMemberReferenceExpr(Scope *S, ExprTy *Base, SourceLocation OpLoc,
// (C++ [class.union]).
if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
BaseExpr, OpLoc)
.release();
BaseExpr, OpLoc);
// Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
// FIXME: Handle address space modifiers
@ -1498,47 +1509,49 @@ ActOnMemberReferenceExpr(Scope *S, ExprTy *Base, SourceLocation OpLoc,
MemberType = MemberType.getQualifiedType(combinedQualifiers);
}
return new MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
MemberLoc, MemberType);
return Owned(new MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
MemberLoc, MemberType));
} else if (CXXClassVarDecl *Var = dyn_cast<CXXClassVarDecl>(MemberDecl))
return new MemberExpr(BaseExpr, OpKind == tok::arrow, Var, MemberLoc,
Var->getType().getNonReferenceType());
return Owned(new MemberExpr(BaseExpr, OpKind == tok::arrow,
Var, MemberLoc,
Var->getType().getNonReferenceType()));
else if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberFn, MemberLoc,
MemberFn->getType());
else if (OverloadedFunctionDecl *Ovl
return Owned(new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberFn,
MemberLoc, MemberFn->getType()));
else if (OverloadedFunctionDecl *Ovl
= dyn_cast<OverloadedFunctionDecl>(MemberDecl))
return new MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl, MemberLoc,
Context.OverloadTy);
return Owned(new MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
MemberLoc, Context.OverloadTy));
else if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
return new MemberExpr(BaseExpr, OpKind == tok::arrow, Enum, MemberLoc,
Enum->getType());
return Owned(new MemberExpr(BaseExpr, OpKind == tok::arrow, Enum,
MemberLoc, Enum->getType()));
else if (isa<TypeDecl>(MemberDecl))
return Diag(MemberLoc, diag::err_typecheck_member_reference_type)
<< DeclarationName(&Member) << int(OpKind == tok::arrow);
return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
<< DeclarationName(&Member) << int(OpKind == tok::arrow));
// We found a declaration kind that we didn't expect. This is a
// generic error message that tells the user that she can't refer
// to this member with '.' or '->'.
return Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
<< DeclarationName(&Member) << int(OpKind == tok::arrow);
return ExprError(Diag(MemberLoc,
diag::err_typecheck_member_reference_unknown)
<< DeclarationName(&Member) << int(OpKind == tok::arrow));
}
// Handle access to Objective-C instance variables, such as "Obj->ivar" and
// (*Obj).ivar.
if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member)) {
ObjCIvarRefExpr *MRef= new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc,
BaseExpr,
ObjCIvarRefExpr *MRef= new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc,
BaseExpr,
OpKind == tok::arrow);
Context.setFieldDecl(IFTy->getDecl(), IV, MRef);
return MRef;
return Owned(MRef);
}
return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
<< IFTy->getDecl()->getDeclName() << &Member
<< BaseExpr->getSourceRange();
return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
<< IFTy->getDecl()->getDeclName() << &Member
<< BaseExpr->getSourceRange());
}
// Handle Objective-C property access, which is "Obj.property" where Obj is a
// pointer to a (potentially qualified) interface type.
const PointerType *PTy;
@ -1549,13 +1562,15 @@ ActOnMemberReferenceExpr(Scope *S, ExprTy *Base, SourceLocation OpLoc,
// Search for a declared property first.
if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
return Owned(new ObjCPropertyRefExpr(PD, PD->getType(),
MemberLoc, BaseExpr));
// Check protocols on qualified interfaces.
for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
E = IFTy->qual_end(); I != E; ++I)
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
return Owned(new ObjCPropertyRefExpr(PD, PD->getType(),
MemberLoc, BaseExpr));
// If that failed, look for an "implicit" property by seeing if the nullary
// selector is implemented.
@ -1565,7 +1580,7 @@ ActOnMemberReferenceExpr(Scope *S, ExprTy *Base, SourceLocation OpLoc,
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
// If this reference is in an @implementation, check for 'private' methods.
if (!Getter)
if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
@ -1604,14 +1619,14 @@ ActOnMemberReferenceExpr(Scope *S, ExprTy *Base, SourceLocation OpLoc,
Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
}
}
// FIXME: we must check that the setter has property type.
return new ObjCKVCRefExpr(Getter, Getter->getResultType(), Setter,
MemberLoc, BaseExpr);
// FIXME: we must check that the setter has property type.
return Owned(new ObjCKVCRefExpr(Getter, Getter->getResultType(), Setter,
MemberLoc, BaseExpr));
}
return Diag(MemberLoc, diag::err_property_not_found) <<
&Member << BaseType;
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
<< &Member << BaseType);
}
// Handle properties on qualified "id" protocols.
const ObjCQualifiedIdType *QIdTy;
@ -1620,28 +1635,30 @@ ActOnMemberReferenceExpr(Scope *S, ExprTy *Base, SourceLocation OpLoc,
for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
E = QIdTy->qual_end(); I != E; ++I) {
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
return Owned(new ObjCPropertyRefExpr(PD, PD->getType(),
MemberLoc, BaseExpr));
// Also must look for a getter name which uses property syntax.
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
return new ObjCMessageExpr(BaseExpr, Sel, OMD->getResultType(), OMD,
OpLoc, MemberLoc, NULL, 0);
return Owned(new ObjCMessageExpr(BaseExpr, Sel, OMD->getResultType(),
OMD, OpLoc, MemberLoc, NULL, 0));
}
}
return Diag(MemberLoc, diag::err_property_not_found) <<
&Member << BaseType;
}
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
<< &Member << BaseType);
}
// Handle 'field access' to vectors, such as 'V.xx'.
if (BaseType->isExtVectorType() && OpKind == tok::period) {
QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
if (ret.isNull())
return true;
return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
return ExprError();
return Owned(new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc));
}
return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
<< BaseType << BaseExpr->getSourceRange();
return ExprError(Diag(MemberLoc,
diag::err_typecheck_member_reference_struct_union)
<< BaseType << BaseExpr->getSourceRange());
}
/// ConvertArgumentsForCall - Converts the arguments specified in
@ -1728,12 +1745,13 @@ Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
Action::ExprResult
Sema::ActOnCallExpr(Scope *S, ExprTy *fn, SourceLocation LParenLoc,
ExprTy **args, unsigned NumArgs,
Action::OwningExprResult
Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
MultiExprArg args,
SourceLocation *CommaLocs, SourceLocation RParenLoc) {
Expr *Fn = static_cast<Expr *>(fn);
Expr **Args = reinterpret_cast<Expr**>(args);
unsigned NumArgs = args.size();
Expr *Fn = static_cast<Expr *>(fn.release());
Expr **Args = reinterpret_cast<Expr**>(args.release());
assert(Fn && "no function call expression");
FunctionDecl *FDecl = NULL;
OverloadedFunctionDecl *Ovl = NULL;
@ -1755,7 +1773,7 @@ Sema::ActOnCallExpr(Scope *S, ExprTy *fn, SourceLocation LParenLoc,
/*SS=*/0,
/*ForceResolution=*/true);
if (Resolved.isInvalid())
return true;
return ExprError();
else {
delete Fn;
Fn = (Expr *)Resolved.release();
@ -1769,20 +1787,21 @@ Sema::ActOnCallExpr(Scope *S, ExprTy *fn, SourceLocation LParenLoc,
// FIXME: Will need to cache the results of name lookup (including
// ADL) in Fn.
if (Dependent)
return new CallExpr(Fn, Args, NumArgs, Context.DependentTy, RParenLoc);
return Owned(new CallExpr(Fn, Args, NumArgs,
Context.DependentTy, RParenLoc));
// Determine whether this is a call to an object (C++ [over.call.object]).
if (getLangOptions().CPlusPlus && Fn->getType()->isRecordType())
return BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
CommaLocs, RParenLoc);
return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
CommaLocs, RParenLoc));
// Determine whether this is a call to a member function.
if (getLangOptions().CPlusPlus) {
if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
CommaLocs, RParenLoc);
return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
CommaLocs, RParenLoc));
}
// If we're directly calling a function or a set of overloaded
@ -1792,17 +1811,17 @@ Sema::ActOnCallExpr(Scope *S, ExprTy *fn, SourceLocation LParenLoc,
DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr());
else
DRExpr = dyn_cast<DeclRefExpr>(Fn);
if (DRExpr) {
FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
}
if (Ovl) {
FDecl = ResolveOverloadedCallFn(Fn, Ovl, LParenLoc, Args, NumArgs, CommaLocs,
RParenLoc);
FDecl = ResolveOverloadedCallFn(Fn, Ovl, LParenLoc, Args, NumArgs,
CommaLocs, RParenLoc);
if (!FDecl)
return true;
return ExprError();
// Update Fn to refer to the actual function selected.
Expr *NewFn = 0;
@ -1822,36 +1841,38 @@ Sema::ActOnCallExpr(Scope *S, ExprTy *fn, SourceLocation LParenLoc,
// Make the call expr early, before semantic checks. This guarantees cleanup
// of arguments and function on error.
// FIXME: Except that llvm::OwningPtr uses delete, when it really must be
// Destroy(), or nothing gets cleaned up.
llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
Context.BoolTy, RParenLoc));
const FunctionType *FuncT;
if (!Fn->getType()->isBlockPointerType()) {
// C99 6.5.2.2p1 - "The expression that denotes the called function shall
// have type pointer to function".
const PointerType *PT = Fn->getType()->getAsPointerType();
if (PT == 0)
return Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange();
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange());
FuncT = PT->getPointeeType()->getAsFunctionType();
} else { // This is a block call.
FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
getAsFunctionType();
}
if (FuncT == 0)
return Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange();
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange());
// We know the result type of the call, set it.
TheCall->setType(FuncT->getResultType().getNonReferenceType());
if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
RParenLoc))
return true;
return ExprError();
} else {
assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
// Promote the arguments (C99 6.5.2.2p6).
for (unsigned i = 0; i != NumArgs; i++) {
Expr *Arg = Args[i];
@ -1862,14 +1883,14 @@ Sema::ActOnCallExpr(Scope *S, ExprTy *fn, SourceLocation LParenLoc,
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
if (!Method->isStatic())
return Diag(LParenLoc, diag::err_member_call_without_object)
<< Fn->getSourceRange();
return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
<< Fn->getSourceRange());
// Do special checking on direct calls to functions.
if (FDecl)
return CheckFunctionCall(FDecl, TheCall.take());
return TheCall.take();
return Owned(TheCall.take());
}
Action::ExprResult Sema::
@ -3614,9 +3635,10 @@ Action::ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
}
// Unary Operators. 'Tok' is the token for the operator.
Action::ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, ExprTy *input) {
Expr *Input = (Expr*)input;
Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, ExprArg input) {
// FIXME: Input is modified later, but smart pointer not reassigned.
Expr *Input = (Expr*)input.get();
UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
if (getLangOptions().CPlusPlus &&
@ -3655,36 +3677,38 @@ Action::ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
// Convert the arguments.
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
if (PerformObjectArgumentInitialization(Input, Method))
return true;
return ExprError();
} else {
// Convert the arguments.
if (PerformCopyInitialization(Input,
FnDecl->getParamDecl(0)->getType(),
"passing"))
return true;
return ExprError();
}
// Determine the result type
QualType ResultTy
QualType ResultTy
= FnDecl->getType()->getAsFunctionType()->getResultType();
ResultTy = ResultTy.getNonReferenceType();
// Build the actual expression node.
Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
SourceLocation());
UsualUnaryConversions(FnExpr);
return new CXXOperatorCallExpr(FnExpr, &Input, 1, ResultTy, OpLoc);
input.release();
return Owned(new CXXOperatorCallExpr(FnExpr, &Input, 1,
ResultTy, OpLoc));
} else {
// We matched a built-in operator. Convert the arguments, then
// break out so that we will build the appropriate built-in
// operator node.
if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
Best->Conversions[0], "passing"))
return true;
return ExprError();
break;
}
}
}
case OR_No_Viable_Function:
@ -3697,12 +3721,12 @@ Action::ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
<< UnaryOperator::getOpcodeStr(Opc)
<< Input->getSourceRange();
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return true;
return ExprError();
}
// Either we found no viable overloaded operator or we matched a
// built-in operator. In either case, fall through to trying to
// build a built-in operation.
// build a built-in operation.
}
QualType resultType;
@ -3735,8 +3759,8 @@ Action::ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
resultType->isPointerType())
break;
return Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange();
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange());
case UnaryOperator::Not: // bitwise complement
UsualUnaryConversions(Input);
resultType = Input->getType();
@ -3746,18 +3770,19 @@ Action::ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
Diag(OpLoc, diag::ext_integer_complement_complex)
<< resultType << Input->getSourceRange();
else if (!resultType->isIntegerType())
return Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange();
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange());
break;
case UnaryOperator::LNot: // logical negation
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
DefaultFunctionArrayConversion(Input);
resultType = Input->getType();
if (!resultType->isScalarType()) // C99 6.5.3.3p1
return Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange();
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange());
// LNot always has type int. C99 6.5.3.3p5.
resultType = Context.IntTy;
// In C++, it's bool. C++ 5.3.1p8
resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
break;
case UnaryOperator::Real:
case UnaryOperator::Imag:
@ -3768,8 +3793,9 @@ Action::ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
break;
}
if (resultType.isNull())
return true;
return new UnaryOperator(Input, Opc, resultType, OpLoc);
return ExprError();
input.release();
return Owned(new UnaryOperator(Input, Opc, resultType, OpLoc));
}
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".

View File

@ -3436,7 +3436,7 @@ Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
RParenLoc))
return true;
return CheckFunctionCall(Method, TheCall.take());
return CheckFunctionCall(Method, TheCall.take()).release();
}
/// BuildCallToObjectOfClassType - Build a call to an object of class
@ -3548,11 +3548,12 @@ Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
// object parameter to a function pointer. Perform the conversion
// on the object argument, then let ActOnCallExpr finish the job.
// FIXME: Represent the user-defined conversion in the AST!
ImpCastExprToType(Object,
ImpCastExprToType(Object,
Conv->getConversionType().getNonReferenceType(),
Conv->getConversionType()->isReferenceType());
return ActOnCallExpr(S, (ExprTy*)Object, LParenLoc, (ExprTy**)Args, NumArgs,
CommaLocs, RParenLoc);
return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
MultiExprArg(*this, (ExprTy**)Args, NumArgs),
CommaLocs, RParenLoc).release();
}
// We found an overloaded operator(). Build a CXXOperatorCallExpr
@ -3630,7 +3631,7 @@ Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
}
}
return CheckFunctionCall(Method, TheCall.take());
return CheckFunctionCall(Method, TheCall.take()).release();
}
/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
@ -3700,7 +3701,8 @@ Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
Base = new CXXOperatorCallExpr(FnExpr, &Base, 1,
Method->getResultType().getNonReferenceType(),
OpLoc);
return ActOnMemberReferenceExpr(S, Base, OpLoc, tok::arrow, MemberLoc, Member);
return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
MemberLoc, Member).release();
}
/// FixOverloadedFunctionReference - E is an expression that refers to