A first stab at memory dependence analysis. This is an interface on top of

alias analysis, adding caching and lazy computation of queries.  This will
be used in planned improvements to memory access optimizations.

llvm-svn: 37958
This commit is contained in:
Owen Anderson 2007-07-06 23:14:35 +00:00
parent 81f07478b4
commit c0daf5fe53
2 changed files with 240 additions and 0 deletions

View File

@ -0,0 +1,69 @@
//===- llvm/Analysis/MemoryDependenceAnalysis.h - Memory Deps --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the Owen Anderson and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an analysis that determines, for a given memory operation,
// what preceding memory operations it depends on. It builds on alias analysis
// information, and tries to provide a lazy, caching interface to a common kind
// of alias information query.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_MEMORY_DEPENDENCE_H
#define LLVM_ANALYSIS_MEMORY_DEPENDENCE_H
#include "llvm/Pass.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Compiler.h"
#include <map>
namespace llvm {
class Function;
class FunctionPass;
class Instruction;
class VISIBILITY_HIDDEN MemoryDependenceAnalysis : public FunctionPass {
private:
DenseMap<Instruction*, std::pair<Instruction*, bool> > depGraphLocal;
std::multimap<Instruction*, Instruction*> reverseDep;
public:
static Instruction* NonLocal;
static Instruction* None;
static char ID; // Class identification, replacement for typeinfo
MemoryDependenceAnalysis() : FunctionPass((intptr_t)&ID) {}
/// Pass Implementation stuff. This doesn't do any analysis.
///
bool runOnFunction(Function &) {
depGraphLocal.clear();
reverseDep.clear();
return false;
}
/// getAnalysisUsage - Does not modify anything. It uses Value Numbering
/// and Alias Analysis.
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
/// getDependency - Return the instruction on which a memory operation
/// depends.
Instruction* getDependency(Instruction* query, bool local = true);
/// removeInstruction - Remove an instruction from the dependence analysis,
/// updating the dependence of instructions that previously depended on it.
void removeInstruction(Instruction* rem);
};
} // End llvm namespace
#endif

View File

@ -0,0 +1,171 @@
//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the Owen Anderson and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an analysis that determines, for a given memory
// operation, what preceding memory operations it depends on. It builds on
// alias analysis information, and tries to provide a lazy, caching interface to
// a common kind of alias information query.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetData.h"
using namespace llvm;
char MemoryDependenceAnalysis::ID = 0;
Instruction* MemoryDependenceAnalysis::NonLocal = (Instruction*)0;
Instruction* MemoryDependenceAnalysis::None = (Instruction*)~0;
// Register this pass...
RegisterPass<MemoryDependenceAnalysis> X("memdep",
"Memory Dependence Analysis");
/// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
///
void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<AliasAnalysis>();
AU.addRequiredTransitive<TargetData>();
}
/// getDependency - Return the instruction on which a memory operation
/// depends. NOTE: A return value of NULL indicates that no dependency
/// was found in the parent block.
Instruction* MemoryDependenceAnalysis::getDependency(Instruction* query,
bool local) {
if (!local)
assert(0 && "Non-local memory dependence is not yet supported.");
// Start looking for dependencies with the queried inst
BasicBlock::iterator QI = query;
// Check for a cached result
std::pair<Instruction*, bool> cachedResult = depGraphLocal[query];
// If we have a _confirmed_ cached entry, return it
if (cachedResult.second)
return cachedResult.first;
else if (cachedResult.first != NonLocal)
// If we have an unconfirmed cached entry, we can start our search from there
QI = cachedResult.first;
AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
BasicBlock::iterator blockBegin = query->getParent()->begin();
// Get the pointer value for which dependence will be determined
Value* dependee = 0;
if (StoreInst* S = dyn_cast<StoreInst>(QI))
dependee = S->getPointerOperand();
else if (LoadInst* L = dyn_cast<LoadInst>(QI))
dependee = L->getPointerOperand();
else if (FreeInst* F = dyn_cast<FreeInst>(QI))
dependee = F->getPointerOperand();
else if (isa<AllocationInst>(query)) {
// Allocations don't depend on anything
depGraphLocal.insert(std::make_pair(query, std::make_pair(None,
true)));
reverseDep.insert(std::make_pair(None, query));
return None;
} else {
// Non-memory operations depend on their immediate predecessor
--QI;
depGraphLocal.insert(std::make_pair(query, std::make_pair(QI, true)));
reverseDep.insert(std::make_pair(QI, query));
return QI;
}
// Start with the predecessor of the queried inst
--QI;
TargetData& TD = getAnalysis<TargetData>();
while (QI != blockBegin) {
// If this inst is a memory op, get the pointer it accessed
Value* pointer = 0;
if (StoreInst* S = dyn_cast<StoreInst>(QI))
pointer = S->getPointerOperand();
else if (LoadInst* L = dyn_cast<LoadInst>(QI))
pointer = L->getPointerOperand();
else if (isa<AllocationInst>(QI))
pointer = QI;
else if (FreeInst* F = dyn_cast<FreeInst>(QI))
pointer = F->getPointerOperand();
else if (CallInst* C = dyn_cast<CallInst>(QI)) {
// Call insts need special handling. Check is they can modify our pointer
if (AA.getModRefInfo(C, dependee, TD.getTypeSize(dependee->getType())) !=
AliasAnalysis::NoModRef) {
depGraphLocal.insert(std::make_pair(query, std::make_pair(C, true)));
reverseDep.insert(std::make_pair(C, query));
return C;
} else {
continue;
}
}
// If we found a pointer, check if it could be the same as our pointer
if (pointer) {
AliasAnalysis::AliasResult R = AA.alias(
pointer, TD.getTypeSize(pointer->getType()),
dependee, TD.getTypeSize(dependee->getType()));
if (R != AliasAnalysis::NoAlias) {
depGraphLocal.insert(std::make_pair(query, std::make_pair(QI, true)));
reverseDep.insert(std::make_pair(QI, query));
return QI;
}
}
QI--;
}
// If we found nothing, return the non-local flag
depGraphLocal.insert(std::make_pair(query,
std::make_pair(NonLocal, true)));
reverseDep.insert(std::make_pair(NonLocal, query));
return NonLocal;
}
/// removeInstruction - Remove an instruction from the dependence analysis,
/// updating the dependence of instructions that previously depended on it.
void MemoryDependenceAnalysis::removeInstruction(Instruction* rem) {
// Figure out the new dep for things that currently depend on rem
Instruction* newDep = NonLocal;
if (depGraphLocal[rem].first != NonLocal) {
// If we have dep info for rem, set them to it
BasicBlock::iterator RI = depGraphLocal[rem].first;
RI++;
newDep = RI;
} else if (depGraphLocal[rem].first == NonLocal &&
depGraphLocal[rem].second ) {
// If we have a confirmed non-local flag, use it
newDep = NonLocal;
} else {
// Otherwise, use the immediate successor of rem
// NOTE: This is because, when getDependence is called, it will first check
// the immediate predecessor of what is in the cache.
BasicBlock::iterator RI = rem;
RI++;
newDep = RI;
}
std::multimap<Instruction*, Instruction*>::iterator I = reverseDep.find(rem);
while (I->first == rem) {
// Insert the new dependencies
// Mark it as unconfirmed as long as it is not the non-local flag
depGraphLocal[I->second] = std::make_pair(newDep, !newDep);
reverseDep.erase(I);
I = reverseDep.find(rem);
}
}