[InstCombine] Expand the simplification of pow(x, 0.5) to sqrt(x)

Expand the number of cases when `pow(x, 0.5)` is simplified into `sqrt(x)`
by considering the math semantics with more granularity.

Differential revision: https://reviews.llvm.org/D50036

llvm-svn: 339887
This commit is contained in:
Evandro Menezes 2018-08-16 15:58:08 +00:00
parent 0a1e2f9f7e
commit c05c7e11bb
3 changed files with 102 additions and 97 deletions

View File

@ -1181,12 +1181,9 @@ static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
/// Use square root in place of pow(x, +/-0.5). /// Use square root in place of pow(x, +/-0.5).
Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
// TODO: There is some subset of 'fast' under which these transforms should
// be allowed.
if (!Pow->isFast())
return nullptr;
Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
Module *Mod = Pow->getModule();
Type *Ty = Pow->getType(); Type *Ty = Pow->getType();
const APFloat *ExpoF; const APFloat *ExpoF;
@ -1198,18 +1195,32 @@ Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
if (Pow->hasFnAttr(Attribute::ReadNone)) { if (Pow->hasFnAttr(Attribute::ReadNone)) {
Function *SqrtFn = Intrinsic::getDeclaration(Pow->getModule(), Function *SqrtFn = Intrinsic::getDeclaration(Pow->getModule(),
Intrinsic::sqrt, Ty); Intrinsic::sqrt, Ty);
Sqrt = B.CreateCall(SqrtFn, Base); Sqrt = B.CreateCall(SqrtFn, Base, "sqrt");
} }
// Otherwise, use the libcall for sqrt(). // Otherwise, use the libcall for sqrt().
else if (hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) else if (hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
// TODO: We also should check that the target can in fact lower the sqrt() // TODO: We also should check that the target can in fact lower the sqrt()
// libcall. We currently have no way to ask this question, so we ask if // libcall. We currently have no way to ask this question, so we ask if
// the target has a sqrt() libcall, which is not exactly the same. // the target has a sqrt() libcall, which is not exactly the same.
Sqrt = emitUnaryFloatFnCall(Base, TLI->getName(LibFunc_sqrt), B, Sqrt = emitUnaryFloatFnCall(Base, TLI->getName(LibFunc_sqrt), B, Attrs);
Pow->getCalledFunction()->getAttributes());
else else
return nullptr; return nullptr;
// Handle signed zero base by expanding to fabs(sqrt(x)).
if (!Pow->hasNoSignedZeros()) {
Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
}
// Handle non finite base by expanding to
// (x == -infinity ? +infinity : sqrt(x)).
if (!Pow->hasNoInfs()) {
Value *PosInf = ConstantFP::getInfinity(Ty),
*NegInf = ConstantFP::getInfinity(Ty, true);
Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
}
// If the exponent is negative, then get the reciprocal. // If the exponent is negative, then get the reciprocal.
if (ExpoF->isNegative()) if (ExpoF->isNegative())
Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
@ -1265,7 +1276,7 @@ Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
// We enable these only with fast-math. Besides rounding differences, the // We enable these only with fast-math. Besides rounding differences, the
// transformation changes overflow and underflow behavior quite dramatically. // transformation changes overflow and underflow behavior quite dramatically.
// Example: x = 1000, y = 0.001. // Example: x = 1000, y = 0.001.
// pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x * y) = exp(1).
auto *BaseFn = dyn_cast<CallInst>(Base); auto *BaseFn = dyn_cast<CallInst>(Base);
if (BaseFn && BaseFn->isFast() && Pow->isFast()) { if (BaseFn && BaseFn->isFast() && Pow->isFast()) {
LibFunc LibFn; LibFunc LibFn;
@ -1299,28 +1310,6 @@ Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
if (Value *Sqrt = replacePowWithSqrt(Pow, B)) if (Value *Sqrt = replacePowWithSqrt(Pow, B))
return Sqrt; return Sqrt;
// FIXME: Correct the transforms and pull this into replacePowWithSqrt().
ConstantFP *ExpoC = dyn_cast<ConstantFP>(Expo);
if (ExpoC && ExpoC->isExactlyValue(0.5) &&
hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) {
// Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
// This is faster than calling pow(), and still handles -0.0 and
// negative infinity correctly.
// TODO: In finite-only mode, this could be just fabs(sqrt(x)).
Value *PosInf = ConstantFP::getInfinity(Ty);
Value *NegInf = ConstantFP::getInfinity(Ty, true);
// TODO: As above, we should lower to the sqrt() intrinsic if the pow() is
// an intrinsic, to match errno semantics.
Value *Sqrt = emitUnaryFloatFnCall(Base, TLI->getName(LibFunc_sqrt),
B, Attrs);
Function *FAbsFn = Intrinsic::getDeclaration(Module, Intrinsic::fabs, Ty);
Value *FAbs = B.CreateCall(FAbsFn, Sqrt, "abs");
Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
Sqrt = B.CreateSelect(FCmp, PosInf, FAbs);
return Sqrt;
}
// pow(x, n) -> x * x * x * ... // pow(x, n) -> x * x * x * ...
const APFloat *ExpoF; const APFloat *ExpoF;
if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) { if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) {

View File

@ -293,7 +293,7 @@ define <2 x double> @pow_neg1_double_fastv(<2 x double> %x) {
declare double @llvm.pow.f64(double %Val, double %Power) declare double @llvm.pow.f64(double %Val, double %Power)
define double @test_simplify17(double %x) { define double @test_simplify17(double %x) {
; ANY-LABEL: @test_simplify17( ; ANY-LABEL: @test_simplify17(
; ANY-NEXT: [[SQRT:%.*]] = call double @sqrt(double [[X:%.*]]) #2 ; ANY-NEXT: [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[X:%.*]])
; ANY-NEXT: [[ABS:%.*]] = call double @llvm.fabs.f64(double [[SQRT]]) ; ANY-NEXT: [[ABS:%.*]] = call double @llvm.fabs.f64(double [[SQRT]])
; ANY-NEXT: [[ISINF:%.*]] = fcmp oeq double [[X]], 0xFFF0000000000000 ; ANY-NEXT: [[ISINF:%.*]] = fcmp oeq double [[X]], 0xFFF0000000000000
; ANY-NEXT: [[TMP1:%.*]] = select i1 [[ISINF]], double 0x7FF0000000000000, double [[ABS]] ; ANY-NEXT: [[TMP1:%.*]] = select i1 [[ISINF]], double 0x7FF0000000000000, double [[ABS]]

View File

@ -19,7 +19,7 @@ define double @pow_libcall_half_no_FMF(double %x) {
define double @pow_intrinsic_half_no_FMF(double %x) { define double @pow_intrinsic_half_no_FMF(double %x) {
; CHECK-LABEL: @pow_intrinsic_half_no_FMF( ; CHECK-LABEL: @pow_intrinsic_half_no_FMF(
; CHECK-NEXT: [[SQRT:%.*]] = call double @sqrt(double [[X:%.*]]) #1 ; CHECK-NEXT: [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT: [[ABS:%.*]] = call double @llvm.fabs.f64(double [[SQRT]]) ; CHECK-NEXT: [[ABS:%.*]] = call double @llvm.fabs.f64(double [[SQRT]])
; CHECK-NEXT: [[ISINF:%.*]] = fcmp oeq double [[X]], 0xFFF0000000000000 ; CHECK-NEXT: [[ISINF:%.*]] = fcmp oeq double [[X]], 0xFFF0000000000000
; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[ISINF]], double 0x7FF0000000000000, double [[ABS]] ; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[ISINF]], double 0x7FF0000000000000, double [[ABS]]
@ -43,96 +43,88 @@ define double @pow_libcall_half_approx(double %x) {
ret double %pow ret double %pow
} }
; FIXME
define <2 x double> @pow_intrinsic_half_approx(<2 x double> %x) { define <2 x double> @pow_intrinsic_half_approx(<2 x double> %x) {
; CHECK-LABEL: @pow_intrinsic_half_approx( ; CHECK-LABEL: @pow_intrinsic_half_approx(
; CHECK-NEXT: [[POW:%.*]] = call afn <2 x double> @llvm.pow.v2f64(<2 x double> [[X:%.*]], <2 x double> <double 5.000000e-01, double 5.000000e-01>) ; CHECK-NEXT: [[SQRT:%.*]] = call afn <2 x double> @llvm.sqrt.v2f64(<2 x double> [[X:%.*]])
; CHECK-NEXT: ret <2 x double> [[POW]] ; CHECK-NEXT: [[ABS:%.*]] = call afn <2 x double> @llvm.fabs.v2f64(<2 x double> [[SQRT]])
; CHECK-NEXT: [[ISINF:%.*]] = fcmp afn oeq <2 x double> [[X]], <double 0xFFF0000000000000, double 0xFFF0000000000000>
; CHECK-NEXT: [[TMP1:%.*]] = select <2 x i1> [[ISINF]], <2 x double> <double 0x7FF0000000000000, double 0x7FF0000000000000>, <2 x double> [[ABS]]
; CHECK-NEXT: ret <2 x double> [[TMP1]]
; ;
%pow = call afn <2 x double> @llvm.pow.v2f64(<2 x double> %x, <2 x double> <double 5.0e-01, double 5.0e-01>) %pow = call afn <2 x double> @llvm.pow.v2f64(<2 x double> %x, <2 x double> <double 5.0e-01, double 5.0e-01>)
ret <2 x double> %pow ret <2 x double> %pow
} }
; FIXME: define float @powf_intrinsic_half_fast(float %x) {
; CHECK-LABEL: @powf_intrinsic_half_fast(
; CHECK-NEXT: [[SQRT:%.*]] = call fast float @llvm.sqrt.f32(float [[X:%.*]])
; CHECK-NEXT: ret float [[SQRT]]
;
%pow = call fast float @llvm.pow.f32(float %x, float 5.0e-01)
ret float %pow
}
; If we can disregard INFs, no need for a select. ; If we can disregard INFs, no need for a select.
define double @pow_libcall_half_ninf(double %x) { define double @pow_libcall_half_ninf(double %x) {
; CHECK-LABEL: @pow_libcall_half_ninf( ; CHECK-LABEL: @pow_libcall_half_ninf(
; CHECK-NEXT: [[SQRT:%.*]] = call ninf double @sqrt(double [[X:%.*]]) ; CHECK-NEXT: [[SQRT:%.*]] = call ninf double @sqrt(double [[X:%.*]])
; CHECK-NEXT: [[ABS:%.*]] = call ninf double @llvm.fabs.f64(double [[SQRT]]) ; CHECK-NEXT: [[ABS:%.*]] = call ninf double @llvm.fabs.f64(double [[SQRT]])
; CHECK-NEXT: [[ISINF:%.*]] = fcmp ninf oeq double [[X]], 0xFFF0000000000000 ; CHECK-NEXT: ret double [[ABS]]
; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[ISINF]], double 0x7FF0000000000000, double [[ABS]]
; CHECK-NEXT: ret double [[TMP1]]
; ;
%pow = call ninf double @pow(double %x, double 5.0e-01) %pow = call ninf double @pow(double %x, double 5.0e-01)
ret double %pow ret double %pow
} }
; FIXME:
define <2 x double> @pow_intrinsic_half_ninf(<2 x double> %x) { define <2 x double> @pow_intrinsic_half_ninf(<2 x double> %x) {
; CHECK-LABEL: @pow_intrinsic_half_ninf( ; CHECK-LABEL: @pow_intrinsic_half_ninf(
; CHECK-NEXT: [[POW:%.*]] = call ninf <2 x double> @llvm.pow.v2f64(<2 x double> [[X:%.*]], <2 x double> <double 5.000000e-01, double 5.000000e-01>) ; CHECK-NEXT: [[SQRT:%.*]] = call ninf <2 x double> @llvm.sqrt.v2f64(<2 x double> [[X:%.*]])
; CHECK-NEXT: ret <2 x double> [[POW]] ; CHECK-NEXT: [[ABS:%.*]] = call ninf <2 x double> @llvm.fabs.v2f64(<2 x double> [[SQRT]])
; CHECK-NEXT: ret <2 x double> [[ABS]]
; ;
%pow = call ninf <2 x double> @llvm.pow.v2f64(<2 x double> %x, <2 x double> <double 5.0e-01, double 5.0e-01>) %pow = call ninf <2 x double> @llvm.pow.v2f64(<2 x double> %x, <2 x double> <double 5.0e-01, double 5.0e-01>)
ret <2 x double> %pow ret <2 x double> %pow
} }
; FIXME:
; If we can disregard -0.0, no need for fabs. ; If we can disregard -0.0, no need for fabs.
define double @pow_libcall_half_nsz(double %x) { define double @pow_libcall_half_nsz(double %x) {
; CHECK-LABEL: @pow_libcall_half_nsz( ; CHECK-LABEL: @pow_libcall_half_nsz(
; CHECK-NEXT: [[SQRT:%.*]] = call nsz double @sqrt(double [[X:%.*]]) ; CHECK-NEXT: [[SQRT:%.*]] = call nsz double @sqrt(double [[X:%.*]])
; CHECK-NEXT: [[ABS:%.*]] = call nsz double @llvm.fabs.f64(double [[SQRT]])
; CHECK-NEXT: [[ISINF:%.*]] = fcmp nsz oeq double [[X]], 0xFFF0000000000000 ; CHECK-NEXT: [[ISINF:%.*]] = fcmp nsz oeq double [[X]], 0xFFF0000000000000
; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[ISINF]], double 0x7FF0000000000000, double [[ABS]] ; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[ISINF]], double 0x7FF0000000000000, double [[SQRT]]
; CHECK-NEXT: ret double [[TMP1]] ; CHECK-NEXT: ret double [[TMP1]]
; ;
%pow = call nsz double @pow(double %x, double 5.0e-01) %pow = call nsz double @pow(double %x, double 5.0e-01)
ret double %pow ret double %pow
} }
; FIXME:
define double @pow_intrinsic_half_nsz(double %x) { define double @pow_intrinsic_half_nsz(double %x) {
; CHECK-LABEL: @pow_intrinsic_half_nsz( ; CHECK-LABEL: @pow_intrinsic_half_nsz(
; CHECK-NEXT: [[SQRT:%.*]] = call nsz double @sqrt(double [[X:%.*]]) #1 ; CHECK-NEXT: [[SQRT:%.*]] = call nsz double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT: [[ABS:%.*]] = call nsz double @llvm.fabs.f64(double [[SQRT]])
; CHECK-NEXT: [[ISINF:%.*]] = fcmp nsz oeq double [[X]], 0xFFF0000000000000 ; CHECK-NEXT: [[ISINF:%.*]] = fcmp nsz oeq double [[X]], 0xFFF0000000000000
; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[ISINF]], double 0x7FF0000000000000, double [[ABS]] ; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[ISINF]], double 0x7FF0000000000000, double [[SQRT]]
; CHECK-NEXT: ret double [[TMP1]] ; CHECK-NEXT: ret double [[TMP1]]
; ;
%pow = call nsz double @llvm.pow.f64(double %x, double 5.0e-01) %pow = call nsz double @llvm.pow.f64(double %x, double 5.0e-01)
ret double %pow ret double %pow
} }
; FIXME:
; This is just sqrt. ; This is just sqrt.
define float @pow_libcall_half_ninf_nsz(float %x) { define float @pow_libcall_half_ninf_nsz(float %x) {
; CHECK-LABEL: @pow_libcall_half_ninf_nsz( ; CHECK-LABEL: @pow_libcall_half_ninf_nsz(
; CHECK-NEXT: [[SQRTF:%.*]] = call ninf nsz float @sqrtf(float [[X:%.*]]) ; CHECK-NEXT: [[SQRTF:%.*]] = call ninf nsz float @sqrtf(float [[X:%.*]])
; CHECK-NEXT: [[ABS:%.*]] = call ninf nsz float @llvm.fabs.f32(float [[SQRTF]]) ; CHECK-NEXT: ret float [[SQRTF]]
; CHECK-NEXT: [[ISINF:%.*]] = fcmp ninf nsz oeq float [[X]], 0xFFF0000000000000
; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[ISINF]], float 0x7FF0000000000000, float [[ABS]]
; CHECK-NEXT: ret float [[TMP1]]
; ;
%pow = call ninf nsz float @powf(float %x, float 5.0e-01) %pow = call ninf nsz float @powf(float %x, float 5.0e-01)
ret float %pow ret float %pow
} }
; FIXME:
define double @pow_intrinsic_half_ninf_nsz(double %x) { define double @pow_intrinsic_half_ninf_nsz(double %x) {
; CHECK-LABEL: @pow_intrinsic_half_ninf_nsz( ; CHECK-LABEL: @pow_intrinsic_half_ninf_nsz(
; CHECK-NEXT: [[SQRT:%.*]] = call ninf nsz double @sqrt(double [[X:%.*]]) #1 ; CHECK-NEXT: [[SQRT:%.*]] = call ninf nsz double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT: [[ABS:%.*]] = call ninf nsz double @llvm.fabs.f64(double [[SQRT]]) ; CHECK-NEXT: ret double [[SQRT]]
; CHECK-NEXT: [[ISINF:%.*]] = fcmp ninf nsz oeq double [[X]], 0xFFF0000000000000
; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[ISINF]], double 0x7FF0000000000000, double [[ABS]]
; CHECK-NEXT: ret double [[TMP1]]
; ;
%pow = call ninf nsz double @llvm.pow.f64(double %x, double 5.0e-01) %pow = call ninf nsz double @llvm.pow.f64(double %x, double 5.0e-01)
ret double %pow ret double %pow
@ -151,100 +143,108 @@ define float @pow_libcall_half_fast(float %x) {
define double @pow_intrinsic_half_fast(double %x) { define double @pow_intrinsic_half_fast(double %x) {
; CHECK-LABEL: @pow_intrinsic_half_fast( ; CHECK-LABEL: @pow_intrinsic_half_fast(
; CHECK-NEXT: [[TMP1:%.*]] = call fast double @llvm.sqrt.f64(double [[X:%.*]]) ; CHECK-NEXT: [[SQRT:%.*]] = call fast double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT: ret double [[TMP1]] ; CHECK-NEXT: ret double [[SQRT]]
; ;
%pow = call fast double @llvm.pow.f64(double %x, double 5.0e-01) %pow = call fast double @llvm.pow.f64(double %x, double 5.0e-01)
ret double %pow ret double %pow
} }
; FIXME:
; -0.5 means take the reciprocal. ; -0.5 means take the reciprocal.
define float @pow_libcall_neghalf_no_FMF(float %x) { define float @pow_libcall_neghalf_no_FMF(float %x) {
; CHECK-LABEL: @pow_libcall_neghalf_no_FMF( ; CHECK-LABEL: @pow_libcall_neghalf_no_FMF(
; CHECK-NEXT: [[POW:%.*]] = call float @powf(float [[X:%.*]], float -5.000000e-01) ; CHECK-NEXT: [[SQRTF:%.*]] = call float @sqrtf(float [[X:%.*]])
; CHECK-NEXT: ret float [[POW]] ; CHECK-NEXT: [[ABS:%.*]] = call float @llvm.fabs.f32(float [[SQRTF]])
; CHECK-NEXT: [[ISINF:%.*]] = fcmp oeq float [[X]], 0xFFF0000000000000
; CHECK-NEXT: [[ABS_OP:%.*]] = fdiv float 1.000000e+00, [[ABS]]
; CHECK-NEXT: [[RECIPROCAL:%.*]] = select i1 [[ISINF]], float 0.000000e+00, float [[ABS_OP]]
; CHECK-NEXT: ret float [[RECIPROCAL]]
; ;
%pow = call float @powf(float %x, float -5.0e-01) %pow = call float @powf(float %x, float -5.0e-01)
ret float %pow ret float %pow
} }
; FIXME:
define <2 x double> @pow_intrinsic_neghalf_no_FMF(<2 x double> %x) { define <2 x double> @pow_intrinsic_neghalf_no_FMF(<2 x double> %x) {
; CHECK-LABEL: @pow_intrinsic_neghalf_no_FMF( ; CHECK-LABEL: @pow_intrinsic_neghalf_no_FMF(
; CHECK-NEXT: [[POW:%.*]] = call <2 x double> @llvm.pow.v2f64(<2 x double> [[X:%.*]], <2 x double> <double -5.000000e-01, double -5.000000e-01>) ; CHECK-NEXT: [[SQRT:%.*]] = call <2 x double> @llvm.sqrt.v2f64(<2 x double> [[X:%.*]])
; CHECK-NEXT: ret <2 x double> [[POW]] ; CHECK-NEXT: [[ABS:%.*]] = call <2 x double> @llvm.fabs.v2f64(<2 x double> [[SQRT]])
; CHECK-NEXT: [[ISINF:%.*]] = fcmp oeq <2 x double> [[X]], <double 0xFFF0000000000000, double 0xFFF0000000000000>
; CHECK-NEXT: [[ABS_OP:%.*]] = fdiv <2 x double> <double 1.000000e+00, double 1.000000e+00>, [[ABS]]
; CHECK-NEXT: [[RECIPROCAL:%.*]] = select <2 x i1> [[ISINF]], <2 x double> zeroinitializer, <2 x double> [[ABS_OP]]
; CHECK-NEXT: ret <2 x double> [[RECIPROCAL]]
; ;
%pow = call <2 x double> @llvm.pow.v2f64(<2 x double> %x, <2 x double> <double -5.0e-01, double -5.0e-01>) %pow = call <2 x double> @llvm.pow.v2f64(<2 x double> %x, <2 x double> <double -5.0e-01, double -5.0e-01>)
ret <2 x double> %pow ret <2 x double> %pow
} }
; FIXME:
; If we can disregard INFs, no need for a select. ; If we can disregard INFs, no need for a select.
define double @pow_libcall_neghalf_ninf(double %x) { define double @pow_libcall_neghalf_ninf(double %x) {
; CHECK-LABEL: @pow_libcall_neghalf_ninf( ; CHECK-LABEL: @pow_libcall_neghalf_ninf(
; CHECK-NEXT: [[POW:%.*]] = call ninf double @pow(double [[X:%.*]], double -5.000000e-01) ; CHECK-NEXT: [[SQRT:%.*]] = call ninf double @sqrt(double [[X:%.*]])
; CHECK-NEXT: ret double [[POW]] ; CHECK-NEXT: [[ABS:%.*]] = call ninf double @llvm.fabs.f64(double [[SQRT]])
; CHECK-NEXT: [[RECIPROCAL:%.*]] = fdiv ninf double 1.000000e+00, [[ABS]]
; CHECK-NEXT: ret double [[RECIPROCAL]]
; ;
%pow = call ninf double @pow(double %x, double -5.0e-01) %pow = call ninf double @pow(double %x, double -5.0e-01)
ret double %pow ret double %pow
} }
; FIXME:
define <2 x double> @pow_intrinsic_neghalf_ninf(<2 x double> %x) { define <2 x double> @pow_intrinsic_neghalf_ninf(<2 x double> %x) {
; CHECK-LABEL: @pow_intrinsic_neghalf_ninf( ; CHECK-LABEL: @pow_intrinsic_neghalf_ninf(
; CHECK-NEXT: [[POW:%.*]] = call ninf <2 x double> @llvm.pow.v2f64(<2 x double> [[X:%.*]], <2 x double> <double -5.000000e-01, double -5.000000e-01>) ; CHECK-NEXT: [[SQRT:%.*]] = call ninf <2 x double> @llvm.sqrt.v2f64(<2 x double> [[X:%.*]])
; CHECK-NEXT: ret <2 x double> [[POW]] ; CHECK-NEXT: [[ABS:%.*]] = call ninf <2 x double> @llvm.fabs.v2f64(<2 x double> [[SQRT]])
; CHECK-NEXT: [[RECIPROCAL:%.*]] = fdiv ninf <2 x double> <double 1.000000e+00, double 1.000000e+00>, [[ABS]]
; CHECK-NEXT: ret <2 x double> [[RECIPROCAL]]
; ;
%pow = call ninf <2 x double> @llvm.pow.v2f64(<2 x double> %x, <2 x double> <double -5.0e-01, double -5.0e-01>) %pow = call ninf <2 x double> @llvm.pow.v2f64(<2 x double> %x, <2 x double> <double -5.0e-01, double -5.0e-01>)
ret <2 x double> %pow ret <2 x double> %pow
} }
; FIXME:
; If we can disregard -0.0, no need for fabs. ; If we can disregard -0.0, no need for fabs.
define double @pow_libcall_neghalf_nsz(double %x) { define double @pow_libcall_neghalf_nsz(double %x) {
; CHECK-LABEL: @pow_libcall_neghalf_nsz( ; CHECK-LABEL: @pow_libcall_neghalf_nsz(
; CHECK-NEXT: [[POW:%.*]] = call nsz double @pow(double [[X:%.*]], double -5.000000e-01) ; CHECK-NEXT: [[SQRT:%.*]] = call nsz double @sqrt(double [[X:%.*]])
; CHECK-NEXT: ret double [[POW]] ; CHECK-NEXT: [[ISINF:%.*]] = fcmp nsz oeq double [[X]], 0xFFF0000000000000
; CHECK-NEXT: [[SQRT_OP:%.*]] = fdiv nsz double 1.000000e+00, [[SQRT]]
; CHECK-NEXT: [[RECIPROCAL:%.*]] = select i1 [[ISINF]], double 0.000000e+00, double [[SQRT_OP]]
; CHECK-NEXT: ret double [[RECIPROCAL]]
; ;
%pow = call nsz double @pow(double %x, double -5.0e-01) %pow = call nsz double @pow(double %x, double -5.0e-01)
ret double %pow ret double %pow
} }
; FIXME:
define double @pow_intrinsic_neghalf_nsz(double %x) { define double @pow_intrinsic_neghalf_nsz(double %x) {
; CHECK-LABEL: @pow_intrinsic_neghalf_nsz( ; CHECK-LABEL: @pow_intrinsic_neghalf_nsz(
; CHECK-NEXT: [[POW:%.*]] = call nsz double @llvm.pow.f64(double [[X:%.*]], double -5.000000e-01) ; CHECK-NEXT: [[SQRT:%.*]] = call nsz double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT: ret double [[POW]] ; CHECK-NEXT: [[ISINF:%.*]] = fcmp nsz oeq double [[X]], 0xFFF0000000000000
; CHECK-NEXT: [[SQRT_OP:%.*]] = fdiv nsz double 1.000000e+00, [[SQRT]]
; CHECK-NEXT: [[RECIPROCAL:%.*]] = select i1 [[ISINF]], double 0.000000e+00, double [[SQRT_OP]]
; CHECK-NEXT: ret double [[RECIPROCAL]]
; ;
%pow = call nsz double @llvm.pow.f64(double %x, double -5.0e-01) %pow = call nsz double @llvm.pow.f64(double %x, double -5.0e-01)
ret double %pow ret double %pow
} }
; FIXME:
; This is just recip-sqrt. ; This is just recip-sqrt.
define double @pow_intrinsic_neghalf_ninf_nsz(double %x) { define double @pow_intrinsic_neghalf_ninf_nsz(double %x) {
; CHECK-LABEL: @pow_intrinsic_neghalf_ninf_nsz( ; CHECK-LABEL: @pow_intrinsic_neghalf_ninf_nsz(
; CHECK-NEXT: [[POW:%.*]] = call ninf nsz double @llvm.pow.f64(double [[X:%.*]], double -5.000000e-01) ; CHECK-NEXT: [[SQRT:%.*]] = call ninf nsz double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT: ret double [[POW]] ; CHECK-NEXT: [[RECIPROCAL:%.*]] = fdiv ninf nsz double 1.000000e+00, [[SQRT]]
; CHECK-NEXT: ret double [[RECIPROCAL]]
; ;
%pow = call ninf nsz double @llvm.pow.f64(double %x, double -5.0e-01) %pow = call ninf nsz double @llvm.pow.f64(double %x, double -5.0e-01)
ret double %pow ret double %pow
} }
; FIXME:
define float @pow_libcall_neghalf_ninf_nsz(float %x) { define float @pow_libcall_neghalf_ninf_nsz(float %x) {
; CHECK-LABEL: @pow_libcall_neghalf_ninf_nsz( ; CHECK-LABEL: @pow_libcall_neghalf_ninf_nsz(
; CHECK-NEXT: [[POW:%.*]] = call ninf nsz float @powf(float [[X:%.*]], float -5.000000e-01) ; CHECK-NEXT: [[SQRTF:%.*]] = call ninf nsz float @sqrtf(float [[X:%.*]])
; CHECK-NEXT: ret float [[POW]] ; CHECK-NEXT: [[RECIPROCAL:%.*]] = fdiv ninf nsz float 1.000000e+00, [[SQRTF]]
; CHECK-NEXT: ret float [[RECIPROCAL]]
; ;
%pow = call ninf nsz float @powf(float %x, float -5.0e-01) %pow = call ninf nsz float @powf(float %x, float -5.0e-01)
ret float %pow ret float %pow
@ -262,10 +262,23 @@ define float @pow_libcall_neghalf_fast(float %x) {
ret float %pow ret float %pow
} }
define float @powf_libcall_neghalf_approx(float %x) {
; CHECK-LABEL: @powf_libcall_neghalf_approx(
; CHECK-NEXT: [[SQRTF:%.*]] = call afn float @sqrtf(float [[X:%.*]])
; CHECK-NEXT: [[ABS:%.*]] = call afn float @llvm.fabs.f32(float [[SQRTF]])
; CHECK-NEXT: [[ISINF:%.*]] = fcmp afn oeq float [[X]], 0xFFF0000000000000
; CHECK-NEXT: [[ABS_OP:%.*]] = fdiv afn float 1.000000e+00, [[ABS]]
; CHECK-NEXT: [[RECIPROCAL:%.*]] = select i1 [[ISINF]], float 0.000000e+00, float [[ABS_OP]]
; CHECK-NEXT: ret float [[RECIPROCAL]]
;
%pow = call afn float @powf(float %x, float -5.0e-01)
ret float %pow
}
define double @pow_intrinsic_neghalf_fast(double %x) { define double @pow_intrinsic_neghalf_fast(double %x) {
; CHECK-LABEL: @pow_intrinsic_neghalf_fast( ; CHECK-LABEL: @pow_intrinsic_neghalf_fast(
; CHECK-NEXT: [[TMP1:%.*]] = call fast double @llvm.sqrt.f64(double [[X:%.*]]) ; CHECK-NEXT: [[SQRT:%.*]] = call fast double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT: [[RECIPROCAL:%.*]] = fdiv fast double 1.000000e+00, [[TMP1]] ; CHECK-NEXT: [[RECIPROCAL:%.*]] = fdiv fast double 1.000000e+00, [[SQRT]]
; CHECK-NEXT: ret double [[RECIPROCAL]] ; CHECK-NEXT: ret double [[RECIPROCAL]]
; ;
%pow = call fast double @llvm.pow.f64(double %x, double -5.0e-01) %pow = call fast double @llvm.pow.f64(double %x, double -5.0e-01)
@ -273,7 +286,10 @@ define double @pow_intrinsic_neghalf_fast(double %x) {
} }
declare double @llvm.pow.f64(double, double) #0 declare double @llvm.pow.f64(double, double) #0
declare float @llvm.pow.f32(float, float) #0
declare <2 x double> @llvm.pow.v2f64(<2 x double>, <2 x double>) #0 declare <2 x double> @llvm.pow.v2f64(<2 x double>, <2 x double>) #0
declare <2 x float> @llvm.pow.v2f32(<2 x float>, <2 x float>) #0
declare <4 x float> @llvm.pow.v4f32(<4 x float>, <4 x float>) #0
declare double @pow(double, double) declare double @pow(double, double)
declare float @powf(float, float) declare float @powf(float, float)