forked from OSchip/llvm-project
Reapply "ADT: Shrink size of SmallVector by 8B on 64-bit platforms"
I'm optimistically reverting commit r337511, effectively reapplying r337504 *without* changes. The failing bots that had `SmallVector` in the backtrace recovered after the unrelated commit r337508. The backtraces looked bogus anyway, with `SmallVector::size()` calling (e.g.) `ConstantArray::get()`. Here's the original commit message: ADT: Shrink size of SmallVector by 8B on 64-bit platforms Represent size and capacity directly as unsigned and calculate `end()` using `begin() + size()`. This limits the maximum size/capacity of a vector to UINT32_MAX. https://reviews.llvm.org/D48518 llvm-svn: 337514
This commit is contained in:
parent
caefe42c66
commit
c03b04d533
|
@ -38,28 +38,36 @@ namespace llvm {
|
|||
/// This is all the non-templated stuff common to all SmallVectors.
|
||||
class SmallVectorBase {
|
||||
protected:
|
||||
void *BeginX, *EndX, *CapacityX;
|
||||
void *BeginX;
|
||||
unsigned Size = 0, Capacity;
|
||||
|
||||
protected:
|
||||
SmallVectorBase(void *FirstEl, size_t Size)
|
||||
: BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {}
|
||||
SmallVectorBase() = delete;
|
||||
SmallVectorBase(void *FirstEl, size_t Capacity)
|
||||
: BeginX(FirstEl), Capacity(Capacity) {}
|
||||
|
||||
/// This is an implementation of the grow() method which only works
|
||||
/// on POD-like data types and is out of line to reduce code duplication.
|
||||
void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize);
|
||||
void grow_pod(void *FirstEl, size_t MinCapacity, size_t TSize);
|
||||
|
||||
public:
|
||||
/// This returns size()*sizeof(T).
|
||||
size_t size_in_bytes() const {
|
||||
return size_t((char*)EndX - (char*)BeginX);
|
||||
}
|
||||
size_t size() const { return Size; }
|
||||
size_t capacity() const { return Capacity; }
|
||||
|
||||
/// capacity_in_bytes - This returns capacity()*sizeof(T).
|
||||
size_t capacity_in_bytes() const {
|
||||
return size_t((char*)CapacityX - (char*)BeginX);
|
||||
}
|
||||
LLVM_NODISCARD bool empty() const { return !Size; }
|
||||
|
||||
LLVM_NODISCARD bool empty() const { return BeginX == EndX; }
|
||||
/// Set the array size to \p N, which the current array must have enough
|
||||
/// capacity for.
|
||||
///
|
||||
/// This does not construct or destroy any elements in the vector.
|
||||
///
|
||||
/// Clients can use this in conjunction with capacity() to write past the end
|
||||
/// of the buffer when they know that more elements are available, and only
|
||||
/// update the size later. This avoids the cost of value initializing elements
|
||||
/// which will only be overwritten.
|
||||
void set_size(size_t Size) {
|
||||
assert(Size <= capacity());
|
||||
this->Size = Size;
|
||||
}
|
||||
};
|
||||
|
||||
/// This is the part of SmallVectorTemplateBase which does not depend on whether
|
||||
|
@ -80,8 +88,8 @@ private:
|
|||
protected:
|
||||
SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {}
|
||||
|
||||
void grow_pod(size_t MinSizeInBytes, size_t TSize) {
|
||||
SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize);
|
||||
void grow_pod(size_t MinCapacity, size_t TSize) {
|
||||
SmallVectorBase::grow_pod(&FirstEl, MinCapacity, TSize);
|
||||
}
|
||||
|
||||
/// Return true if this is a smallvector which has not had dynamic
|
||||
|
@ -92,11 +100,10 @@ protected:
|
|||
|
||||
/// Put this vector in a state of being small.
|
||||
void resetToSmall() {
|
||||
BeginX = EndX = CapacityX = &FirstEl;
|
||||
BeginX = &FirstEl;
|
||||
Size = Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
|
||||
}
|
||||
|
||||
void setEnd(T *P) { this->EndX = P; }
|
||||
|
||||
public:
|
||||
using size_type = size_t;
|
||||
using difference_type = ptrdiff_t;
|
||||
|
@ -118,27 +125,20 @@ public:
|
|||
LLVM_ATTRIBUTE_ALWAYS_INLINE
|
||||
const_iterator begin() const { return (const_iterator)this->BeginX; }
|
||||
LLVM_ATTRIBUTE_ALWAYS_INLINE
|
||||
iterator end() { return (iterator)this->EndX; }
|
||||
iterator end() { return begin() + size(); }
|
||||
LLVM_ATTRIBUTE_ALWAYS_INLINE
|
||||
const_iterator end() const { return (const_iterator)this->EndX; }
|
||||
const_iterator end() const { return begin() + size(); }
|
||||
|
||||
protected:
|
||||
iterator capacity_ptr() { return (iterator)this->CapacityX; }
|
||||
const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
|
||||
|
||||
public:
|
||||
// reverse iterator creation methods.
|
||||
reverse_iterator rbegin() { return reverse_iterator(end()); }
|
||||
const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
|
||||
reverse_iterator rend() { return reverse_iterator(begin()); }
|
||||
const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
|
||||
|
||||
LLVM_ATTRIBUTE_ALWAYS_INLINE
|
||||
size_type size() const { return end()-begin(); }
|
||||
size_type size_in_bytes() const { return size() * sizeof(T); }
|
||||
size_type max_size() const { return size_type(-1) / sizeof(T); }
|
||||
|
||||
/// Return the total number of elements in the currently allocated buffer.
|
||||
size_t capacity() const { return capacity_ptr() - begin(); }
|
||||
size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
|
||||
|
||||
/// Return a pointer to the vector's buffer, even if empty().
|
||||
pointer data() { return pointer(begin()); }
|
||||
|
@ -211,21 +211,21 @@ protected:
|
|||
|
||||
public:
|
||||
void push_back(const T &Elt) {
|
||||
if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
|
||||
if (LLVM_UNLIKELY(this->size() >= this->capacity()))
|
||||
this->grow();
|
||||
::new ((void*) this->end()) T(Elt);
|
||||
this->setEnd(this->end()+1);
|
||||
this->set_size(this->size() + 1);
|
||||
}
|
||||
|
||||
void push_back(T &&Elt) {
|
||||
if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
|
||||
if (LLVM_UNLIKELY(this->size() >= this->capacity()))
|
||||
this->grow();
|
||||
::new ((void*) this->end()) T(::std::move(Elt));
|
||||
this->setEnd(this->end()+1);
|
||||
this->set_size(this->size() + 1);
|
||||
}
|
||||
|
||||
void pop_back() {
|
||||
this->setEnd(this->end()-1);
|
||||
this->set_size(this->size() - 1);
|
||||
this->end()->~T();
|
||||
}
|
||||
};
|
||||
|
@ -233,12 +233,12 @@ public:
|
|||
// Define this out-of-line to dissuade the C++ compiler from inlining it.
|
||||
template <typename T, bool isPodLike>
|
||||
void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
|
||||
size_t CurCapacity = this->capacity();
|
||||
size_t CurSize = this->size();
|
||||
if (MinSize > UINT32_MAX)
|
||||
report_bad_alloc_error("SmallVector capacity overflow during allocation");
|
||||
|
||||
// Always grow, even from zero.
|
||||
size_t NewCapacity = size_t(NextPowerOf2(CurCapacity+2));
|
||||
if (NewCapacity < MinSize)
|
||||
NewCapacity = MinSize;
|
||||
size_t NewCapacity = size_t(NextPowerOf2(this->capacity() + 2));
|
||||
NewCapacity = std::min(std::max(NewCapacity, MinSize), size_t(UINT32_MAX));
|
||||
T *NewElts = static_cast<T*>(llvm::safe_malloc(NewCapacity*sizeof(T)));
|
||||
|
||||
// Move the elements over.
|
||||
|
@ -251,9 +251,8 @@ void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
|
|||
if (!this->isSmall())
|
||||
free(this->begin());
|
||||
|
||||
this->setEnd(NewElts+CurSize);
|
||||
this->BeginX = NewElts;
|
||||
this->CapacityX = this->begin()+NewCapacity;
|
||||
this->Capacity = NewCapacity;
|
||||
}
|
||||
|
||||
|
||||
|
@ -300,21 +299,17 @@ protected:
|
|||
|
||||
/// Double the size of the allocated memory, guaranteeing space for at
|
||||
/// least one more element or MinSize if specified.
|
||||
void grow(size_t MinSize = 0) {
|
||||
this->grow_pod(MinSize*sizeof(T), sizeof(T));
|
||||
}
|
||||
void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
|
||||
|
||||
public:
|
||||
void push_back(const T &Elt) {
|
||||
if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
|
||||
if (LLVM_UNLIKELY(this->size() >= this->capacity()))
|
||||
this->grow();
|
||||
memcpy(this->end(), &Elt, sizeof(T));
|
||||
this->setEnd(this->end()+1);
|
||||
this->set_size(this->size() + 1);
|
||||
}
|
||||
|
||||
void pop_back() {
|
||||
this->setEnd(this->end()-1);
|
||||
}
|
||||
void pop_back() { this->set_size(this->size() - 1); }
|
||||
};
|
||||
|
||||
/// This class consists of common code factored out of the SmallVector class to
|
||||
|
@ -331,8 +326,7 @@ public:
|
|||
protected:
|
||||
// Default ctor - Initialize to empty.
|
||||
explicit SmallVectorImpl(unsigned N)
|
||||
: SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
|
||||
}
|
||||
: SmallVectorTemplateBase<T, isPodLike<T>::value>(N) {}
|
||||
|
||||
public:
|
||||
SmallVectorImpl(const SmallVectorImpl &) = delete;
|
||||
|
@ -346,31 +340,31 @@ public:
|
|||
|
||||
void clear() {
|
||||
this->destroy_range(this->begin(), this->end());
|
||||
this->EndX = this->BeginX;
|
||||
this->Size = 0;
|
||||
}
|
||||
|
||||
void resize(size_type N) {
|
||||
if (N < this->size()) {
|
||||
this->destroy_range(this->begin()+N, this->end());
|
||||
this->setEnd(this->begin()+N);
|
||||
this->set_size(N);
|
||||
} else if (N > this->size()) {
|
||||
if (this->capacity() < N)
|
||||
this->grow(N);
|
||||
for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
|
||||
new (&*I) T();
|
||||
this->setEnd(this->begin()+N);
|
||||
this->set_size(N);
|
||||
}
|
||||
}
|
||||
|
||||
void resize(size_type N, const T &NV) {
|
||||
if (N < this->size()) {
|
||||
this->destroy_range(this->begin()+N, this->end());
|
||||
this->setEnd(this->begin()+N);
|
||||
this->set_size(N);
|
||||
} else if (N > this->size()) {
|
||||
if (this->capacity() < N)
|
||||
this->grow(N);
|
||||
std::uninitialized_fill(this->end(), this->begin()+N, NV);
|
||||
this->setEnd(this->begin()+N);
|
||||
this->set_size(N);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -395,23 +389,23 @@ public:
|
|||
void append(in_iter in_start, in_iter in_end) {
|
||||
size_type NumInputs = std::distance(in_start, in_end);
|
||||
// Grow allocated space if needed.
|
||||
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
|
||||
if (NumInputs > this->capacity() - this->size())
|
||||
this->grow(this->size()+NumInputs);
|
||||
|
||||
// Copy the new elements over.
|
||||
this->uninitialized_copy(in_start, in_end, this->end());
|
||||
this->setEnd(this->end() + NumInputs);
|
||||
this->set_size(this->size() + NumInputs);
|
||||
}
|
||||
|
||||
/// Add the specified range to the end of the SmallVector.
|
||||
void append(size_type NumInputs, const T &Elt) {
|
||||
// Grow allocated space if needed.
|
||||
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
|
||||
if (NumInputs > this->capacity() - this->size())
|
||||
this->grow(this->size()+NumInputs);
|
||||
|
||||
// Copy the new elements over.
|
||||
std::uninitialized_fill_n(this->end(), NumInputs, Elt);
|
||||
this->setEnd(this->end() + NumInputs);
|
||||
this->set_size(this->size() + NumInputs);
|
||||
}
|
||||
|
||||
void append(std::initializer_list<T> IL) {
|
||||
|
@ -425,7 +419,7 @@ public:
|
|||
clear();
|
||||
if (this->capacity() < NumElts)
|
||||
this->grow(NumElts);
|
||||
this->setEnd(this->begin()+NumElts);
|
||||
this->set_size(NumElts);
|
||||
std::uninitialized_fill(this->begin(), this->end(), Elt);
|
||||
}
|
||||
|
||||
|
@ -472,7 +466,7 @@ public:
|
|||
iterator I = std::move(E, this->end(), S);
|
||||
// Drop the last elts.
|
||||
this->destroy_range(I, this->end());
|
||||
this->setEnd(I);
|
||||
this->set_size(I - this->begin());
|
||||
return(N);
|
||||
}
|
||||
|
||||
|
@ -485,7 +479,7 @@ public:
|
|||
assert(I >= this->begin() && "Insertion iterator is out of bounds.");
|
||||
assert(I <= this->end() && "Inserting past the end of the vector.");
|
||||
|
||||
if (this->EndX >= this->CapacityX) {
|
||||
if (this->size() >= this->capacity()) {
|
||||
size_t EltNo = I-this->begin();
|
||||
this->grow();
|
||||
I = this->begin()+EltNo;
|
||||
|
@ -494,12 +488,12 @@ public:
|
|||
::new ((void*) this->end()) T(::std::move(this->back()));
|
||||
// Push everything else over.
|
||||
std::move_backward(I, this->end()-1, this->end());
|
||||
this->setEnd(this->end()+1);
|
||||
this->set_size(this->size() + 1);
|
||||
|
||||
// If we just moved the element we're inserting, be sure to update
|
||||
// the reference.
|
||||
T *EltPtr = &Elt;
|
||||
if (I <= EltPtr && EltPtr < this->EndX)
|
||||
if (I <= EltPtr && EltPtr < this->end())
|
||||
++EltPtr;
|
||||
|
||||
*I = ::std::move(*EltPtr);
|
||||
|
@ -515,7 +509,7 @@ public:
|
|||
assert(I >= this->begin() && "Insertion iterator is out of bounds.");
|
||||
assert(I <= this->end() && "Inserting past the end of the vector.");
|
||||
|
||||
if (this->EndX >= this->CapacityX) {
|
||||
if (this->size() >= this->capacity()) {
|
||||
size_t EltNo = I-this->begin();
|
||||
this->grow();
|
||||
I = this->begin()+EltNo;
|
||||
|
@ -523,12 +517,12 @@ public:
|
|||
::new ((void*) this->end()) T(std::move(this->back()));
|
||||
// Push everything else over.
|
||||
std::move_backward(I, this->end()-1, this->end());
|
||||
this->setEnd(this->end()+1);
|
||||
this->set_size(this->size() + 1);
|
||||
|
||||
// If we just moved the element we're inserting, be sure to update
|
||||
// the reference.
|
||||
const T *EltPtr = &Elt;
|
||||
if (I <= EltPtr && EltPtr < this->EndX)
|
||||
if (I <= EltPtr && EltPtr < this->end())
|
||||
++EltPtr;
|
||||
|
||||
*I = *EltPtr;
|
||||
|
@ -574,7 +568,7 @@ public:
|
|||
|
||||
// Move over the elements that we're about to overwrite.
|
||||
T *OldEnd = this->end();
|
||||
this->setEnd(this->end() + NumToInsert);
|
||||
this->set_size(this->size() + NumToInsert);
|
||||
size_t NumOverwritten = OldEnd-I;
|
||||
this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
|
||||
|
||||
|
@ -631,7 +625,7 @@ public:
|
|||
|
||||
// Move over the elements that we're about to overwrite.
|
||||
T *OldEnd = this->end();
|
||||
this->setEnd(this->end() + NumToInsert);
|
||||
this->set_size(this->size() + NumToInsert);
|
||||
size_t NumOverwritten = OldEnd-I;
|
||||
this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
|
||||
|
||||
|
@ -651,10 +645,10 @@ public:
|
|||
}
|
||||
|
||||
template <typename... ArgTypes> void emplace_back(ArgTypes &&... Args) {
|
||||
if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
|
||||
if (LLVM_UNLIKELY(this->size() >= this->capacity()))
|
||||
this->grow();
|
||||
::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
|
||||
this->setEnd(this->end() + 1);
|
||||
this->set_size(this->size() + 1);
|
||||
}
|
||||
|
||||
SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
|
||||
|
@ -673,20 +667,6 @@ public:
|
|||
return std::lexicographical_compare(this->begin(), this->end(),
|
||||
RHS.begin(), RHS.end());
|
||||
}
|
||||
|
||||
/// Set the array size to \p N, which the current array must have enough
|
||||
/// capacity for.
|
||||
///
|
||||
/// This does not construct or destroy any elements in the vector.
|
||||
///
|
||||
/// Clients can use this in conjunction with capacity() to write past the end
|
||||
/// of the buffer when they know that more elements are available, and only
|
||||
/// update the size later. This avoids the cost of value initializing elements
|
||||
/// which will only be overwritten.
|
||||
void set_size(size_type N) {
|
||||
assert(N <= this->capacity());
|
||||
this->setEnd(this->begin() + N);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
|
@ -696,8 +676,8 @@ void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
|
|||
// We can only avoid copying elements if neither vector is small.
|
||||
if (!this->isSmall() && !RHS.isSmall()) {
|
||||
std::swap(this->BeginX, RHS.BeginX);
|
||||
std::swap(this->EndX, RHS.EndX);
|
||||
std::swap(this->CapacityX, RHS.CapacityX);
|
||||
std::swap(this->Size, RHS.Size);
|
||||
std::swap(this->Capacity, RHS.Capacity);
|
||||
return;
|
||||
}
|
||||
if (RHS.size() > this->capacity())
|
||||
|
@ -715,15 +695,15 @@ void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
|
|||
if (this->size() > RHS.size()) {
|
||||
size_t EltDiff = this->size() - RHS.size();
|
||||
this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
|
||||
RHS.setEnd(RHS.end()+EltDiff);
|
||||
RHS.set_size(RHS.size() + EltDiff);
|
||||
this->destroy_range(this->begin()+NumShared, this->end());
|
||||
this->setEnd(this->begin()+NumShared);
|
||||
this->set_size(NumShared);
|
||||
} else if (RHS.size() > this->size()) {
|
||||
size_t EltDiff = RHS.size() - this->size();
|
||||
this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
|
||||
this->setEnd(this->end() + EltDiff);
|
||||
this->set_size(this->size() + EltDiff);
|
||||
this->destroy_range(RHS.begin()+NumShared, RHS.end());
|
||||
RHS.setEnd(RHS.begin()+NumShared);
|
||||
RHS.set_size(NumShared);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -749,7 +729,7 @@ SmallVectorImpl<T> &SmallVectorImpl<T>::
|
|||
this->destroy_range(NewEnd, this->end());
|
||||
|
||||
// Trim.
|
||||
this->setEnd(NewEnd);
|
||||
this->set_size(RHSSize);
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
@ -759,7 +739,7 @@ SmallVectorImpl<T> &SmallVectorImpl<T>::
|
|||
if (this->capacity() < RHSSize) {
|
||||
// Destroy current elements.
|
||||
this->destroy_range(this->begin(), this->end());
|
||||
this->setEnd(this->begin());
|
||||
this->set_size(0);
|
||||
CurSize = 0;
|
||||
this->grow(RHSSize);
|
||||
} else if (CurSize) {
|
||||
|
@ -772,7 +752,7 @@ SmallVectorImpl<T> &SmallVectorImpl<T>::
|
|||
this->begin()+CurSize);
|
||||
|
||||
// Set end.
|
||||
this->setEnd(this->begin()+RHSSize);
|
||||
this->set_size(RHSSize);
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
@ -786,8 +766,8 @@ SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
|
|||
this->destroy_range(this->begin(), this->end());
|
||||
if (!this->isSmall()) free(this->begin());
|
||||
this->BeginX = RHS.BeginX;
|
||||
this->EndX = RHS.EndX;
|
||||
this->CapacityX = RHS.CapacityX;
|
||||
this->Size = RHS.Size;
|
||||
this->Capacity = RHS.Capacity;
|
||||
RHS.resetToSmall();
|
||||
return *this;
|
||||
}
|
||||
|
@ -804,7 +784,7 @@ SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
|
|||
|
||||
// Destroy excess elements and trim the bounds.
|
||||
this->destroy_range(NewEnd, this->end());
|
||||
this->setEnd(NewEnd);
|
||||
this->set_size(RHSSize);
|
||||
|
||||
// Clear the RHS.
|
||||
RHS.clear();
|
||||
|
@ -819,7 +799,7 @@ SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
|
|||
if (this->capacity() < RHSSize) {
|
||||
// Destroy current elements.
|
||||
this->destroy_range(this->begin(), this->end());
|
||||
this->setEnd(this->begin());
|
||||
this->set_size(0);
|
||||
CurSize = 0;
|
||||
this->grow(RHSSize);
|
||||
} else if (CurSize) {
|
||||
|
@ -832,7 +812,7 @@ SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
|
|||
this->begin()+CurSize);
|
||||
|
||||
// Set end.
|
||||
this->setEnd(this->begin()+RHSSize);
|
||||
this->set_size(RHSSize);
|
||||
|
||||
RHS.clear();
|
||||
return *this;
|
||||
|
|
|
@ -15,30 +15,33 @@
|
|||
using namespace llvm;
|
||||
|
||||
// Check that no bytes are wasted.
|
||||
static_assert(sizeof(SmallVector<void *, 1>) == sizeof(void *) * 4,
|
||||
static_assert(sizeof(SmallVector<void *, 1>) ==
|
||||
sizeof(unsigned) * 2 + sizeof(void *) * 2,
|
||||
"wasted space in SmallVector size 1; missing EBO?");
|
||||
|
||||
/// grow_pod - This is an implementation of the grow() method which only works
|
||||
/// on POD-like datatypes and is out of line to reduce code duplication.
|
||||
void SmallVectorBase::grow_pod(void *FirstEl, size_t MinSizeInBytes,
|
||||
void SmallVectorBase::grow_pod(void *FirstEl, size_t MinCapacity,
|
||||
size_t TSize) {
|
||||
size_t CurSizeBytes = size_in_bytes();
|
||||
size_t NewCapacityInBytes = 2 * capacity_in_bytes() + TSize; // Always grow.
|
||||
if (NewCapacityInBytes < MinSizeInBytes)
|
||||
NewCapacityInBytes = MinSizeInBytes;
|
||||
// Ensure we can fit the new capacity in 32 bits.
|
||||
if (MinCapacity > UINT32_MAX)
|
||||
report_bad_alloc_error("SmallVector capacity overflow during allocation");
|
||||
|
||||
size_t NewCapacity = 2 * capacity() + 1; // Always grow.
|
||||
NewCapacity =
|
||||
std::min(std::max(NewCapacity, MinCapacity), size_t(UINT32_MAX));
|
||||
|
||||
void *NewElts;
|
||||
if (BeginX == FirstEl) {
|
||||
NewElts = safe_malloc(NewCapacityInBytes);
|
||||
NewElts = safe_malloc(NewCapacity * TSize);
|
||||
|
||||
// Copy the elements over. No need to run dtors on PODs.
|
||||
memcpy(NewElts, this->BeginX, CurSizeBytes);
|
||||
memcpy(NewElts, this->BeginX, size() * TSize);
|
||||
} else {
|
||||
// If this wasn't grown from the inline copy, grow the allocated space.
|
||||
NewElts = safe_realloc(this->BeginX, NewCapacityInBytes);
|
||||
NewElts = safe_realloc(this->BeginX, NewCapacity * TSize);
|
||||
}
|
||||
|
||||
this->EndX = (char*)NewElts+CurSizeBytes;
|
||||
this->BeginX = NewElts;
|
||||
this->CapacityX = (char*)this->BeginX + NewCapacityInBytes;
|
||||
this->Capacity = NewCapacity;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue