Switch RegionStore over to using <BaseRegion+raw offset> to store

value bindings.  Along with a small change to OSAtomicChecker, this
resolves <rdar://problem/7527292> and resolves some long-standing
issues with how values can be bound to the same physical address by
not have the same "key".  This change is only a beginning; logically
RegionStore needs to better handle loads from addresses where the
stored value is larger/smaller/different type than the loaded value.
We handle these cases in an approximate fashion now (via
CastRetrievedVal and help in SimpleSValuator), but it could be made
much smarter.

llvm-svn: 93137
This commit is contained in:
Ted Kremenek 2010-01-11 02:33:26 +00:00
parent 8e994a2808
commit be909b5eff
7 changed files with 115 additions and 52 deletions

View File

@ -28,8 +28,10 @@ class SValuator {
protected:
ValueManager &ValMgr;
public:
// FIXME: Make these protected again one RegionStoreManager correctly
// handles loads from differening bound value types.
virtual SVal EvalCastNL(NonLoc val, QualType castTy) = 0;
virtual SVal EvalCastL(Loc val, QualType castTy) = 0;
public:

View File

@ -189,7 +189,8 @@ protected:
/// CastRetrievedVal - Used by subclasses of StoreManager to implement
/// implicit casts that arise from loads from regions that are reinterpreted
/// as another region.
SVal CastRetrievedVal(SVal val, const TypedRegion *R, QualType castTy);
SVal CastRetrievedVal(SVal val, const TypedRegion *R, QualType castTy,
bool performTestOnly = true);
};
// FIXME: Do we still need this?

View File

@ -103,19 +103,9 @@ bool OSAtomicChecker::EvalOSAtomicCompareAndSwap(CheckerContext &C,
SVal location = state->getSVal(theValueExpr);
// Here we should use the value type of the region as the load type.
QualType LoadTy;
if (const MemRegion *R = location.getAsRegion()) {
// We must be careful, as SymbolicRegions aren't typed.
const MemRegion *strippedR = R->StripCasts();
// FIXME: This isn't quite the right solution. One test case in 'test/Analysis/NSString.m'
// is giving the wrong result.
const TypedRegion *typedR =
isa<SymbolicRegion>(strippedR) ? cast<TypedRegion>(R) :
dyn_cast<TypedRegion>(strippedR);
if (typedR) {
LoadTy = typedR->getValueType(Ctx);
location = loc::MemRegionVal(typedR);
}
if (const TypedRegion *TR =
dyn_cast_or_null<TypedRegion>(location.getAsRegion())) {
LoadTy = TR->getValueType(Ctx);
}
Engine.EvalLoad(Tmp, const_cast<Expr *>(theValueExpr), C.getPredecessor(),
state, location, OSAtomicLoadTag, LoadTy);
@ -184,14 +174,22 @@ bool OSAtomicChecker::EvalOSAtomicCompareAndSwap(CheckerContext &C,
E2 = TmpStore.end(); I2 != E2; ++I2) {
ExplodedNode *predNew = *I2;
const GRState *stateNew = predNew->getState();
SVal Res = Engine.getValueManager().makeTruthVal(true, CE->getType());
// Check for 'void' return type if we have a bogus function prototype.
SVal Res = UnknownVal();
QualType T = CE->getType();
if (!T->isVoidType())
Res = Engine.getValueManager().makeTruthVal(true, T);
C.GenerateNode(stateNew->BindExpr(CE, Res), predNew);
}
}
// Were they not equal?
if (const GRState *stateNotEqual = stateLoad->Assume(Cmp, false)) {
SVal Res = Engine.getValueManager().makeTruthVal(false, CE->getType());
// Check for 'void' return type if we have a bogus function prototype.
SVal Res = UnknownVal();
QualType T = CE->getType();
if (!T->isVoidType())
Res = Engine.getValueManager().makeTruthVal(false, CE->getType());
C.GenerateNode(stateNotEqual->BindExpr(CE, Res), N);
}
}

View File

@ -87,8 +87,8 @@ llvm::raw_ostream& operator<<(llvm::raw_ostream& os, BindingVal V) {
namespace {
class BindingKey : public std::pair<const MemRegion*, uint64_t> {
public:
explicit BindingKey(const MemRegion *r)
: std::pair<const MemRegion*,uint64_t>(r,0) {}
explicit BindingKey(const MemRegion *r, uint64_t offset)
: std::pair<const MemRegion*,uint64_t>(r, offset) { assert(r); }
const MemRegion *getRegion() const { return first; }
uint64_t getOffset() const { return second; }
@ -97,6 +97,8 @@ public:
ID.AddPointer(getRegion());
ID.AddInteger(getOffset());
}
static BindingKey Make(const MemRegion *R);
};
} // end anonymous namespace
@ -1101,19 +1103,43 @@ RegionStoreManager::Retrieve(const GRState *state, Loc L, QualType T) {
if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
return SValuator::CastResult(state,
CastRetrievedVal(RetrieveField(state, FR), FR, T));
CastRetrievedVal(RetrieveField(state, FR), FR,
T, false));
if (const ElementRegion* ER = dyn_cast<ElementRegion>(R))
if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
// FIXME: Here we actually perform an implicit conversion from the loaded
// value to the element type. Eventually we want to compose these values
// more intelligently. For example, an 'element' can encompass multiple
// bound regions (e.g., several bound bytes), or could be a subset of
// a larger value.
return SValuator::CastResult(state,
CastRetrievedVal(RetrieveElement(state, ER), ER, T));
CastRetrievedVal(RetrieveElement(state, ER),
ER, T, false));
}
if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R))
if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
// FIXME: Here we actually perform an implicit conversion from the loaded
// value to the ivar type. What we should model is stores to ivars
// that blow past the extent of the ivar. If the address of the ivar is
// reinterpretted, it is possible we stored a different value that could
// fit within the ivar. Either we need to cast these when storing them
// or reinterpret them lazily (as we do here).
return SValuator::CastResult(state,
CastRetrievedVal(RetrieveObjCIvar(state, IVR), IVR, T));
CastRetrievedVal(RetrieveObjCIvar(state, IVR),
IVR, T, false));
}
if (const VarRegion *VR = dyn_cast<VarRegion>(R))
if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
// FIXME: Here we actually perform an implicit conversion from the loaded
// value to the variable type. What we should model is stores to variables
// that blow past the extent of the variable. If the address of the
// variable is reinterpretted, it is possible we stored a different value
// that could fit within the variable. Either we need to cast these when
// storing them or reinterpret them lazily (as we do here).
return SValuator::CastResult(state,
CastRetrievedVal(RetrieveVar(state, VR), VR, T));
CastRetrievedVal(RetrieveVar(state, VR), VR, T,
false));
}
RegionBindings B = GetRegionBindings(state->getStore());
const BindingVal *V = Lookup(B, R);
@ -1169,7 +1195,7 @@ SVal RegionStoreManager::RetrieveElement(const GRState* state,
const ElementRegion* R) {
// Check if the region has a binding.
RegionBindings B = GetRegionBindings(state->getStore());
if (Optional<SVal> V = getDirectBinding(B, R))
if (Optional<SVal> V = getDirectBinding(B, R))
return *V;
const MemRegion* superR = R->getSuperRegion();
@ -1219,7 +1245,7 @@ SVal RegionStoreManager::RetrieveElement(const GRState* state,
// Other cases: give up.
return UnknownVal();
}
return RetrieveFieldOrElementCommon(state, R, R->getElementType(), superR);
}
@ -1413,13 +1439,9 @@ SVal RegionStoreManager::RetrieveArray(const GRState *state,
//===----------------------------------------------------------------------===//
Store RegionStoreManager::Remove(Store store, Loc L) {
const MemRegion* R = 0;
if (isa<loc::MemRegionVal>(L))
R = cast<loc::MemRegionVal>(L).getRegion();
if (R)
return Remove(store, BindingKey(R));
if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
return Remove(store, BindingKey::Make(R));
return store;
}
@ -1695,6 +1717,20 @@ RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
// "Raw" retrievals and bindings.
//===----------------------------------------------------------------------===//
BindingKey BindingKey::Make(const MemRegion *R) {
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
const RegionRawOffset &O = ER->getAsRawOffset();
if (O.getRegion())
return BindingKey(O.getRegion(), O.getByteOffset());
// FIXME: There are some ElementRegions for which we cannot compute
// raw offsets yet, including regions with symbolic offsets.
}
return BindingKey(R, 0);
}
RegionBindings RegionStoreManager::Add(RegionBindings B, BindingKey K,
BindingVal V) {
return RBFactory.Add(B, K, V);
@ -1702,7 +1738,7 @@ RegionBindings RegionStoreManager::Add(RegionBindings B, BindingKey K,
RegionBindings RegionStoreManager::Add(RegionBindings B, const MemRegion *R,
BindingVal V) {
return Add(B, BindingKey(R), V);
return Add(B, BindingKey::Make(R), V);
}
const BindingVal *RegionStoreManager::Lookup(RegionBindings B, BindingKey K) {
@ -1711,7 +1747,7 @@ const BindingVal *RegionStoreManager::Lookup(RegionBindings B, BindingKey K) {
const BindingVal *RegionStoreManager::Lookup(RegionBindings B,
const MemRegion *R) {
return Lookup(B, BindingKey(R));
return Lookup(B, BindingKey::Make(R));
}
RegionBindings RegionStoreManager::Remove(RegionBindings B, BindingKey K) {
@ -1719,7 +1755,7 @@ RegionBindings RegionStoreManager::Remove(RegionBindings B, BindingKey K) {
}
RegionBindings RegionStoreManager::Remove(RegionBindings B, const MemRegion *R){
return Remove(B, BindingKey(R));
return Remove(B, BindingKey::Make(R));
}
Store RegionStoreManager::Remove(Store store, BindingKey K) {

View File

@ -53,13 +53,13 @@ SVal SimpleSValuator::EvalCastNL(NonLoc val, QualType castTy) {
if (isLocType)
return LI->getLoc();
// FIXME: Correctly support promotions/truncations.
ASTContext &Ctx = ValMgr.getContext();
// FIXME: Support promotions/truncations.
if (Ctx.getTypeSize(castTy) == Ctx.getTypeSize(Ctx.VoidPtrTy))
unsigned castSize = Ctx.getTypeSize(castTy);
if (castSize == LI->getNumBits())
return val;
return UnknownVal();
return ValMgr.makeLocAsInteger(LI->getLoc(), castSize);
}
if (const SymExpr *se = val.getAsSymbolicExpression()) {

View File

@ -197,23 +197,29 @@ const MemRegion *StoreManager::CastRegion(const MemRegion *R, QualType CastToTy)
/// CastRetrievedVal - Used by subclasses of StoreManager to implement
/// implicit casts that arise from loads from regions that are reinterpreted
/// as another region.
SVal StoreManager::CastRetrievedVal(SVal V, const TypedRegion *R,
QualType castTy) {
SVal StoreManager::CastRetrievedVal(SVal V, const TypedRegion *R,
QualType castTy, bool performTestOnly) {
#ifndef NDEBUG
if (castTy.isNull())
return V;
ASTContext &Ctx = ValMgr.getContext();
QualType T = R->getValueType(Ctx);
// Automatically translate references to pointers.
if (const ReferenceType *RT = T->getAs<ReferenceType>())
T = Ctx.getPointerType(RT->getPointeeType());
assert(ValMgr.getContext().hasSameUnqualifiedType(castTy, T));
#endif
if (performTestOnly) {
// Automatically translate references to pointers.
QualType T = R->getValueType(Ctx);
if (const ReferenceType *RT = T->getAs<ReferenceType>())
T = Ctx.getPointerType(RT->getPointeeType());
assert(ValMgr.getContext().hasSameUnqualifiedType(castTy, T));
return V;
}
if (const Loc *L = dyn_cast<Loc>(&V))
return ValMgr.getSValuator().EvalCastL(*L, castTy);
else if (const NonLoc *NL = dyn_cast<NonLoc>(&V))
return ValMgr.getSValuator().EvalCastNL(*NL, castTy);
return V;
}

View File

@ -710,3 +710,23 @@ int test_return_struct_2_rdar_7526777() {
return test_return_struct_2_aux_rdar_7526777().x;
}
//===----------------------------------------------------------------------===//
// <rdar://problem/7527292> Assertion failed: (Op == BinaryOperator::Add ||
// Op == BinaryOperator::Sub)
// This test case previously triggered an assertion failure due to a discrepancy
// been the loaded/stored value in the array
//===----------------------------------------------------------------------===//
_Bool OSAtomicCompareAndSwapPtrBarrier( void *__oldValue, void *__newValue, void * volatile *__theValue );
void rdar_7527292() {
static id Cache7527292[32];
for (signed long idx = 0;
idx < 32;
idx++) {
id v = Cache7527292[idx];
if (v && OSAtomicCompareAndSwapPtrBarrier(v, ((void*)0), (void * volatile *)(Cache7527292 + idx))) {
}
}
}