Add support for vector data types in the LLVM interpreter.

Patch by:
Veselov, Yuri <Yuri.Veselov@intel.com>

llvm-svn: 178469
This commit is contained in:
Nadav Rotem 2013-04-01 15:53:30 +00:00
parent 60c7510711
commit be79a7ac7a
5 changed files with 274 additions and 6 deletions

View File

@ -35,14 +35,19 @@ struct GenericValue {
struct IntPair UIntPairVal;
unsigned char Untyped[8];
};
APInt IntVal; // also used for long doubles
APInt IntVal; // also used for long doubles.
// For aggregate data types.
std::vector<GenericValue> AggregateVal;
GenericValue() : DoubleVal(0.0), IntVal(1,0) {}
// to make code faster, set GenericValue to zero could be omitted, but it is
// potentially can cause problems, since GenericValue to store garbage
// instead of zero.
GenericValue() : IntVal(1,0) {UIntPairVal.first = 0; UIntPairVal.second = 0;}
explicit GenericValue(void *V) : PointerVal(V), IntVal(1,0) { }
};
inline GenericValue PTOGV(void *P) { return GenericValue(P); }
inline void* GVTOP(const GenericValue &GV) { return GV.PointerVal; }
} // End llvm namespace
} // End llvm namespace.
#endif

View File

@ -535,6 +535,8 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
if (isa<UndefValue>(C)) {
GenericValue Result;
switch (C->getType()->getTypeID()) {
default:
break;
case Type::IntegerTyID:
case Type::X86_FP80TyID:
case Type::FP128TyID:
@ -543,7 +545,16 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
// with the correct bit width.
Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
break;
default:
case Type::VectorTyID:
// if the whole vector is 'undef' just reserve memory for the value.
const VectorType* VTy = dyn_cast<VectorType>(C->getType());
const Type *ElemTy = VTy->getElementType();
unsigned int elemNum = VTy->getNumElements();
Result.AggregateVal.resize(elemNum);
if (ElemTy->isIntegerTy())
for (unsigned int i = 0; i < elemNum; ++i)
Result.AggregateVal[i].IntVal =
APInt(ElemTy->getPrimitiveSizeInBits(), 0);
break;
}
return Result;
@ -825,6 +836,101 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
else
llvm_unreachable("Unknown constant pointer type!");
break;
case Type::VectorTyID: {
unsigned elemNum;
Type* ElemTy;
const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
const ConstantVector *CV = dyn_cast<ConstantVector>(C);
const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
if (CDV) {
elemNum = CDV->getNumElements();
ElemTy = CDV->getElementType();
} else if (CV || CAZ) {
VectorType* VTy = dyn_cast<VectorType>(C->getType());
elemNum = VTy->getNumElements();
ElemTy = VTy->getElementType();
} else {
llvm_unreachable("Unknown constant vector type!");
}
Result.AggregateVal.resize(elemNum);
// Check if vector holds floats.
if(ElemTy->isFloatTy()) {
if (CAZ) {
GenericValue floatZero;
floatZero.FloatVal = 0.f;
std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
floatZero);
break;
}
if(CV) {
for (unsigned i = 0; i < elemNum; ++i)
if (!isa<UndefValue>(CV->getOperand(i)))
Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
CV->getOperand(i))->getValueAPF().convertToFloat();
break;
}
if(CDV)
for (unsigned i = 0; i < elemNum; ++i)
Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
break;
}
// Check if vector holds doubles.
if (ElemTy->isDoubleTy()) {
if (CAZ) {
GenericValue doubleZero;
doubleZero.DoubleVal = 0.0;
std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
doubleZero);
break;
}
if(CV) {
for (unsigned i = 0; i < elemNum; ++i)
if (!isa<UndefValue>(CV->getOperand(i)))
Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
CV->getOperand(i))->getValueAPF().convertToDouble();
break;
}
if(CDV)
for (unsigned i = 0; i < elemNum; ++i)
Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
break;
}
// Check if vector holds integers.
if (ElemTy->isIntegerTy()) {
if (CAZ) {
GenericValue intZero;
intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
intZero);
break;
}
if(CV) {
for (unsigned i = 0; i < elemNum; ++i)
if (!isa<UndefValue>(CV->getOperand(i)))
Result.AggregateVal[i].IntVal = cast<ConstantInt>(
CV->getOperand(i))->getValue();
else {
Result.AggregateVal[i].IntVal =
APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
}
break;
}
if(CDV)
for (unsigned i = 0; i < elemNum; ++i)
Result.AggregateVal[i].IntVal = APInt(
CDV->getElementType()->getPrimitiveSizeInBits(),
CDV->getElementAsInteger(i));
break;
}
llvm_unreachable("Unknown constant pointer type!");
}
break;
default:
SmallString<256> Msg;
raw_svector_ostream OS(Msg);
@ -866,6 +972,9 @@ void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty);
switch (Ty->getTypeID()) {
default:
dbgs() << "Cannot store value of type " << *Ty << "!\n";
break;
case Type::IntegerTyID:
StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
break;
@ -885,8 +994,19 @@ void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
*((PointerTy*)Ptr) = Val.PointerVal;
break;
default:
dbgs() << "Cannot store value of type " << *Ty << "!\n";
case Type::VectorTyID:
for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
*(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
*(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
StoreIntToMemory(Val.AggregateVal[i].IntVal,
(uint8_t*)Ptr + numOfBytes*i, numOfBytes);
}
}
break;
}
if (sys::isLittleEndianHost() != getDataLayout()->isLittleEndian())
@ -951,6 +1071,31 @@ void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
Result.IntVal = APInt(80, y);
break;
}
case Type::VectorTyID: {
const VectorType *VT = cast<VectorType>(Ty);
const Type *ElemT = VT->getElementType();
const unsigned numElems = VT->getNumElements();
if (ElemT->isFloatTy()) {
Result.AggregateVal.resize(numElems);
for (unsigned i = 0; i < numElems; ++i)
Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
}
if (ElemT->isDoubleTy()) {
Result.AggregateVal.resize(numElems);
for (unsigned i = 0; i < numElems; ++i)
Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
}
if (ElemT->isIntegerTy()) {
GenericValue intZero;
const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
intZero.IntVal = APInt(elemBitWidth, 0);
Result.AggregateVal.resize(numElems, intZero);
for (unsigned i = 0; i < numElems; ++i)
LoadIntFromMemory(Result.AggregateVal[i].IntVal,
(uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
}
break;
}
default:
SmallString<256> Msg;
raw_svector_ostream OS(Msg);

View File

@ -1187,6 +1187,39 @@ void Interpreter::visitVAArgInst(VAArgInst &I) {
++VAList.UIntPairVal.second;
}
void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
Type *Ty = I.getType();
const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
if(Src1.AggregateVal.size() > indx) {
switch (Ty->getTypeID()) {
default:
dbgs() << "Unhandled destination type for extractelement instruction: "
<< *Ty << "\n";
llvm_unreachable(0);
break;
case Type::IntegerTyID:
Dest.IntVal = Src1.AggregateVal[indx].IntVal;
break;
case Type::FloatTyID:
Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
break;
case Type::DoubleTyID:
Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
break;
}
} else {
dbgs() << "Invalid index in extractelement instruction\n";
}
SetValue(&I, Dest, SF);
}
GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
ExecutionContext &SF) {
switch (CE->getOpcode()) {

View File

@ -178,6 +178,7 @@ public:
void visitAShr(BinaryOperator &I);
void visitVAArgInst(VAArgInst &I);
void visitExtractElementInst(ExtractElementInst &I);
void visitInstruction(Instruction &I) {
errs() << I << "\n";
llvm_unreachable("Instruction not interpretable yet!");

View File

@ -0,0 +1,84 @@
; RUN: %lli -force-interpreter=true %s | FileCheck %s
; CHECK: 1
; CHECK: 2
; CHECK: 3
; CHECK: 4
; CHECK: 5.{{[0]+}}e+{{[0]+}}
; CHECK: 6.{{[0]+}}e+{{[0]+}}
; CHECK: 7.{{[0]+}}e+{{[0]+}}
; CHECK: 8.{{[0]+}}e+{{[0]+}}
; CHECK: 9.{{[0]+}}e+{{[0]+}}
; CHECK: 1.{{[0]+}}e+{{[0]+}}1
; CHECK: 1.1{{[0]+}}e+{{[0]+}}1
; CHECK: 1.2{{[0]+}}e+{{[0]+}}1
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f80:128:128-v64:64:64-v128:128:128-a0:0:64-f80:32:32-n8:16:32"
@format_i32 = internal global [4 x i8] c"%d\0A\00"
@format_float = internal global [4 x i8] c"%e\0A\00"
declare i32 @printf(i8*, ...)
define i32 @main() {
%a = alloca <4 x i32>, align 16
%b = alloca <4 x double>, align 16
%c = alloca <4 x float>, align 16
store <4 x i32> <i32 1, i32 2, i32 3, i32 4>, <4 x i32>* %a, align 16
%val0 = load <4 x i32> *%a, align 16
%res_i32_0 = extractelement <4 x i32> %val0, i32 0
%res_i32_1 = extractelement <4 x i32> %val0, i32 1
%res_i32_2 = extractelement <4 x i32> %val0, i32 2
%res_i32_3 = extractelement <4 x i32> %val0, i32 3
%ptr0 = getelementptr [4 x i8]* @format_i32, i32 0, i32 0
call i32 (i8*,...)* @printf(i8* %ptr0, i32 %res_i32_0)
call i32 (i8*,...)* @printf(i8* %ptr0, i32 %res_i32_1)
call i32 (i8*,...)* @printf(i8* %ptr0, i32 %res_i32_2)
call i32 (i8*,...)* @printf(i8* %ptr0, i32 %res_i32_3)
store <4 x double> <double 5.0, double 6.0, double 7.0, double 8.0>, <4 x double>* %b, align 16
%val1 = load <4 x double> *%b, align 16
%res_double_0 = extractelement <4 x double> %val1, i32 0
%res_double_1 = extractelement <4 x double> %val1, i32 1
%res_double_2 = extractelement <4 x double> %val1, i32 2
%res_double_3 = extractelement <4 x double> %val1, i32 3
%ptr1 = getelementptr [4 x i8]* @format_float, i32 0, i32 0
call i32 (i8*,...)* @printf(i8* %ptr1, double %res_double_0)
call i32 (i8*,...)* @printf(i8* %ptr1, double %res_double_1)
call i32 (i8*,...)* @printf(i8* %ptr1, double %res_double_2)
call i32 (i8*,...)* @printf(i8* %ptr1, double %res_double_3)
store <4 x float> <float 9.0, float 10.0, float 11.0, float 12.0>, <4 x float>* %c, align 16
%val2 = load <4 x float> *%c, align 16
%ptr2 = getelementptr [4 x i8]* @format_float, i32 0, i32 0
; by some reason printf doesn't print float correctly, so
; floats are casted to doubles and are printed as doubles
%res_serv_0 = extractelement <4 x float> %val2, i32 0
%res_float_0 = fpext float %res_serv_0 to double
%res_serv_1 = extractelement <4 x float> %val2, i32 1
%res_float_1 = fpext float %res_serv_1 to double
%res_serv_2 = extractelement <4 x float> %val2, i32 2
%res_float_2 = fpext float %res_serv_2 to double
%res_serv_3 = extractelement <4 x float> %val2, i32 3
%res_float_3 = fpext float %res_serv_3 to double
call i32 (i8*,...)* @printf(i8* %ptr1, double %res_float_0)
call i32 (i8*,...)* @printf(i8* %ptr1, double %res_float_1)
call i32 (i8*,...)* @printf(i8* %ptr1, double %res_float_2)
call i32 (i8*,...)* @printf(i8* %ptr1, double %res_float_3)
ret i32 0
}