[llvm] Release-mode ML InlineAdvisor

Summary:
This implementation uses a pre-trained model which is statically
compiled into a native function.

RFC: http://lists.llvm.org/pipermail/llvm-dev/2020-April/140763.html

Reviewers: davidxl, jdoerfert, dblaikie

Subscribers: mgorny, eraman, hiraditya, arphaman, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D81515
This commit is contained in:
Mircea Trofin 2020-06-09 14:50:50 -07:00
parent 62841415e6
commit bdceefe95b
21 changed files with 812 additions and 2 deletions

View File

@ -962,6 +962,25 @@ if( MINGW AND NOT "${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang" )
llvm_replace_compiler_option(CMAKE_CXX_FLAGS_RELEASE "-O3" "-O2")
endif()
# For up-to-date instructions for installing the Tensorflow dependency, refer to
# the bot setup script: https://github.com/google/ml-compiler-opt/blob/master/buildbot/buildbot_init.sh
# Specifically, assuming python3 is installed:
# python3 -m pip install --upgrade pip && python3 -m pip install --user tf_nightly==2.3.0.dev20200528
# Then set TENSORFLOW_AOT_PATH to the package install - usually it's ~/.local/lib/python3.7/site-packages/tensorflow
#
set(TENSORFLOW_AOT_PATH "" CACHE PATH "Path to TensorFlow pip install dir")
if (NOT TENSORFLOW_AOT_PATH STREQUAL "")
set(LLVM_HAVE_TF_AOT "ON" CACHE BOOL "Tensorflow AOT available")
set(TENSORFLOW_AOT_COMPILER
"${TENSORFLOW_AOT_PATH}/../../../../bin/saved_model_cli"
CACHE PATH "Path to the Tensorflow AOT compiler")
add_definitions("-DLLVM_HAVE_TF_AOT")
include_directories(${TENSORFLOW_AOT_PATH}/include)
add_subdirectory(${TENSORFLOW_AOT_PATH}/xla_aot_runtime_src
${CMAKE_ARCHIVE_OUTPUT_DIRECTORY}/tf_runtime)
endif()
# Put this before tblgen. Else we have a circular dependence.
add_subdirectory(lib/Demangle)
add_subdirectory(lib/Support)

View File

@ -0,0 +1,38 @@
# Run the tensorflow compiler (saved_model_cli) on the saved model in the
# ${model} directory, looking for the ${tag_set} tag set, and the SignatureDef
# ${signature_def_key}.
# Produce a pair of files called ${fname}.h and ${fname}.o in the
# ${CMAKE_CURRENT_BINARY_DIR}. The generated header will define a C++ class
# called ${cpp_class} - which may be a namespace-qualified class name.
function(tfcompile model tag_set signature_def_key fname cpp_class)
if (IS_ABSOLUTE ${model})
set(LLVM_ML_MODELS_ABSOLUTE ${model})
else()
set(LLVM_ML_MODELS_ABSOLUTE
${CMAKE_CURRENT_SOURCE_DIR}/${model})
endif()
set(prefix ${CMAKE_CURRENT_BINARY_DIR}/${fname})
set(obj_file ${prefix}.o)
set(hdr_file ${prefix}.h)
add_custom_command(OUTPUT ${obj_file} ${hdr_file}
COMMAND "XLA_FLAGS=\"--xla_cpu_multi_thread_eigen=false\"" ${TENSORFLOW_AOT_COMPILER} aot_compile_cpu
--dir ${LLVM_ML_MODELS_ABSOLUTE}
--tag_set ${tag_set}
--signature_def_key ${signature_def_key}
--output_prefix ${prefix}
--cpp_class ${cpp_class}
--target_triple ${LLVM_HOST_TRIPLE}
)
# Aggregate the objects so that results of different tfcompile calls may be
# grouped into one target.
set(GENERATED_OBJS ${GENERATED_OBJS} ${obj_file} PARENT_SCOPE)
set_source_files_properties(${obj_file} PROPERTIES
GENERATED 1 EXTERNAL_OBJECT 1)
set(GENERATED_HEADERS ${GENERATED_HEADERS} ${hdr_file} PARENT_SCOPE)
set_source_files_properties(${hdr_file} PROPERTIES
GENERATED 1)
endfunction()

View File

@ -203,6 +203,11 @@ public:
Result run(Module &M, ModuleAnalysisManager &MAM) { return Result(M, MAM); }
};
#ifdef LLVM_HAVE_TF_AOT
std::unique_ptr<InlineAdvisor>
getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM);
#endif
// Default (manual policy) decision making helper APIs. Shared with the legacy
// pass manager inliner.

View File

@ -0,0 +1,70 @@
//===- InlineModelFeatureMaps.h - common model runner defs ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
#ifndef LLVM_ANALYSIS_INLINEMODELFEATUREMAPS_H
#define LLVM_ANALYSIS_INLINEMODELFEATUREMAPS_H
#include <array>
#include <string>
#include <vector>
namespace llvm {
// List of features. Each feature is defined through a triple:
// - the name of an enum member, which will be the feature index
// - a textual name, used for Tensorflow model binding (so it needs to match the
// names used by the Tensorflow model)
// - a documentation description. Currently, that is not used anywhere
// programmatically, and serves as workaround to inability of inserting comments
// in macros.
#define INLINE_FEATURE_ITERATOR(M) \
M(CalleeBasicBlockCount, "callee_basic_block_count", \
"number of basic blocks of the callee") \
M(CallSiteHeight, "callsite_height", \
"position of the call site in the original call graph - measured from " \
"the farthest SCC") \
M(NodeCount, "node_count", \
"total current number of defined functions in the module") \
M(NrCtantParams, "nr_ctant_params", \
"number of parameters in the call site that are constants") \
M(CostEstimate, "cost_estimate", "total cost estimate (threshold - free)") \
M(EdgeCount, "edge_count", \
"number of module-internal users of the caller, +1 if the caller is " \
"exposed externally") \
M(CallerUsers, "caller_users", \
"number of blocks reached from a conditional instruction, in the caller") \
M(CallerConditionallyExecutedBlocks, "caller_conditionally_executed_blocks", \
"number of blocks reached from a conditional instruction, in the caller") \
M(CallerBasicBlockCount, "caller_basic_block_count", \
"number of basic blocks in the caller") \
M(CalleeConditionallyExecutedBlocks, "callee_conditionally_executed_blocks", \
"number of blocks reached from a conditional instruction, in the callee") \
M(CalleeUsers, "callee_users", \
"number of blocks reached from a conditional instruction, in the callee")
enum class FeatureIndex : size_t {
#define POPULATE_INDICES(INDEX_NAME, NAME, COMMENT) INDEX_NAME,
INLINE_FEATURE_ITERATOR(POPULATE_INDICES)
#undef POPULATE_INDICES
NumberOfFeatures
};
constexpr size_t NumberOfFeatures =
static_cast<size_t>(FeatureIndex::NumberOfFeatures);
extern const std::array<std::string, NumberOfFeatures> FeatureNameMap;
extern const char *const DecisionName;
extern const char *const DefaultDecisionName;
extern const char *const RewardName;
using InlineFeatures = std::vector<int64_t>;
} // namespace llvm
#endif // LLVM_ANALYSIS_INLINEMODELFEATUREMAPS_H

View File

@ -0,0 +1,107 @@
//===- MLInlineAdvisor.h - ML - based InlineAdvisor factories ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_MLINLINEADVISOR_H
#define LLVM_ANALYSIS_MLINLINEADVISOR_H
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineAdvisor.h"
#include "llvm/Analysis/MLModelRunner.h"
#include "llvm/IR/PassManager.h"
#include <memory>
#include <unordered_map>
namespace llvm {
class Module;
class MLInlineAdvice;
class MLInlineAdvisor : public InlineAdvisor {
public:
MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM,
std::unique_ptr<MLModelRunner> ModelRunner);
CallGraph *callGraph() const { return CG.get(); }
virtual ~MLInlineAdvisor() = default;
void onPassEntry() override;
std::unique_ptr<InlineAdvice> getAdvice(CallBase &CB) override;
int64_t getIRSize(const Function &F) const { return F.getInstructionCount(); }
void onSuccessfulInlining(const MLInlineAdvice &Advice,
bool CalleeWasDeleted);
bool isForcedToStop() const { return ForceStop; }
int64_t getLocalCalls(Function &F);
const MLModelRunner &getModelRunner() const { return *ModelRunner.get(); }
protected:
virtual std::unique_ptr<MLInlineAdvice>
getMandatoryAdvice(CallBase &CB, OptimizationRemarkEmitter &ORE);
virtual std::unique_ptr<MLInlineAdvice>
getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE);
Module &M;
std::unique_ptr<MLModelRunner> ModelRunner;
private:
int64_t getModuleIRSize() const;
std::unique_ptr<CallGraph> CG;
int64_t NodeCount = 0;
int64_t EdgeCount = 0;
std::map<const Function *, unsigned> FunctionLevels;
const int32_t InitialIRSize = 0;
int32_t CurrentIRSize = 0;
bool ForceStop = false;
};
/// InlineAdvice that tracks changes post inlining. For that reason, it only
/// overrides the "successful inlining" extension points.
class MLInlineAdvice : public InlineAdvice {
public:
MLInlineAdvice(MLInlineAdvisor *Advisor, CallBase &CB,
OptimizationRemarkEmitter &ORE, bool Recommendation)
: InlineAdvice(Advisor, CB, ORE, Recommendation),
CallerIRSize(Advisor->isForcedToStop() ? 0
: Advisor->getIRSize(*Caller)),
CalleeIRSize(Advisor->isForcedToStop() ? 0
: Advisor->getIRSize(*Callee)),
CallerAndCalleeEdges(Advisor->isForcedToStop()
? 0
: (Advisor->getLocalCalls(*Caller) +
Advisor->getLocalCalls(*Callee))) {}
virtual ~MLInlineAdvice() = default;
void recordInliningImpl() override;
void recordInliningWithCalleeDeletedImpl() override;
void recordUnsuccessfulInliningImpl(const InlineResult &Result) override;
void recordUnattemptedInliningImpl() override;
Function *getCaller() const { return Caller; }
Function *getCallee() const { return Callee; }
const int64_t CallerIRSize;
const int64_t CalleeIRSize;
const int64_t CallerAndCalleeEdges;
private:
void reportContextForRemark(DiagnosticInfoOptimizationBase &OR);
MLInlineAdvisor *getAdvisor() const {
return static_cast<MLInlineAdvisor *>(Advisor);
};
};
} // namespace llvm
#endif // LLVM_ANALYSIS_MLINLINEADVISOR_H

View File

@ -0,0 +1,39 @@
//===- MLModelRunner.h ---- ML model runner interface -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
#ifndef LLVM_ANALYSIS_MLMODELRUNNER_H
#define LLVM_ANALYSIS_MLMODELRUNNER_H
#include "llvm/Analysis/InlineModelFeatureMaps.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PassManager.h"
namespace llvm {
/// MLModelRunner interface: abstraction of a mechanism for evaluating a
/// tensorflow "saved model".
class MLModelRunner {
public:
// Disallows copy and assign.
MLModelRunner(const MLModelRunner &) = delete;
MLModelRunner &operator=(const MLModelRunner &) = delete;
virtual ~MLModelRunner() = default;
virtual bool run() = 0;
virtual void setFeature(FeatureIndex Index, int64_t Value) = 0;
virtual int64_t getFeature(int Index) const = 0;
protected:
MLModelRunner(LLVMContext &Ctx) : Ctx(Ctx) {}
LLVMContext &Ctx;
};
} // namespace llvm
#endif // LLVM_ANALYSIS_MLMODELRUNNER_H

View File

@ -1,3 +1,18 @@
set(CommonMLSources MLInlineAdvisor.cpp)
set(ReleaseModeMLSources ReleaseModeModelRunner.cpp)
if (DEFINED LLVM_HAVE_TF_AOT)
include(TensorFlowCompile)
tfcompile(models/inliner serve action InlinerSizeModel llvm::InlinerSizeModel)
list(APPEND ReleaseModeMLSources
$<TARGET_OBJECTS:tf_xla_runtime_objects>
${GENERATED_OBJS}
)
set(MLPolicySources ${CommonMLSources} ${ReleaseModeMLSources})
else()
set(LLVM_OPTIONAL_SOURCES ${CommonMLSources} ${ReleaseModeMLSources})
endif()
add_llvm_component_library(LLVMAnalysis
AliasAnalysis.cpp
AliasAnalysisEvaluator.cpp
@ -102,6 +117,7 @@ add_llvm_component_library(LLVMAnalysis
ValueTracking.cpp
VectorUtils.cpp
VFABIDemangling.cpp
${MLPolicySources}
ADDITIONAL_HEADER_DIRS
${LLVM_MAIN_INCLUDE_DIR}/llvm/Analysis

View File

@ -155,7 +155,9 @@ bool InlineAdvisorAnalysis::Result::tryCreate(InlineParams Params,
// To be added subsequently under conditional compilation.
break;
case InliningAdvisorMode::Release:
// To be added subsequently under conditional compilation.
#ifdef LLVM_HAVE_TF_AOT
Advisor = llvm::getReleaseModeAdvisor(M, MAM);
#endif
break;
}
return !!Advisor;

View File

@ -0,0 +1,301 @@
//===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interface between the inliner and a learned model.
// It delegates model evaluation to either the AOT compiled model (the
// 'release' mode) or a runtime-loaded model (the 'development' case).
//
//===----------------------------------------------------------------------===//
#include <limits>
#include <unordered_map>
#include <unordered_set>
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/InlineFeaturesAnalysis.h"
#include "llvm/Analysis/MLInlineAdvisor.h"
#include "llvm/Analysis/MLModelRunner.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Path.h"
using namespace llvm;
#define DEBUG_TYPE "inline-ml"
static cl::opt<float> SizeIncreaseThreshold(
"ml-advisor-size-increase-threshold", cl::Hidden,
cl::desc("Maximum factor by which expected native size may increase before "
"blocking any further inlining."),
cl::init(2.0));
const std::array<std::string, NumberOfFeatures> llvm::FeatureNameMap{
#define POPULATE_NAMES(INDEX_NAME, NAME, COMMENT) NAME,
INLINE_FEATURE_ITERATOR(POPULATE_NAMES)
#undef POPULATE_NAMES
};
const char *const llvm::DecisionName = "inlining_decision";
const char *const llvm::DefaultDecisionName = "inlining_default";
const char *const llvm::RewardName = "delta_size";
CallBase *getInlinableCS(Instruction &I) {
if (auto *CS = dyn_cast<CallBase>(&I))
if (Function *Callee = CS->getCalledFunction()) {
if (!Callee->isDeclaration()) {
return CS;
}
}
return nullptr;
}
MLInlineAdvisor::MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM,
std::unique_ptr<MLModelRunner> Runner)
: InlineAdvisor(
MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()),
M(M), ModelRunner(std::move(Runner)), CG(new CallGraph(M)),
InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) {
assert(ModelRunner);
// Extract the 'call site height' feature - the position of a call site
// relative to the farthest statically reachable SCC node. We don't mutate
// this value while inlining happens. Empirically, this feature proved
// critical in behavioral cloning - i.e. training a model to mimic the manual
// heuristic's decisions - and, thus, equally important for training for
// improvement.
for (auto I = scc_begin(CG.get()); !I.isAtEnd(); ++I) {
const std::vector<CallGraphNode *> &CGNodes = *I;
unsigned Level = 0;
for (auto *CGNode : CGNodes) {
Function *F = CGNode->getFunction();
if (!F || F->isDeclaration())
continue;
for (auto &I : instructions(F)) {
if (auto *CS = getInlinableCS(I)) {
auto *Called = CS->getCalledFunction();
auto Pos = FunctionLevels.find(Called);
// In bottom up traversal, an inlinable callee is either in the
// same SCC, or to a function in a visited SCC. So not finding its
// level means we haven't visited it yet, meaning it's in this SCC.
if (Pos == FunctionLevels.end())
continue;
Level = std::max(Level, Pos->second + 1);
}
}
}
for (auto *CGNode : CGNodes) {
Function *F = CGNode->getFunction();
if (F && !F->isDeclaration())
FunctionLevels[F] = Level;
}
}
}
void MLInlineAdvisor::onPassEntry() {
// Function passes executed between InlinerPass runs may have changed the
// module-wide features.
NodeCount = 0;
EdgeCount = 0;
for (auto &F : M)
if (!F.isDeclaration()) {
++NodeCount;
EdgeCount += getLocalCalls(F);
}
}
int64_t MLInlineAdvisor::getLocalCalls(Function &F) {
return FAM.getResult<InlineFeaturesAnalysis>(F).DirectCallsToDefinedFunctions;
}
// Update the internal state of the advisor, and force invalidate feature
// analysis. Currently, we maintain minimal (and very simple) global state - the
// number of functions and the number of static calls. We also keep track of the
// total IR size in this module, to stop misbehaving policies at a certain bloat
// factor (SizeIncreaseThreshold)
void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice,
bool CalleeWasDeleted) {
assert(!ForceStop);
Function *Caller = Advice.getCaller();
Function *Callee = Advice.getCallee();
// The caller features aren't valid anymore.
FAM.invalidate<InlineFeaturesAnalysis>(*Caller);
int64_t IRSizeAfter =
getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize);
CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize);
if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize)
ForceStop = true;
// We can delta-update module-wide features. We know the inlining only changed
// the caller, and maybe the callee (by deleting the latter).
// Nodes are simple to update.
// For edges, we 'forget' the edges that the caller and callee used to have
// before inlining, and add back what they currently have together.
int64_t NewCallerAndCalleeEdges =
FAM.getResult<InlineFeaturesAnalysis>(*Caller)
.DirectCallsToDefinedFunctions;
if (CalleeWasDeleted)
--NodeCount;
else
NewCallerAndCalleeEdges += FAM.getResult<InlineFeaturesAnalysis>(*Callee)
.DirectCallsToDefinedFunctions;
EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges);
assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
}
int64_t MLInlineAdvisor::getModuleIRSize() const {
int64_t Ret = 0;
for (auto &F : CG->getModule())
if (!F.isDeclaration())
Ret += getIRSize(F);
return Ret;
}
std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdvice(CallBase &CB) {
auto &Caller = *CB.getCaller();
auto &Callee = *CB.getCalledFunction();
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
return FAM.getResult<AssumptionAnalysis>(F);
};
auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
return FAM.getResult<TargetLibraryAnalysis>(F);
};
auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee);
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller);
auto TrivialDecision =
llvm::getAttributeBasedInliningDecision(CB, &Callee, TIR, GetTLI);
// If this is a "never inline" case, there won't be any changes to internal
// state we need to track, so we can just return the base InlineAdvice, which
// will do nothing interesting.
// Same thing if this is a recursive case.
if ((TrivialDecision.hasValue() && !TrivialDecision->isSuccess()) ||
&Caller == &Callee)
return std::make_unique<InlineAdvice>(this, CB, ORE, false);
bool Mandatory = TrivialDecision.hasValue() && TrivialDecision->isSuccess();
// If we need to stop, we won't want to track anymore any state changes, so
// we just return the base InlineAdvice, which acts as a noop.
if (ForceStop) {
ORE.emit([&] {
return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB)
<< "Won't attempt inlining because module size grew too much.";
});
return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory);
}
int CostEstimate = 0;
if (!Mandatory) {
auto IsCallSiteInlinable =
llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache);
if (!IsCallSiteInlinable) {
// We can't inline this for correctness reasons, so return the base
// InlineAdvice, as we don't care about tracking any state changes (which
// won't happen).
return std::make_unique<InlineAdvice>(this, CB, ORE, false);
}
CostEstimate = *IsCallSiteInlinable;
}
if (Mandatory)
return getMandatoryAdvice(CB, ORE);
auto NrCtantParams = 0;
for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
NrCtantParams += (isa<Constant>(*I));
}
auto &CallerBefore = FAM.getResult<InlineFeaturesAnalysis>(Caller);
auto &CalleeBefore = FAM.getResult<InlineFeaturesAnalysis>(Callee);
ModelRunner->setFeature(FeatureIndex::CalleeBasicBlockCount,
CalleeBefore.BasicBlockCount);
ModelRunner->setFeature(FeatureIndex::CallSiteHeight,
FunctionLevels[&Caller]);
ModelRunner->setFeature(FeatureIndex::NodeCount, NodeCount);
ModelRunner->setFeature(FeatureIndex::NrCtantParams, NrCtantParams);
ModelRunner->setFeature(FeatureIndex::CostEstimate, CostEstimate);
ModelRunner->setFeature(FeatureIndex::EdgeCount, EdgeCount);
ModelRunner->setFeature(FeatureIndex::CallerUsers, CallerBefore.Uses);
ModelRunner->setFeature(FeatureIndex::CallerConditionallyExecutedBlocks,
CallerBefore.BlocksReachedFromConditionalInstruction);
ModelRunner->setFeature(FeatureIndex::CallerBasicBlockCount,
CallerBefore.BasicBlockCount);
ModelRunner->setFeature(FeatureIndex::CalleeConditionallyExecutedBlocks,
CalleeBefore.BlocksReachedFromConditionalInstruction);
ModelRunner->setFeature(FeatureIndex::CalleeUsers, CalleeBefore.Uses);
return getAdviceFromModel(CB, ORE);
}
std::unique_ptr<MLInlineAdvice>
MLInlineAdvisor::getAdviceFromModel(CallBase &CB,
OptimizationRemarkEmitter &ORE) {
return std::make_unique<MLInlineAdvice>(this, CB, ORE, ModelRunner->run());
}
std::unique_ptr<MLInlineAdvice>
MLInlineAdvisor::getMandatoryAdvice(CallBase &CB,
OptimizationRemarkEmitter &ORE) {
return std::make_unique<MLInlineAdvice>(this, CB, ORE, true);
}
void MLInlineAdvice::reportContextForRemark(
DiagnosticInfoOptimizationBase &OR) {
using namespace ore;
OR << NV("Callee", Callee->getName());
for (size_t I = 0; I < NumberOfFeatures; ++I)
OR << NV(FeatureNameMap[I], getAdvisor()->getModelRunner().getFeature(I));
OR << NV("ShouldInline", isInliningRecommended());
}
void MLInlineAdvice::recordInliningImpl() {
ORE.emit([&]() {
OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block);
reportContextForRemark(R);
return R;
});
getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false);
}
void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() {
ORE.emit([&]() {
OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc,
Block);
reportContextForRemark(R);
return R;
});
getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true);
}
void MLInlineAdvice::recordUnsuccessfulInliningImpl(
const InlineResult &Result) {
ORE.emit([&]() {
OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful",
DLoc, Block);
reportContextForRemark(R);
return R;
});
}
void MLInlineAdvice::recordUnattemptedInliningImpl() {
ORE.emit([&]() {
OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block);
reportContextForRemark(R);
return R;
});
}

View File

@ -0,0 +1,87 @@
//===- ReleaseModeModelRunner.cpp - Fast, precompiled model runner -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a model runner wrapping an AOT compiled ML model.
// Only inference is supported.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/InlineModelFeatureMaps.h"
#include "llvm/Analysis/MLInlineAdvisor.h"
// codegen-ed file
#include "InlinerSizeModel.h" // NOLINT
#include <memory>
#include <vector>
using namespace llvm;
namespace {
static const char *const FeedPrefix = "feed_";
static const char *const FetchPrefix = "fetch_";
/// MLModelRunner - production mode implementation. It uses a AOT-compiled
/// SavedModel for efficient execution.
class ReleaseModeModelRunner final : public MLModelRunner {
public:
ReleaseModeModelRunner(LLVMContext &Ctx);
virtual ~ReleaseModeModelRunner() = default;
bool run() override;
void setFeature(FeatureIndex Index, int64_t Value) override;
int64_t getFeature(int Index) const override;
private:
std::vector<int32_t> FeatureIndices;
int32_t ResultIndex = -1;
std::unique_ptr<llvm::InlinerSizeModel> CompiledModel;
};
} // namespace
ReleaseModeModelRunner::ReleaseModeModelRunner(LLVMContext &Ctx)
: MLModelRunner(Ctx),
CompiledModel(std::make_unique<llvm::InlinerSizeModel>()) {
assert(CompiledModel && "The CompiledModel should be valid");
FeatureIndices.reserve(NumberOfFeatures);
for (size_t I = 0; I < NumberOfFeatures; ++I) {
const int Index =
CompiledModel->LookupArgIndex(FeedPrefix + FeatureNameMap[I]);
assert(Index >= 0 && "Cannot find Feature in inlining model");
FeatureIndices[I] = Index;
}
ResultIndex =
CompiledModel->LookupResultIndex(std::string(FetchPrefix) + DecisionName);
assert(ResultIndex >= 0 && "Cannot find DecisionName in inlining model");
}
int64_t ReleaseModeModelRunner::getFeature(int Index) const {
return *static_cast<int64_t *>(
CompiledModel->arg_data(FeatureIndices[Index]));
}
void ReleaseModeModelRunner::setFeature(FeatureIndex Index, int64_t Value) {
*static_cast<int64_t *>(CompiledModel->arg_data(
FeatureIndices[static_cast<size_t>(Index)])) = Value;
}
bool ReleaseModeModelRunner::run() {
CompiledModel->Run();
return static_cast<bool>(
*static_cast<int64_t *>(CompiledModel->result_data(ResultIndex)));
}
std::unique_ptr<InlineAdvisor>
llvm::getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM) {
auto AOTRunner = std::make_unique<ReleaseModeModelRunner>(M.getContext());
return std::make_unique<MLInlineAdvisor>(M, MAM, std::move(AOTRunner));
}

Binary file not shown.

View File

@ -9,6 +9,9 @@ if not 'go' in config.root.llvm_bindings:
if not config.root.include_go_tests:
config.unsupported = True
if config.have_tf_aot:
config.unsupported = True
def find_executable(executable, path=None):
if path is None:
path = os.environ['PATH']

View File

@ -0,0 +1,64 @@
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-grtev4-linux-gnu"
declare void @external_fct(i32)
define dso_local i32 @top() {
%a = call i32 @multiplier(i32 5)
%b = call i32 @adder(i32 10)
%ret = add nsw i32 %a, %b
call void @external_fct(i32 %ret)
ret i32 %ret
}
define internal dso_local i32 @adder(i32) {
%2 = alloca i32, align 4
store i32 %0, i32* %2, align 4
%3 = load i32, i32* %2, align 4
%4 = call i32 @multiplier(i32 %3)
%5 = load i32, i32* %2, align 4
%6 = call i32 @switcher(i32 1)
%7 = add nsw i32 %4, %6
ret i32 %7
}
define internal i32 @multiplier(i32) {
%2 = alloca i32, align 4
store i32 %0, i32* %2, align 4
%3 = load i32, i32* %2, align 4
%4 = load i32, i32* %2, align 4
%5 = mul nsw i32 %3, %4
ret i32 %5
}
define i32 @switcher(i32) {
%2 = alloca i32, align 4
%3 = alloca i32, align 4
store i32 %0, i32* %3, align 4
%4 = load i32, i32* %3, align 4
switch i32 %4, label %11 [
i32 1, label %5
i32 2, label %6
]
; <label>:5: ; preds = %1
store i32 2, i32* %2, align 4
br label %12
; <label>:6: ; preds = %1
%7 = load i32, i32* %3, align 4
%8 = load i32, i32* %3, align 4
%9 = call i32 @multiplier(i32 %8)
%10 = add nsw i32 %7, %9
store i32 %10, i32* %2, align 4
br label %12
; <label>:11: ; preds = %1
%adder.result = call i32 @adder(i32 2)
store i32 %adder.result, i32* %2, align 4
br label %12
; <label>:12: ; preds = %11, %6, %5
%13 = load i32, i32* %2, align 4
ret i32 %13
}

View File

@ -0,0 +1,41 @@
; Test behavior when inlining policy grows size out of control.
; In all cases, the end result is the same: mandatory inlinings must happen.
; However, when we discover we 'trip' over the artificially-low size increase
; factor, we don't inline anymore.
; REQUIRES: have_tf_aot
; RUN: opt -passes=scc-oz-module-inliner -enable-ml-inliner=release -ml-advisor-size-increase-threshold=10.0 -S < %s 2>&1 | FileCheck %s --check-prefix=CHECK --check-prefix=NOBOUNDS
; RUN: opt -passes=scc-oz-module-inliner -enable-ml-inliner=release -ml-advisor-size-increase-threshold=1.0 -S < %s 2>&1 | FileCheck %s --check-prefix=CHECK --check-prefix=BOUNDS
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-grtev4-linux-gnu"
declare i64 @f1()
define i64 @f2() #0 {
%r = call i64 @f1()
%r2 = add i64 13, %r
ret i64 %r2
}
define i64 @some_function() {
%r = call i64 @f1()
%r2 = add i64 13, %r
ret i64 %r2
}
define i64 @top() {
%r = call i64 @f2()
%r2 = call i64 @some_function()
%r3 = add i64 %r, %r2
ret i64 %r3
}
attributes #0 = { alwaysinline }
; CHECK-LABEL: @top
; f2 must always be inlined, so we won't find a call to it in @top()
; CHECK-NOT: call i64 @f2
; @some-function isn't mandatory, and when we set the increase threshold too low,
; it won't be inlined.
; NOBOUNDS-NOT: @some_function
; BOUNDS: call i64 @some_function

View File

@ -0,0 +1,14 @@
; The default inliner doesn't elide @adder, it believes it's too costly to inline
; adder into switcher. The ML inliner carries out that inlining, resulting in
; a smaller result (part of it is that adder gets elided).
;
; This test uses Inputs/test-module.ll, as it will share it with a similar test
; for the 'development' mode.
;
; REQUIRES: have_tf_aot
; RUN: opt -passes=scc-oz-module-inliner -enable-ml-inliner=release -S < %S/Inputs/test-module.ll 2>&1 | FileCheck %s --check-prefix=CHECK
; RUN: opt -passes=scc-oz-module-inliner -enable-ml-inliner=default -S < %S/Inputs/test-module.ll 2>&1 | FileCheck %s --check-prefix=DEFAULT
; CHECK-NOT: @adder
; DEFAULT-LABEL: @adder
; DEFAULT-NEXT: %2 = mul

View File

@ -1,6 +1,6 @@
; Check that, in the absence of dependencies, we emit an error message when
; trying to use ML-driven inlining.
;
; REQUIRES: !have_tf_aot
; RUN: not opt -passes=scc-oz-module-inliner -enable-ml-inliner=development -S < %s 2>&1 | FileCheck %s
; RUN: not opt -passes=scc-oz-module-inliner -enable-ml-inliner=release -S < %s 2>&1 | FileCheck %s

View File

@ -219,6 +219,9 @@ else:
if not config.build_shared_libs and not config.link_llvm_dylib:
config.available_features.add('static-libs')
if config.have_tf_aot:
config.available_features.add("have_tf_aot")
def have_cxx_shared_library():
readobj_exe = lit.util.which('llvm-readobj', config.llvm_tools_dir)
if not readobj_exe:

View File

@ -48,6 +48,7 @@ config.have_opt_viewer_modules = @LLVM_HAVE_OPT_VIEWER_MODULES@
config.libcxx_used = @LLVM_LIBCXX_USED@
config.has_plugins = @LLVM_ENABLE_PLUGINS@
config.linked_bye_extension = @LLVM_BYE_LINK_INTO_TOOLS@
config.have_tf_aot = ("@LLVM_HAVE_TF_AOT@" == "ON")
# Support substitution of the tools_dir with user parameters. This is
# used when we can't determine the tool dir at configuration time.