forked from OSchip/llvm-project
[llvm] Release-mode ML InlineAdvisor
Summary: This implementation uses a pre-trained model which is statically compiled into a native function. RFC: http://lists.llvm.org/pipermail/llvm-dev/2020-April/140763.html Reviewers: davidxl, jdoerfert, dblaikie Subscribers: mgorny, eraman, hiraditya, arphaman, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D81515
This commit is contained in:
parent
62841415e6
commit
bdceefe95b
|
@ -962,6 +962,25 @@ if( MINGW AND NOT "${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang" )
|
|||
llvm_replace_compiler_option(CMAKE_CXX_FLAGS_RELEASE "-O3" "-O2")
|
||||
endif()
|
||||
|
||||
# For up-to-date instructions for installing the Tensorflow dependency, refer to
|
||||
# the bot setup script: https://github.com/google/ml-compiler-opt/blob/master/buildbot/buildbot_init.sh
|
||||
# Specifically, assuming python3 is installed:
|
||||
# python3 -m pip install --upgrade pip && python3 -m pip install --user tf_nightly==2.3.0.dev20200528
|
||||
# Then set TENSORFLOW_AOT_PATH to the package install - usually it's ~/.local/lib/python3.7/site-packages/tensorflow
|
||||
#
|
||||
set(TENSORFLOW_AOT_PATH "" CACHE PATH "Path to TensorFlow pip install dir")
|
||||
|
||||
if (NOT TENSORFLOW_AOT_PATH STREQUAL "")
|
||||
set(LLVM_HAVE_TF_AOT "ON" CACHE BOOL "Tensorflow AOT available")
|
||||
set(TENSORFLOW_AOT_COMPILER
|
||||
"${TENSORFLOW_AOT_PATH}/../../../../bin/saved_model_cli"
|
||||
CACHE PATH "Path to the Tensorflow AOT compiler")
|
||||
add_definitions("-DLLVM_HAVE_TF_AOT")
|
||||
include_directories(${TENSORFLOW_AOT_PATH}/include)
|
||||
add_subdirectory(${TENSORFLOW_AOT_PATH}/xla_aot_runtime_src
|
||||
${CMAKE_ARCHIVE_OUTPUT_DIRECTORY}/tf_runtime)
|
||||
endif()
|
||||
|
||||
# Put this before tblgen. Else we have a circular dependence.
|
||||
add_subdirectory(lib/Demangle)
|
||||
add_subdirectory(lib/Support)
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
# Run the tensorflow compiler (saved_model_cli) on the saved model in the
|
||||
# ${model} directory, looking for the ${tag_set} tag set, and the SignatureDef
|
||||
# ${signature_def_key}.
|
||||
# Produce a pair of files called ${fname}.h and ${fname}.o in the
|
||||
# ${CMAKE_CURRENT_BINARY_DIR}. The generated header will define a C++ class
|
||||
# called ${cpp_class} - which may be a namespace-qualified class name.
|
||||
function(tfcompile model tag_set signature_def_key fname cpp_class)
|
||||
if (IS_ABSOLUTE ${model})
|
||||
set(LLVM_ML_MODELS_ABSOLUTE ${model})
|
||||
else()
|
||||
set(LLVM_ML_MODELS_ABSOLUTE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/${model})
|
||||
endif()
|
||||
|
||||
set(prefix ${CMAKE_CURRENT_BINARY_DIR}/${fname})
|
||||
set(obj_file ${prefix}.o)
|
||||
set(hdr_file ${prefix}.h)
|
||||
add_custom_command(OUTPUT ${obj_file} ${hdr_file}
|
||||
COMMAND "XLA_FLAGS=\"--xla_cpu_multi_thread_eigen=false\"" ${TENSORFLOW_AOT_COMPILER} aot_compile_cpu
|
||||
--dir ${LLVM_ML_MODELS_ABSOLUTE}
|
||||
--tag_set ${tag_set}
|
||||
--signature_def_key ${signature_def_key}
|
||||
--output_prefix ${prefix}
|
||||
--cpp_class ${cpp_class}
|
||||
--target_triple ${LLVM_HOST_TRIPLE}
|
||||
)
|
||||
|
||||
# Aggregate the objects so that results of different tfcompile calls may be
|
||||
# grouped into one target.
|
||||
set(GENERATED_OBJS ${GENERATED_OBJS} ${obj_file} PARENT_SCOPE)
|
||||
set_source_files_properties(${obj_file} PROPERTIES
|
||||
GENERATED 1 EXTERNAL_OBJECT 1)
|
||||
|
||||
set(GENERATED_HEADERS ${GENERATED_HEADERS} ${hdr_file} PARENT_SCOPE)
|
||||
set_source_files_properties(${hdr_file} PROPERTIES
|
||||
GENERATED 1)
|
||||
|
||||
endfunction()
|
|
@ -203,6 +203,11 @@ public:
|
|||
Result run(Module &M, ModuleAnalysisManager &MAM) { return Result(M, MAM); }
|
||||
};
|
||||
|
||||
#ifdef LLVM_HAVE_TF_AOT
|
||||
std::unique_ptr<InlineAdvisor>
|
||||
getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM);
|
||||
#endif
|
||||
|
||||
// Default (manual policy) decision making helper APIs. Shared with the legacy
|
||||
// pass manager inliner.
|
||||
|
||||
|
|
|
@ -0,0 +1,70 @@
|
|||
//===- InlineModelFeatureMaps.h - common model runner defs ------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_INLINEMODELFEATUREMAPS_H
|
||||
#define LLVM_ANALYSIS_INLINEMODELFEATUREMAPS_H
|
||||
|
||||
#include <array>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
// List of features. Each feature is defined through a triple:
|
||||
// - the name of an enum member, which will be the feature index
|
||||
// - a textual name, used for Tensorflow model binding (so it needs to match the
|
||||
// names used by the Tensorflow model)
|
||||
// - a documentation description. Currently, that is not used anywhere
|
||||
// programmatically, and serves as workaround to inability of inserting comments
|
||||
// in macros.
|
||||
#define INLINE_FEATURE_ITERATOR(M) \
|
||||
M(CalleeBasicBlockCount, "callee_basic_block_count", \
|
||||
"number of basic blocks of the callee") \
|
||||
M(CallSiteHeight, "callsite_height", \
|
||||
"position of the call site in the original call graph - measured from " \
|
||||
"the farthest SCC") \
|
||||
M(NodeCount, "node_count", \
|
||||
"total current number of defined functions in the module") \
|
||||
M(NrCtantParams, "nr_ctant_params", \
|
||||
"number of parameters in the call site that are constants") \
|
||||
M(CostEstimate, "cost_estimate", "total cost estimate (threshold - free)") \
|
||||
M(EdgeCount, "edge_count", \
|
||||
"number of module-internal users of the caller, +1 if the caller is " \
|
||||
"exposed externally") \
|
||||
M(CallerUsers, "caller_users", \
|
||||
"number of blocks reached from a conditional instruction, in the caller") \
|
||||
M(CallerConditionallyExecutedBlocks, "caller_conditionally_executed_blocks", \
|
||||
"number of blocks reached from a conditional instruction, in the caller") \
|
||||
M(CallerBasicBlockCount, "caller_basic_block_count", \
|
||||
"number of basic blocks in the caller") \
|
||||
M(CalleeConditionallyExecutedBlocks, "callee_conditionally_executed_blocks", \
|
||||
"number of blocks reached from a conditional instruction, in the callee") \
|
||||
M(CalleeUsers, "callee_users", \
|
||||
"number of blocks reached from a conditional instruction, in the callee")
|
||||
|
||||
enum class FeatureIndex : size_t {
|
||||
#define POPULATE_INDICES(INDEX_NAME, NAME, COMMENT) INDEX_NAME,
|
||||
INLINE_FEATURE_ITERATOR(POPULATE_INDICES)
|
||||
#undef POPULATE_INDICES
|
||||
NumberOfFeatures
|
||||
};
|
||||
|
||||
constexpr size_t NumberOfFeatures =
|
||||
static_cast<size_t>(FeatureIndex::NumberOfFeatures);
|
||||
|
||||
extern const std::array<std::string, NumberOfFeatures> FeatureNameMap;
|
||||
|
||||
extern const char *const DecisionName;
|
||||
extern const char *const DefaultDecisionName;
|
||||
extern const char *const RewardName;
|
||||
|
||||
using InlineFeatures = std::vector<int64_t>;
|
||||
|
||||
} // namespace llvm
|
||||
#endif // LLVM_ANALYSIS_INLINEMODELFEATUREMAPS_H
|
|
@ -0,0 +1,107 @@
|
|||
//===- MLInlineAdvisor.h - ML - based InlineAdvisor factories ---*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_MLINLINEADVISOR_H
|
||||
#define LLVM_ANALYSIS_MLINLINEADVISOR_H
|
||||
|
||||
#include "llvm/Analysis/CallGraph.h"
|
||||
#include "llvm/Analysis/InlineAdvisor.h"
|
||||
#include "llvm/Analysis/MLModelRunner.h"
|
||||
#include "llvm/IR/PassManager.h"
|
||||
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
|
||||
namespace llvm {
|
||||
class Module;
|
||||
class MLInlineAdvice;
|
||||
|
||||
class MLInlineAdvisor : public InlineAdvisor {
|
||||
public:
|
||||
MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM,
|
||||
std::unique_ptr<MLModelRunner> ModelRunner);
|
||||
|
||||
CallGraph *callGraph() const { return CG.get(); }
|
||||
virtual ~MLInlineAdvisor() = default;
|
||||
|
||||
void onPassEntry() override;
|
||||
|
||||
std::unique_ptr<InlineAdvice> getAdvice(CallBase &CB) override;
|
||||
|
||||
int64_t getIRSize(const Function &F) const { return F.getInstructionCount(); }
|
||||
void onSuccessfulInlining(const MLInlineAdvice &Advice,
|
||||
bool CalleeWasDeleted);
|
||||
|
||||
bool isForcedToStop() const { return ForceStop; }
|
||||
int64_t getLocalCalls(Function &F);
|
||||
const MLModelRunner &getModelRunner() const { return *ModelRunner.get(); }
|
||||
|
||||
protected:
|
||||
virtual std::unique_ptr<MLInlineAdvice>
|
||||
getMandatoryAdvice(CallBase &CB, OptimizationRemarkEmitter &ORE);
|
||||
|
||||
virtual std::unique_ptr<MLInlineAdvice>
|
||||
getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE);
|
||||
|
||||
Module &M;
|
||||
std::unique_ptr<MLModelRunner> ModelRunner;
|
||||
|
||||
private:
|
||||
int64_t getModuleIRSize() const;
|
||||
|
||||
std::unique_ptr<CallGraph> CG;
|
||||
|
||||
int64_t NodeCount = 0;
|
||||
int64_t EdgeCount = 0;
|
||||
std::map<const Function *, unsigned> FunctionLevels;
|
||||
const int32_t InitialIRSize = 0;
|
||||
int32_t CurrentIRSize = 0;
|
||||
|
||||
bool ForceStop = false;
|
||||
};
|
||||
|
||||
/// InlineAdvice that tracks changes post inlining. For that reason, it only
|
||||
/// overrides the "successful inlining" extension points.
|
||||
class MLInlineAdvice : public InlineAdvice {
|
||||
public:
|
||||
MLInlineAdvice(MLInlineAdvisor *Advisor, CallBase &CB,
|
||||
OptimizationRemarkEmitter &ORE, bool Recommendation)
|
||||
: InlineAdvice(Advisor, CB, ORE, Recommendation),
|
||||
CallerIRSize(Advisor->isForcedToStop() ? 0
|
||||
: Advisor->getIRSize(*Caller)),
|
||||
CalleeIRSize(Advisor->isForcedToStop() ? 0
|
||||
: Advisor->getIRSize(*Callee)),
|
||||
CallerAndCalleeEdges(Advisor->isForcedToStop()
|
||||
? 0
|
||||
: (Advisor->getLocalCalls(*Caller) +
|
||||
Advisor->getLocalCalls(*Callee))) {}
|
||||
virtual ~MLInlineAdvice() = default;
|
||||
|
||||
void recordInliningImpl() override;
|
||||
void recordInliningWithCalleeDeletedImpl() override;
|
||||
void recordUnsuccessfulInliningImpl(const InlineResult &Result) override;
|
||||
void recordUnattemptedInliningImpl() override;
|
||||
|
||||
Function *getCaller() const { return Caller; }
|
||||
Function *getCallee() const { return Callee; }
|
||||
|
||||
const int64_t CallerIRSize;
|
||||
const int64_t CalleeIRSize;
|
||||
const int64_t CallerAndCalleeEdges;
|
||||
|
||||
private:
|
||||
void reportContextForRemark(DiagnosticInfoOptimizationBase &OR);
|
||||
|
||||
MLInlineAdvisor *getAdvisor() const {
|
||||
return static_cast<MLInlineAdvisor *>(Advisor);
|
||||
};
|
||||
};
|
||||
|
||||
} // namespace llvm
|
||||
|
||||
#endif // LLVM_ANALYSIS_MLINLINEADVISOR_H
|
|
@ -0,0 +1,39 @@
|
|||
//===- MLModelRunner.h ---- ML model runner interface -----------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_MLMODELRUNNER_H
|
||||
#define LLVM_ANALYSIS_MLMODELRUNNER_H
|
||||
|
||||
#include "llvm/Analysis/InlineModelFeatureMaps.h"
|
||||
#include "llvm/IR/LLVMContext.h"
|
||||
#include "llvm/IR/PassManager.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
/// MLModelRunner interface: abstraction of a mechanism for evaluating a
|
||||
/// tensorflow "saved model".
|
||||
class MLModelRunner {
|
||||
public:
|
||||
// Disallows copy and assign.
|
||||
MLModelRunner(const MLModelRunner &) = delete;
|
||||
MLModelRunner &operator=(const MLModelRunner &) = delete;
|
||||
virtual ~MLModelRunner() = default;
|
||||
|
||||
virtual bool run() = 0;
|
||||
virtual void setFeature(FeatureIndex Index, int64_t Value) = 0;
|
||||
virtual int64_t getFeature(int Index) const = 0;
|
||||
|
||||
protected:
|
||||
MLModelRunner(LLVMContext &Ctx) : Ctx(Ctx) {}
|
||||
|
||||
LLVMContext &Ctx;
|
||||
};
|
||||
} // namespace llvm
|
||||
|
||||
#endif // LLVM_ANALYSIS_MLMODELRUNNER_H
|
|
@ -1,3 +1,18 @@
|
|||
set(CommonMLSources MLInlineAdvisor.cpp)
|
||||
set(ReleaseModeMLSources ReleaseModeModelRunner.cpp)
|
||||
|
||||
if (DEFINED LLVM_HAVE_TF_AOT)
|
||||
include(TensorFlowCompile)
|
||||
tfcompile(models/inliner serve action InlinerSizeModel llvm::InlinerSizeModel)
|
||||
list(APPEND ReleaseModeMLSources
|
||||
$<TARGET_OBJECTS:tf_xla_runtime_objects>
|
||||
${GENERATED_OBJS}
|
||||
)
|
||||
set(MLPolicySources ${CommonMLSources} ${ReleaseModeMLSources})
|
||||
else()
|
||||
set(LLVM_OPTIONAL_SOURCES ${CommonMLSources} ${ReleaseModeMLSources})
|
||||
endif()
|
||||
|
||||
add_llvm_component_library(LLVMAnalysis
|
||||
AliasAnalysis.cpp
|
||||
AliasAnalysisEvaluator.cpp
|
||||
|
@ -102,6 +117,7 @@ add_llvm_component_library(LLVMAnalysis
|
|||
ValueTracking.cpp
|
||||
VectorUtils.cpp
|
||||
VFABIDemangling.cpp
|
||||
${MLPolicySources}
|
||||
|
||||
ADDITIONAL_HEADER_DIRS
|
||||
${LLVM_MAIN_INCLUDE_DIR}/llvm/Analysis
|
||||
|
|
|
@ -155,7 +155,9 @@ bool InlineAdvisorAnalysis::Result::tryCreate(InlineParams Params,
|
|||
// To be added subsequently under conditional compilation.
|
||||
break;
|
||||
case InliningAdvisorMode::Release:
|
||||
// To be added subsequently under conditional compilation.
|
||||
#ifdef LLVM_HAVE_TF_AOT
|
||||
Advisor = llvm::getReleaseModeAdvisor(M, MAM);
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
return !!Advisor;
|
||||
|
|
|
@ -0,0 +1,301 @@
|
|||
//===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the interface between the inliner and a learned model.
|
||||
// It delegates model evaluation to either the AOT compiled model (the
|
||||
// 'release' mode) or a runtime-loaded model (the 'development' case).
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
#include <limits>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
|
||||
#include "llvm/ADT/SCCIterator.h"
|
||||
#include "llvm/Analysis/CallGraph.h"
|
||||
#include "llvm/Analysis/InlineCost.h"
|
||||
#include "llvm/Analysis/InlineFeaturesAnalysis.h"
|
||||
#include "llvm/Analysis/MLInlineAdvisor.h"
|
||||
#include "llvm/Analysis/MLModelRunner.h"
|
||||
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||||
#include "llvm/IR/InstIterator.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/PassManager.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/Path.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
#define DEBUG_TYPE "inline-ml"
|
||||
|
||||
static cl::opt<float> SizeIncreaseThreshold(
|
||||
"ml-advisor-size-increase-threshold", cl::Hidden,
|
||||
cl::desc("Maximum factor by which expected native size may increase before "
|
||||
"blocking any further inlining."),
|
||||
cl::init(2.0));
|
||||
|
||||
const std::array<std::string, NumberOfFeatures> llvm::FeatureNameMap{
|
||||
#define POPULATE_NAMES(INDEX_NAME, NAME, COMMENT) NAME,
|
||||
INLINE_FEATURE_ITERATOR(POPULATE_NAMES)
|
||||
#undef POPULATE_NAMES
|
||||
};
|
||||
|
||||
const char *const llvm::DecisionName = "inlining_decision";
|
||||
const char *const llvm::DefaultDecisionName = "inlining_default";
|
||||
const char *const llvm::RewardName = "delta_size";
|
||||
|
||||
CallBase *getInlinableCS(Instruction &I) {
|
||||
if (auto *CS = dyn_cast<CallBase>(&I))
|
||||
if (Function *Callee = CS->getCalledFunction()) {
|
||||
if (!Callee->isDeclaration()) {
|
||||
return CS;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
MLInlineAdvisor::MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM,
|
||||
std::unique_ptr<MLModelRunner> Runner)
|
||||
: InlineAdvisor(
|
||||
MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()),
|
||||
M(M), ModelRunner(std::move(Runner)), CG(new CallGraph(M)),
|
||||
InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) {
|
||||
assert(ModelRunner);
|
||||
|
||||
// Extract the 'call site height' feature - the position of a call site
|
||||
// relative to the farthest statically reachable SCC node. We don't mutate
|
||||
// this value while inlining happens. Empirically, this feature proved
|
||||
// critical in behavioral cloning - i.e. training a model to mimic the manual
|
||||
// heuristic's decisions - and, thus, equally important for training for
|
||||
// improvement.
|
||||
for (auto I = scc_begin(CG.get()); !I.isAtEnd(); ++I) {
|
||||
const std::vector<CallGraphNode *> &CGNodes = *I;
|
||||
unsigned Level = 0;
|
||||
for (auto *CGNode : CGNodes) {
|
||||
Function *F = CGNode->getFunction();
|
||||
if (!F || F->isDeclaration())
|
||||
continue;
|
||||
for (auto &I : instructions(F)) {
|
||||
if (auto *CS = getInlinableCS(I)) {
|
||||
auto *Called = CS->getCalledFunction();
|
||||
auto Pos = FunctionLevels.find(Called);
|
||||
// In bottom up traversal, an inlinable callee is either in the
|
||||
// same SCC, or to a function in a visited SCC. So not finding its
|
||||
// level means we haven't visited it yet, meaning it's in this SCC.
|
||||
if (Pos == FunctionLevels.end())
|
||||
continue;
|
||||
Level = std::max(Level, Pos->second + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (auto *CGNode : CGNodes) {
|
||||
Function *F = CGNode->getFunction();
|
||||
if (F && !F->isDeclaration())
|
||||
FunctionLevels[F] = Level;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void MLInlineAdvisor::onPassEntry() {
|
||||
// Function passes executed between InlinerPass runs may have changed the
|
||||
// module-wide features.
|
||||
NodeCount = 0;
|
||||
EdgeCount = 0;
|
||||
for (auto &F : M)
|
||||
if (!F.isDeclaration()) {
|
||||
++NodeCount;
|
||||
EdgeCount += getLocalCalls(F);
|
||||
}
|
||||
}
|
||||
|
||||
int64_t MLInlineAdvisor::getLocalCalls(Function &F) {
|
||||
return FAM.getResult<InlineFeaturesAnalysis>(F).DirectCallsToDefinedFunctions;
|
||||
}
|
||||
|
||||
// Update the internal state of the advisor, and force invalidate feature
|
||||
// analysis. Currently, we maintain minimal (and very simple) global state - the
|
||||
// number of functions and the number of static calls. We also keep track of the
|
||||
// total IR size in this module, to stop misbehaving policies at a certain bloat
|
||||
// factor (SizeIncreaseThreshold)
|
||||
void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice,
|
||||
bool CalleeWasDeleted) {
|
||||
assert(!ForceStop);
|
||||
Function *Caller = Advice.getCaller();
|
||||
Function *Callee = Advice.getCallee();
|
||||
|
||||
// The caller features aren't valid anymore.
|
||||
FAM.invalidate<InlineFeaturesAnalysis>(*Caller);
|
||||
int64_t IRSizeAfter =
|
||||
getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize);
|
||||
CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize);
|
||||
if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize)
|
||||
ForceStop = true;
|
||||
|
||||
// We can delta-update module-wide features. We know the inlining only changed
|
||||
// the caller, and maybe the callee (by deleting the latter).
|
||||
// Nodes are simple to update.
|
||||
// For edges, we 'forget' the edges that the caller and callee used to have
|
||||
// before inlining, and add back what they currently have together.
|
||||
int64_t NewCallerAndCalleeEdges =
|
||||
FAM.getResult<InlineFeaturesAnalysis>(*Caller)
|
||||
.DirectCallsToDefinedFunctions;
|
||||
|
||||
if (CalleeWasDeleted)
|
||||
--NodeCount;
|
||||
else
|
||||
NewCallerAndCalleeEdges += FAM.getResult<InlineFeaturesAnalysis>(*Callee)
|
||||
.DirectCallsToDefinedFunctions;
|
||||
EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges);
|
||||
assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
|
||||
}
|
||||
|
||||
int64_t MLInlineAdvisor::getModuleIRSize() const {
|
||||
int64_t Ret = 0;
|
||||
for (auto &F : CG->getModule())
|
||||
if (!F.isDeclaration())
|
||||
Ret += getIRSize(F);
|
||||
return Ret;
|
||||
}
|
||||
|
||||
std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdvice(CallBase &CB) {
|
||||
auto &Caller = *CB.getCaller();
|
||||
auto &Callee = *CB.getCalledFunction();
|
||||
|
||||
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
|
||||
return FAM.getResult<AssumptionAnalysis>(F);
|
||||
};
|
||||
auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
|
||||
return FAM.getResult<TargetLibraryAnalysis>(F);
|
||||
};
|
||||
|
||||
auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee);
|
||||
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller);
|
||||
|
||||
auto TrivialDecision =
|
||||
llvm::getAttributeBasedInliningDecision(CB, &Callee, TIR, GetTLI);
|
||||
|
||||
// If this is a "never inline" case, there won't be any changes to internal
|
||||
// state we need to track, so we can just return the base InlineAdvice, which
|
||||
// will do nothing interesting.
|
||||
// Same thing if this is a recursive case.
|
||||
if ((TrivialDecision.hasValue() && !TrivialDecision->isSuccess()) ||
|
||||
&Caller == &Callee)
|
||||
return std::make_unique<InlineAdvice>(this, CB, ORE, false);
|
||||
|
||||
bool Mandatory = TrivialDecision.hasValue() && TrivialDecision->isSuccess();
|
||||
|
||||
// If we need to stop, we won't want to track anymore any state changes, so
|
||||
// we just return the base InlineAdvice, which acts as a noop.
|
||||
if (ForceStop) {
|
||||
ORE.emit([&] {
|
||||
return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB)
|
||||
<< "Won't attempt inlining because module size grew too much.";
|
||||
});
|
||||
return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory);
|
||||
}
|
||||
|
||||
int CostEstimate = 0;
|
||||
if (!Mandatory) {
|
||||
auto IsCallSiteInlinable =
|
||||
llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache);
|
||||
if (!IsCallSiteInlinable) {
|
||||
// We can't inline this for correctness reasons, so return the base
|
||||
// InlineAdvice, as we don't care about tracking any state changes (which
|
||||
// won't happen).
|
||||
return std::make_unique<InlineAdvice>(this, CB, ORE, false);
|
||||
}
|
||||
CostEstimate = *IsCallSiteInlinable;
|
||||
}
|
||||
|
||||
if (Mandatory)
|
||||
return getMandatoryAdvice(CB, ORE);
|
||||
|
||||
auto NrCtantParams = 0;
|
||||
for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
|
||||
NrCtantParams += (isa<Constant>(*I));
|
||||
}
|
||||
|
||||
auto &CallerBefore = FAM.getResult<InlineFeaturesAnalysis>(Caller);
|
||||
auto &CalleeBefore = FAM.getResult<InlineFeaturesAnalysis>(Callee);
|
||||
|
||||
ModelRunner->setFeature(FeatureIndex::CalleeBasicBlockCount,
|
||||
CalleeBefore.BasicBlockCount);
|
||||
ModelRunner->setFeature(FeatureIndex::CallSiteHeight,
|
||||
FunctionLevels[&Caller]);
|
||||
ModelRunner->setFeature(FeatureIndex::NodeCount, NodeCount);
|
||||
ModelRunner->setFeature(FeatureIndex::NrCtantParams, NrCtantParams);
|
||||
ModelRunner->setFeature(FeatureIndex::CostEstimate, CostEstimate);
|
||||
ModelRunner->setFeature(FeatureIndex::EdgeCount, EdgeCount);
|
||||
ModelRunner->setFeature(FeatureIndex::CallerUsers, CallerBefore.Uses);
|
||||
ModelRunner->setFeature(FeatureIndex::CallerConditionallyExecutedBlocks,
|
||||
CallerBefore.BlocksReachedFromConditionalInstruction);
|
||||
ModelRunner->setFeature(FeatureIndex::CallerBasicBlockCount,
|
||||
CallerBefore.BasicBlockCount);
|
||||
ModelRunner->setFeature(FeatureIndex::CalleeConditionallyExecutedBlocks,
|
||||
CalleeBefore.BlocksReachedFromConditionalInstruction);
|
||||
ModelRunner->setFeature(FeatureIndex::CalleeUsers, CalleeBefore.Uses);
|
||||
return getAdviceFromModel(CB, ORE);
|
||||
}
|
||||
|
||||
std::unique_ptr<MLInlineAdvice>
|
||||
MLInlineAdvisor::getAdviceFromModel(CallBase &CB,
|
||||
OptimizationRemarkEmitter &ORE) {
|
||||
return std::make_unique<MLInlineAdvice>(this, CB, ORE, ModelRunner->run());
|
||||
}
|
||||
|
||||
std::unique_ptr<MLInlineAdvice>
|
||||
MLInlineAdvisor::getMandatoryAdvice(CallBase &CB,
|
||||
OptimizationRemarkEmitter &ORE) {
|
||||
return std::make_unique<MLInlineAdvice>(this, CB, ORE, true);
|
||||
}
|
||||
|
||||
void MLInlineAdvice::reportContextForRemark(
|
||||
DiagnosticInfoOptimizationBase &OR) {
|
||||
using namespace ore;
|
||||
OR << NV("Callee", Callee->getName());
|
||||
for (size_t I = 0; I < NumberOfFeatures; ++I)
|
||||
OR << NV(FeatureNameMap[I], getAdvisor()->getModelRunner().getFeature(I));
|
||||
OR << NV("ShouldInline", isInliningRecommended());
|
||||
}
|
||||
|
||||
void MLInlineAdvice::recordInliningImpl() {
|
||||
ORE.emit([&]() {
|
||||
OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block);
|
||||
reportContextForRemark(R);
|
||||
return R;
|
||||
});
|
||||
getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false);
|
||||
}
|
||||
|
||||
void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() {
|
||||
ORE.emit([&]() {
|
||||
OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc,
|
||||
Block);
|
||||
reportContextForRemark(R);
|
||||
return R;
|
||||
});
|
||||
getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true);
|
||||
}
|
||||
|
||||
void MLInlineAdvice::recordUnsuccessfulInliningImpl(
|
||||
const InlineResult &Result) {
|
||||
ORE.emit([&]() {
|
||||
OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful",
|
||||
DLoc, Block);
|
||||
reportContextForRemark(R);
|
||||
return R;
|
||||
});
|
||||
}
|
||||
void MLInlineAdvice::recordUnattemptedInliningImpl() {
|
||||
ORE.emit([&]() {
|
||||
OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block);
|
||||
reportContextForRemark(R);
|
||||
return R;
|
||||
});
|
||||
}
|
|
@ -0,0 +1,87 @@
|
|||
//===- ReleaseModeModelRunner.cpp - Fast, precompiled model runner -------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements a model runner wrapping an AOT compiled ML model.
|
||||
// Only inference is supported.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/InlineModelFeatureMaps.h"
|
||||
#include "llvm/Analysis/MLInlineAdvisor.h"
|
||||
|
||||
// codegen-ed file
|
||||
#include "InlinerSizeModel.h" // NOLINT
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
using namespace llvm;
|
||||
namespace {
|
||||
|
||||
static const char *const FeedPrefix = "feed_";
|
||||
static const char *const FetchPrefix = "fetch_";
|
||||
|
||||
/// MLModelRunner - production mode implementation. It uses a AOT-compiled
|
||||
/// SavedModel for efficient execution.
|
||||
class ReleaseModeModelRunner final : public MLModelRunner {
|
||||
public:
|
||||
ReleaseModeModelRunner(LLVMContext &Ctx);
|
||||
virtual ~ReleaseModeModelRunner() = default;
|
||||
|
||||
bool run() override;
|
||||
|
||||
void setFeature(FeatureIndex Index, int64_t Value) override;
|
||||
int64_t getFeature(int Index) const override;
|
||||
|
||||
private:
|
||||
std::vector<int32_t> FeatureIndices;
|
||||
int32_t ResultIndex = -1;
|
||||
std::unique_ptr<llvm::InlinerSizeModel> CompiledModel;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
ReleaseModeModelRunner::ReleaseModeModelRunner(LLVMContext &Ctx)
|
||||
: MLModelRunner(Ctx),
|
||||
CompiledModel(std::make_unique<llvm::InlinerSizeModel>()) {
|
||||
assert(CompiledModel && "The CompiledModel should be valid");
|
||||
|
||||
FeatureIndices.reserve(NumberOfFeatures);
|
||||
|
||||
for (size_t I = 0; I < NumberOfFeatures; ++I) {
|
||||
const int Index =
|
||||
CompiledModel->LookupArgIndex(FeedPrefix + FeatureNameMap[I]);
|
||||
assert(Index >= 0 && "Cannot find Feature in inlining model");
|
||||
FeatureIndices[I] = Index;
|
||||
}
|
||||
|
||||
ResultIndex =
|
||||
CompiledModel->LookupResultIndex(std::string(FetchPrefix) + DecisionName);
|
||||
assert(ResultIndex >= 0 && "Cannot find DecisionName in inlining model");
|
||||
}
|
||||
|
||||
int64_t ReleaseModeModelRunner::getFeature(int Index) const {
|
||||
return *static_cast<int64_t *>(
|
||||
CompiledModel->arg_data(FeatureIndices[Index]));
|
||||
}
|
||||
|
||||
void ReleaseModeModelRunner::setFeature(FeatureIndex Index, int64_t Value) {
|
||||
*static_cast<int64_t *>(CompiledModel->arg_data(
|
||||
FeatureIndices[static_cast<size_t>(Index)])) = Value;
|
||||
}
|
||||
|
||||
bool ReleaseModeModelRunner::run() {
|
||||
CompiledModel->Run();
|
||||
return static_cast<bool>(
|
||||
*static_cast<int64_t *>(CompiledModel->result_data(ResultIndex)));
|
||||
}
|
||||
|
||||
std::unique_ptr<InlineAdvisor>
|
||||
llvm::getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM) {
|
||||
auto AOTRunner = std::make_unique<ReleaseModeModelRunner>(M.getContext());
|
||||
return std::make_unique<MLInlineAdvisor>(M, MAM, std::move(AOTRunner));
|
||||
}
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -9,6 +9,9 @@ if not 'go' in config.root.llvm_bindings:
|
|||
if not config.root.include_go_tests:
|
||||
config.unsupported = True
|
||||
|
||||
if config.have_tf_aot:
|
||||
config.unsupported = True
|
||||
|
||||
def find_executable(executable, path=None):
|
||||
if path is None:
|
||||
path = os.environ['PATH']
|
||||
|
|
|
@ -0,0 +1,64 @@
|
|||
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
|
||||
target triple = "x86_64-grtev4-linux-gnu"
|
||||
|
||||
declare void @external_fct(i32)
|
||||
|
||||
define dso_local i32 @top() {
|
||||
%a = call i32 @multiplier(i32 5)
|
||||
%b = call i32 @adder(i32 10)
|
||||
%ret = add nsw i32 %a, %b
|
||||
call void @external_fct(i32 %ret)
|
||||
ret i32 %ret
|
||||
}
|
||||
|
||||
define internal dso_local i32 @adder(i32) {
|
||||
%2 = alloca i32, align 4
|
||||
store i32 %0, i32* %2, align 4
|
||||
%3 = load i32, i32* %2, align 4
|
||||
%4 = call i32 @multiplier(i32 %3)
|
||||
%5 = load i32, i32* %2, align 4
|
||||
%6 = call i32 @switcher(i32 1)
|
||||
%7 = add nsw i32 %4, %6
|
||||
ret i32 %7
|
||||
}
|
||||
|
||||
define internal i32 @multiplier(i32) {
|
||||
%2 = alloca i32, align 4
|
||||
store i32 %0, i32* %2, align 4
|
||||
%3 = load i32, i32* %2, align 4
|
||||
%4 = load i32, i32* %2, align 4
|
||||
%5 = mul nsw i32 %3, %4
|
||||
ret i32 %5
|
||||
}
|
||||
|
||||
define i32 @switcher(i32) {
|
||||
%2 = alloca i32, align 4
|
||||
%3 = alloca i32, align 4
|
||||
store i32 %0, i32* %3, align 4
|
||||
%4 = load i32, i32* %3, align 4
|
||||
switch i32 %4, label %11 [
|
||||
i32 1, label %5
|
||||
i32 2, label %6
|
||||
]
|
||||
|
||||
; <label>:5: ; preds = %1
|
||||
store i32 2, i32* %2, align 4
|
||||
br label %12
|
||||
|
||||
; <label>:6: ; preds = %1
|
||||
%7 = load i32, i32* %3, align 4
|
||||
%8 = load i32, i32* %3, align 4
|
||||
%9 = call i32 @multiplier(i32 %8)
|
||||
%10 = add nsw i32 %7, %9
|
||||
store i32 %10, i32* %2, align 4
|
||||
br label %12
|
||||
|
||||
; <label>:11: ; preds = %1
|
||||
%adder.result = call i32 @adder(i32 2)
|
||||
store i32 %adder.result, i32* %2, align 4
|
||||
br label %12
|
||||
|
||||
; <label>:12: ; preds = %11, %6, %5
|
||||
%13 = load i32, i32* %2, align 4
|
||||
ret i32 %13
|
||||
}
|
|
@ -0,0 +1,41 @@
|
|||
; Test behavior when inlining policy grows size out of control.
|
||||
; In all cases, the end result is the same: mandatory inlinings must happen.
|
||||
; However, when we discover we 'trip' over the artificially-low size increase
|
||||
; factor, we don't inline anymore.
|
||||
; REQUIRES: have_tf_aot
|
||||
; RUN: opt -passes=scc-oz-module-inliner -enable-ml-inliner=release -ml-advisor-size-increase-threshold=10.0 -S < %s 2>&1 | FileCheck %s --check-prefix=CHECK --check-prefix=NOBOUNDS
|
||||
; RUN: opt -passes=scc-oz-module-inliner -enable-ml-inliner=release -ml-advisor-size-increase-threshold=1.0 -S < %s 2>&1 | FileCheck %s --check-prefix=CHECK --check-prefix=BOUNDS
|
||||
|
||||
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
|
||||
target triple = "x86_64-grtev4-linux-gnu"
|
||||
|
||||
declare i64 @f1()
|
||||
|
||||
define i64 @f2() #0 {
|
||||
%r = call i64 @f1()
|
||||
%r2 = add i64 13, %r
|
||||
ret i64 %r2
|
||||
}
|
||||
|
||||
define i64 @some_function() {
|
||||
%r = call i64 @f1()
|
||||
%r2 = add i64 13, %r
|
||||
ret i64 %r2
|
||||
}
|
||||
|
||||
define i64 @top() {
|
||||
%r = call i64 @f2()
|
||||
%r2 = call i64 @some_function()
|
||||
%r3 = add i64 %r, %r2
|
||||
ret i64 %r3
|
||||
}
|
||||
|
||||
attributes #0 = { alwaysinline }
|
||||
|
||||
; CHECK-LABEL: @top
|
||||
; f2 must always be inlined, so we won't find a call to it in @top()
|
||||
; CHECK-NOT: call i64 @f2
|
||||
; @some-function isn't mandatory, and when we set the increase threshold too low,
|
||||
; it won't be inlined.
|
||||
; NOBOUNDS-NOT: @some_function
|
||||
; BOUNDS: call i64 @some_function
|
|
@ -0,0 +1,14 @@
|
|||
; The default inliner doesn't elide @adder, it believes it's too costly to inline
|
||||
; adder into switcher. The ML inliner carries out that inlining, resulting in
|
||||
; a smaller result (part of it is that adder gets elided).
|
||||
;
|
||||
; This test uses Inputs/test-module.ll, as it will share it with a similar test
|
||||
; for the 'development' mode.
|
||||
;
|
||||
; REQUIRES: have_tf_aot
|
||||
; RUN: opt -passes=scc-oz-module-inliner -enable-ml-inliner=release -S < %S/Inputs/test-module.ll 2>&1 | FileCheck %s --check-prefix=CHECK
|
||||
; RUN: opt -passes=scc-oz-module-inliner -enable-ml-inliner=default -S < %S/Inputs/test-module.ll 2>&1 | FileCheck %s --check-prefix=DEFAULT
|
||||
|
||||
; CHECK-NOT: @adder
|
||||
; DEFAULT-LABEL: @adder
|
||||
; DEFAULT-NEXT: %2 = mul
|
|
@ -1,6 +1,6 @@
|
|||
; Check that, in the absence of dependencies, we emit an error message when
|
||||
; trying to use ML-driven inlining.
|
||||
;
|
||||
; REQUIRES: !have_tf_aot
|
||||
; RUN: not opt -passes=scc-oz-module-inliner -enable-ml-inliner=development -S < %s 2>&1 | FileCheck %s
|
||||
; RUN: not opt -passes=scc-oz-module-inliner -enable-ml-inliner=release -S < %s 2>&1 | FileCheck %s
|
||||
|
||||
|
|
|
@ -219,6 +219,9 @@ else:
|
|||
if not config.build_shared_libs and not config.link_llvm_dylib:
|
||||
config.available_features.add('static-libs')
|
||||
|
||||
if config.have_tf_aot:
|
||||
config.available_features.add("have_tf_aot")
|
||||
|
||||
def have_cxx_shared_library():
|
||||
readobj_exe = lit.util.which('llvm-readobj', config.llvm_tools_dir)
|
||||
if not readobj_exe:
|
||||
|
|
|
@ -48,6 +48,7 @@ config.have_opt_viewer_modules = @LLVM_HAVE_OPT_VIEWER_MODULES@
|
|||
config.libcxx_used = @LLVM_LIBCXX_USED@
|
||||
config.has_plugins = @LLVM_ENABLE_PLUGINS@
|
||||
config.linked_bye_extension = @LLVM_BYE_LINK_INTO_TOOLS@
|
||||
config.have_tf_aot = ("@LLVM_HAVE_TF_AOT@" == "ON")
|
||||
|
||||
# Support substitution of the tools_dir with user parameters. This is
|
||||
# used when we can't determine the tool dir at configuration time.
|
||||
|
|
Loading…
Reference in New Issue