Expand LangRef.html's documentation on LLVM's inline assembly.

While trying to figure out how this was all supposed to work, I
figured I'd start writing down some documentation, since it was
basically completely missing.

Differential Revision: http://reviews.llvm.org/D10816

llvm-svn: 241698
This commit is contained in:
James Y Knight 2015-07-08 18:08:36 +00:00
parent 38a1b7ea58
commit bc832ed51d
1 changed files with 619 additions and 9 deletions

View File

@ -1446,8 +1446,8 @@ The strings can contain any character by escaping non-printable
characters. The escape sequence used is simply "\\xx" where "xx" is the
two digit hex code for the number.
The inline asm code is simply printed to the machine code .s file when
assembly code is generated.
Note that the assembly string *must* be parseable by LLVM's integrated assembler
(unless it is disabled), even when emitting a ``.s`` file.
.. _langref_datalayout:
@ -2800,13 +2800,36 @@ Inline Assembler Expressions
----------------------------
LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
Inline Assembly <moduleasm>`) through the use of a special value. This
value represents the inline assembler as a string (containing the
instructions to emit), a list of operand constraints (stored as a
string), a flag that indicates whether or not the inline asm expression
has side effects, and a flag indicating whether the function containing
the asm needs to align its stack conservatively. An example inline
assembler expression is:
Inline Assembly <moduleasm>`) through the use of a special value. This value
represents the inline assembler as a template string (containing the
instructions to emit), a list of operand constraints (stored as a string), a
flag that indicates whether or not the inline asm expression has side effects,
and a flag indicating whether the function containing the asm needs to align its
stack conservatively.
The template string supports argument substitution of the operands using "``$``"
followed by a number, to indicate substitution of the given register/memory
location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
be used, where ``MODIFIER`` is a target-specific annotation for how to print the
operand (See :ref:`inline-asm-modifiers`).
A literal "``$``" may be included by using "``$$``" in the template. To include
other special characters into the output, the usual "``\XX``" escapes may be
used, just as in other strings. Note that after template substitution, the
resulting assembly string is parsed by LLVM's integrated assembler unless it is
disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
syntax known to LLVM.
LLVM's support for inline asm is modeled closely on the requirements of Clang's
GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
modifier codes listed here are similar or identical to those in GCC's inline asm
support. However, to be clear, the syntax of the template and constraint strings
described here is *not* the same as the syntax accepted by GCC and Clang, and,
while most constraint letters are passed through as-is by Clang, some get
translated to other codes when converting from the C source to the LLVM
assembly.
An example inline assembler expression is:
.. code-block:: llvm
@ -2852,6 +2875,593 @@ If multiple keywords appear the '``sideeffect``' keyword must come
first, the '``alignstack``' keyword second and the '``inteldialect``'
keyword last.
Inline Asm Constraint String
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The constraint list is a comma-separated string, each element containing one or
more constraint codes.
For each element in the constraint list an appropriate register or memory
operand will be chosen, and it will be made available to assembly template
string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
second, etc.
There are three different types of constraints, which are distinguished by a
prefix symbol in front of the constraint code: Output, Input, and Clobber. The
constraints must always be given in that order: outputs first, then inputs, then
clobbers. They cannot be intermingled.
There are also three different categories of constraint codes:
- Register constraint. This is either a register class, or a fixed physical
register. This kind of constraint will allocate a register, and if necessary,
bitcast the argument or result to the appropriate type.
- Memory constraint. This kind of constraint is for use with an instruction
taking a memory operand. Different constraints allow for different addressing
modes used by the target.
- Immediate value constraint. This kind of constraint is for an integer or other
immediate value which can be rendered directly into an instruction. The
various target-specific constraints allow the selection of a value in the
proper range for the instruction you wish to use it with.
Output constraints
""""""""""""""""""
Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
indicates that the assembly will write to this operand, and the operand will
then be made available as a return value of the ``asm`` expression. Output
constraints do not consume an argument from the call instruction. (Except, see
below about indirect outputs).
Normally, it is expected that no output locations are written to by the assembly
expression until *all* of the inputs have been read. As such, LLVM may assign
the same register to an output and an input. If this is not safe (e.g. if the
assembly contains two instructions, where the first writes to one output, and
the second reads an input and writes to a second output), then the "``&``"
modifier must be used (e.g. "``=&r``") to specify that the output is an
"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
will not use the same register for any inputs (other than an input tied to this
output).
Input constraints
"""""""""""""""""
Input constraints do not have a prefix -- just the constraint codes. Each input
constraint will consume one argument from the call instruction. It is not
permitted for the asm to write to any input register or memory location (unless
that input is tied to an output). Note also that multiple inputs may all be
assigned to the same register, if LLVM can determine that they necessarily all
contain the same value.
Instead of providing a Constraint Code, input constraints may also "tie"
themselves to an output constraint, by providing an integer as the constraint
string. Tied inputs still consume an argument from the call instruction, and
take up a position in the asm template numbering as is usual -- they will simply
be constrained to always use the same register as the output they've been tied
to. For example, a constraint string of "``=r,0``" says to assign a register for
output, and use that register as an input as well (it being the 0'th
constraint).
It is permitted to tie an input to an "early-clobber" output. In that case, no
*other* input may share the same register as the input tied to the early-clobber
(even when the other input has the same value).
You may only tie an input to an output which has a register constraint, not a
memory constraint. Only a single input may be tied to an output.
There is also an "interesting" feature which deserves a bit of explanation: if a
register class constraint allocates a register which is too small for the value
type operand provided as input, the input value will be split into multiple
registers, and all of them passed to the inline asm.
However, this feature is often not as useful as you might think.
Firstly, the registers are *not* guaranteed to be consecutive. So, on those
architectures that have instructions which operate on multiple consecutive
instructions, this is not an appropriate way to support them. (e.g. the 32-bit
SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
hardware then loads into both the named register, and the next register. This
feature of inline asm would not be useful to support that.)
A few of the targets provide a template string modifier allowing explicit access
to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
``D``). On such an architecture, you can actually access the second allocated
register (yet, still, not any subsequent ones). But, in that case, you're still
probably better off simply splitting the value into two separate operands, for
clarity. (e.g. see the description of the ``A`` constraint on X86, which,
despite existing only for use with this feature, is not really a good idea to
use)
Indirect inputs and outputs
"""""""""""""""""""""""""""
Indirect output or input constraints can be specified by the "``*``" modifier
(which goes after the "``=``" in case of an output). This indicates that the asm
will write to or read from the contents of an *address* provided as an input
argument. (Note that in this way, indirect outputs act more like an *input* than
an output: just like an input, they consume an argument of the call expression,
rather than producing a return value. An indirect output constraint is an
"output" only in that the asm is expected to write to the contents of the input
memory location, instead of just read from it).
This is most typically used for memory constraint, e.g. "``=*m``", to pass the
address of a variable as a value.
It is also possible to use an indirect *register* constraint, but only on output
(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
value normally, and then, separately emit a store to the address provided as
input, after the provided inline asm. (It's not clear what value this
functionality provides, compared to writing the store explicitly after the asm
statement, and it can only produce worse code, since it bypasses many
optimization passes. I would recommend not using it.)
Clobber constraints
"""""""""""""""""""
A clobber constraint is indicated by a "``~``" prefix. A clobber does not
consume an input operand, nor generate an output. Clobbers cannot use any of the
general constraint code letters -- they may use only explicit register
constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
memory locations -- not only the memory pointed to by a declared indirect
output.
Constraint Codes
""""""""""""""""
After a potential prefix comes constraint code, or codes.
A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
(e.g. "``{eax}``").
The one and two letter constraint codes are typically chosen to be the same as
GCC's constraint codes.
A single constraint may include one or more than constraint code in it, leaving
it up to LLVM to choose which one to use. This is included mainly for
compatibility with the translation of GCC inline asm coming from clang.
There are two ways to specify alternatives, and either or both may be used in an
inline asm constraint list:
1) Append the codes to each other, making a constraint code set. E.g. "``im``"
or "``{eax}m``". This means "choose any of the options in the set". The
choice of constraint is made independently for each constraint in the
constraint list.
2) Use "``|``" between constraint code sets, creating alternatives. Every
constraint in the constraint list must have the same number of alternative
sets. With this syntax, the same alternative in *all* of the items in the
constraint list will be chosen together.
Putting those together, you might have a two operand constraint string like
``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
However, the use of either of the alternatives features is *NOT* recommended, as
LLVM is not able to make an intelligent choice about which one to use. (At the
point it currently needs to choose, not enough information is available to do so
in a smart way.) Thus, it simply tries to make a choice that's most likely to
compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
always choose to use memory, not registers). And, if given multiple registers,
or multiple register classes, it will simply choose the first one. (In fact, it
doesn't currently even ensure explicitly specified physical registers are
unique, so specifying multiple physical registers as alternatives, like
``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
intended.)
Supported Constraint Code List
""""""""""""""""""""""""""""""
The constraint codes are, in general, expected to behave the same way they do in
GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
inline asm code which was supported by GCC. A mismatch in behavior between LLVM
and GCC likely indicates a bug in LLVM.
Some constraint codes are typically supported by all targets:
- ``r``: A register in the target's general purpose register class.
- ``m``: A memory address operand. It is target-specific what addressing modes
are supported, typical examples are register, or register + register offset,
or register + immediate offset (of some target-specific size).
- ``i``: An integer constant (of target-specific width). Allows either a simple
immediate, or a relocatable value.
- ``n``: An integer constant -- *not* including relocatable values.
- ``s``: An integer constant, but allowing *only* relocatable values.
- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
useful to pass a label for an asm branch or call.
.. FIXME: but that surely isn't actually okay to jump out of an asm
block without telling llvm about the control transfer???)
- ``{register-name}``: Requires exactly the named physical register.
Other constraints are target-specific:
AArch64:
- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
i.e. 0 to 4095 with optional shift by 12.
- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
32-bit register. This is a superset of ``K``: in addition to the bitmask
immediate, also allows immediate integers which can be loaded with a single
``MOVZ`` or ``MOVL`` instruction.
- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
64-bit register. This is a superset of ``L``.
- ``Q``: Memory address operand must be in a single register (no
offsets). (However, LLVM currently does this for the ``m`` constraint as
well.)
- ``r``: A 32 or 64-bit integer register (W* or X*).
- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
AMDGPU:
- ``r``: A 32 or 64-bit integer register.
- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
All ARM modes:
- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
operand. Treated the same as operand ``m``, at the moment.
ARM and ARM's Thumb2 mode:
- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
- ``I``: An immediate integer valid for a data-processing instruction.
- ``J``: An immediate integer between -4095 and 4095.
- ``K``: An immediate integer whose bitwise inverse is valid for a
data-processing instruction. (Can be used with template modifier "``B``" to
print the inverted value).
- ``L``: An immediate integer whose negation is valid for a data-processing
instruction. (Can be used with template modifier "``n``" to print the negated
value).
- ``M``: A power of two or a integer between 0 and 32.
- ``N``: Invalid immediate constraint.
- ``O``: Invalid immediate constraint.
- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
as ``r``.
- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
invalid.
- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
``d0-d31``, or ``q0-q15``.
- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
``d0-d7``, or ``q0-q3``.
- ``t``: A floating-point/SIMD register, only supports 32-bit values:
``s0-s31``.
ARM's Thumb1 mode:
- ``I``: An immediate integer between 0 and 255.
- ``J``: An immediate integer between -255 and -1.
- ``K``: An immediate integer between 0 and 255, with optional left-shift by
some amount.
- ``L``: An immediate integer between -7 and 7.
- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
- ``N``: An immediate integer between 0 and 31.
- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
- ``r``: A low 32-bit GPR register (``r0-r7``).
- ``l``: A low 32-bit GPR register (``r0-r7``).
- ``h``: A high GPR register (``r0-r7``).
- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
``d0-d31``, or ``q0-q15``.
- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
``d0-d7``, or ``q0-q3``.
- ``t``: A floating-point/SIMD register, only supports 32-bit values:
``s0-s31``.
Hexagon:
- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
at the moment.
- ``r``: A 32 or 64-bit register.
MSP430:
- ``r``: An 8 or 16-bit register.
MIPS:
- ``I``: An immediate signed 16-bit integer.
- ``J``: An immediate integer zero.
- ``K``: An immediate unsigned 16-bit integer.
- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
- ``N``: An immediate integer between -65535 and -1.
- ``O``: An immediate signed 15-bit integer.
- ``P``: An immediate integer between 1 and 65535.
- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
register plus 16-bit immediate offset. In MIPS mode, just a base register.
- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
register plus a 9-bit signed offset. In MIPS mode, the same as constraint
``m``.
- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
``sc`` instruction on the given subtarget (details vary).
- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
(``W0-W31``).
- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
``25``).
- ``l``: The ``lo`` register, 32 or 64-bit.
- ``x``: Invalid.
NVPTX:
- ``b``: A 1-bit integer register.
- ``c`` or ``h``: A 16-bit integer register.
- ``r``: A 32-bit integer register.
- ``l`` or ``N``: A 64-bit integer register.
- ``f``: A 32-bit float register.
- ``d``: A 64-bit float register.
PowerPC:
- ``I``: An immediate signed 16-bit integer.
- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
- ``K``: An immediate unsigned 16-bit integer.
- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
- ``M``: An immediate integer greater than 31.
- ``N``: An immediate integer that is an exact power of 2.
- ``O``: The immediate integer constant 0.
- ``P``: An immediate integer constant whose negation is a signed 16-bit
constant.
- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
treated the same as ``m``.
- ``r``: A 32 or 64-bit integer register.
- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
``R1-R31``).
- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
altivec vector register (``V0-V31``).
.. FIXME: is this a bug that v accepts QPX registers? I think this
is supposed to only use the altivec vector registers?
- ``y``: Condition register (``CR0-CR7``).
- ``wc``: An individual CR bit in a CR register.
- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
register set (overlapping both the floating-point and vector register files).
- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
set.
Sparc:
- ``I``: An immediate 13-bit signed integer.
- ``r``: A 32-bit integer register.
SystemZ:
- ``I``: An immediate unsigned 8-bit integer.
- ``J``: An immediate unsigned 12-bit integer.
- ``K``: An immediate signed 16-bit integer.
- ``L``: An immediate signed 20-bit integer.
- ``M``: An immediate integer 0x7fffffff.
- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
``m``, at the moment.
- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
address context evaluates as zero).
- ``h``: A 32-bit value in the high part of a 64bit data register
(LLVM-specific)
- ``f``: A 32, 64, or 128-bit floating point register.
X86:
- ``I``: An immediate integer between 0 and 31.
- ``J``: An immediate integer between 0 and 64.
- ``K``: An immediate signed 8-bit integer.
- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
0xffffffff.
- ``M``: An immediate integer between 0 and 3.
- ``N``: An immediate unsigned 8-bit integer.
- ``O``: An immediate integer between 0 and 127.
- ``e``: An immediate 32-bit signed integer.
- ``Z``: An immediate 32-bit unsigned integer.
- ``o``, ``v``: Treated the same as ``m``, at the moment.
- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
registers, and on X86-64, it is all of the integer registers.
- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
existed since i386, and can be accessed without the REX prefix.
- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
- ``y``: A 64-bit MMX register, if MMX is enabled.
- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
operand in a SSE register. If AVX is also enabled, can also be a 256-bit
vector operand in an AVX register. If AVX-512 is also enabled, can also be a
512-bit vector operand in an AVX512 register, Otherwise, an error.
- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
32-bit mode, a 64-bit integer operand will get split into two registers). It
is not recommended to use this constraint, as in 64-bit mode, the 64-bit
operand will get allocated only to RAX -- if two 32-bit operands are needed,
you're better off splitting it yourself, before passing it to the asm
statement.
XCore:
- ``r``: A 32-bit integer register.
.. _inline-asm-modifiers:
Asm template argument modifiers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In the asm template string, modifiers can be used on the operand reference, like
"``${0:n}``".
The modifiers are, in general, expected to behave the same way they do in
GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
inline asm code which was supported by GCC. A mismatch in behavior between LLVM
and GCC likely indicates a bug in LLVM.
Target-independent:
- ``c``: Print an immediate integer constant unadorned, without
the target-specific immediate punctuation (e.g. no ``$`` prefix).
- ``n``: Negate and print immediate integer constant unadorned, without the
target-specific immediate punctuation (e.g. no ``$`` prefix).
- ``l``: Print as an unadorned label, without the target-specific label
punctuation (e.g. no ``$`` prefix).
AArch64:
- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
instead of ``x30``, print ``w30``.
- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
``v*``.
AMDGPU:
- ``r``: No effect.
ARM:
- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
register).
- ``P``: No effect.
- ``q``: No effect.
- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
as ``d4[1]`` instead of ``s9``)
- ``B``: Bitwise invert and print an immediate integer constant without ``#``
prefix.
- ``L``: Print the low 16-bits of an immediate integer constant.
- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
register operands subsequent to the specified one (!), so use carefully.
- ``Q``: Print the low-order register of a register-pair, or the low-order
register of a two-register operand.
- ``R``: Print the high-order register of a register-pair, or the high-order
register of a two-register operand.
- ``H``: Print the second register of a register-pair. (On a big-endian system,
``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
to ``R``.)
.. FIXME: H doesn't currently support printing the second register
of a two-register operand.
- ``e``: Print the low doubleword register of a NEON quad register.
- ``f``: Print the high doubleword register of a NEON quad register.
- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
adornment.
Hexagon:
- ``L``: Print the second register of a two-register operand. Requires that it
has been allocated consecutively to the first.
.. FIXME: why is it restricted to consecutive ones? And there's
nothing that ensures that happens, is there?
- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
nothing. Used to print 'addi' vs 'add' instructions.
MSP430:
No additional modifiers.
MIPS:
- ``X``: Print an immediate integer as hexadecimal
- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
- ``d``: Print an immediate integer as decimal.
- ``m``: Subtract one and print an immediate integer as decimal.
- ``z``: Print $0 if an immediate zero, otherwise print normally.
- ``L``: Print the low-order register of a two-register operand, or prints the
address of the low-order word of a double-word memory operand.
.. FIXME: L seems to be missing memory operand support.
- ``M``: Print the high-order register of a two-register operand, or prints the
address of the high-order word of a double-word memory operand.
.. FIXME: M seems to be missing memory operand support.
- ``D``: Print the second register of a two-register operand, or prints the
second word of a double-word memory operand. (On a big-endian system, ``D`` is
equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
``M``.)
- ``w``: No effect.
NVPTX:
- ``r``: No effect.
PowerPC:
- ``L``: Print the second register of a two-register operand. Requires that it
has been allocated consecutively to the first.
.. FIXME: why is it restricted to consecutive ones? And there's
nothing that ensures that happens, is there?
- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
nothing. Used to print 'addi' vs 'add' instructions.
- ``y``: For a memory operand, prints formatter for a two-register X-form
instruction. (Currently always prints ``r0,OPERAND``).
- ``U``: Prints 'u' if the memory operand is an update form, and nothing
otherwise. (NOTE: LLVM does not support update form, so this will currently
always print nothing)
- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
not support indexed form, so this will currently always print nothing)
Sparc:
- ``r``: No effect.
SystemZ:
SystemZ implements only ``n``, and does *not* support any of the other
target-independent modifiers.
X86:
- ``c``: Print an unadorned integer or symbol name. (The latter is
target-specific behavior for this typically target-independent modifier).
- ``A``: Print a register name with a '``*``' before it.
- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
operand.
- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
memory operand.
- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
operand.
- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
operand.
- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
available, otherwise the 32-bit register name; do nothing on a memory operand.
- ``n``: Negate and print an unadorned integer, or, for operands other than an
immediate integer (e.g. a relocatable symbol expression), print a '-' before
the operand. (The behavior for relocatable symbol expressions is a
target-specific behavior for this typically target-independent modifier)
- ``H``: Print a memory reference with additional offset +8.
- ``P``: Print a memory reference or operand for use as the argument of a call
instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
XCore:
No additional modifiers.
Inline Asm Metadata
^^^^^^^^^^^^^^^^^^^