[MLIR] Allow Loop dialect IfOp and ForOp to define values

This patch implements the RFCs proposed here:
https://llvm.discourse.group/t/rfc-modify-ifop-in-loop-dialect-to-yield-values/463
https://llvm.discourse.group/t/rfc-adding-operands-and-results-to-loop-for/459/19.

It introduces the following changes:
- All Loop Ops region, except for ReduceOp, terminate with a YieldOp.
- YieldOp can have variadice operands that is used to return values out of IfOp and ForOp regions.
- Change IfOp and ForOp syntax and representation to define values.
- Add unit-tests and update .td documentation.
- YieldOp is a terminator to loop.for/if/parallel
- YieldOp custom parser and printer

Lowering is not supported at the moment, and will be in a follow-up PR.

Thanks.

Reviewed By: bondhugula, nicolasvasilache, rriddle

Differential Revision: https://reviews.llvm.org/D74174
This commit is contained in:
Nagy Mostafa 2020-02-21 09:58:00 -08:00 committed by Diego Caballero
parent 31ec721516
commit bc7b26c333
13 changed files with 566 additions and 95 deletions

View File

@ -79,7 +79,7 @@ public:
if (i != e - 1)
rewriter.create<CallOp>(loc, printfRef, rewriter.getIntegerType(32),
newLineCst);
rewriter.create<loop::TerminatorOp>(loc);
rewriter.create<loop::YieldOp>(loc);
rewriter.setInsertionPointToStart(loop.getBody());
}

View File

@ -79,7 +79,7 @@ public:
if (i != e - 1)
rewriter.create<CallOp>(loc, printfRef, rewriter.getIntegerType(32),
newLineCst);
rewriter.create<loop::TerminatorOp>(loc);
rewriter.create<loop::YieldOp>(loc);
rewriter.setInsertionPointToStart(loop.getBody());
}

View File

@ -37,31 +37,88 @@ class Loop_Op<string mnemonic, list<OpTrait> traits = []> :
def ForOp : Loop_Op<"for",
[DeclareOpInterfaceMethods<LoopLikeOpInterface>,
SingleBlockImplicitTerminator<"TerminatorOp">]> {
SingleBlockImplicitTerminator<"YieldOp">]> {
let summary = "for operation";
let description = [{
The "loop.for" operation represents a loop nest taking 3 SSA value as
The "loop.for" operation represents a loop taking 3 SSA value as
operands that represent the lower bound, upper bound and step respectively.
The operation defines an SSA value for its induction variable. It has one
region capturing the loop body. The induction variable is represented as an
argument of this region. This SSA value always has type index, which is the
size of the machine word. The step is a value of type index, required to be
positive.
The lower and upper bounds specify a half-open range: the range includes the
lower bound but does not include the upper bound.
The lower and upper bounds specify a half-open range: the range includes
the lower bound but does not include the upper bound.
The body region must contain exactly one block that terminates with
"loop.terminator". Calling ForOp::build will create such region and insert
the terminator, so will the parsing even in cases when it is absent from the
custom format. For example:
"loop.yield". Calling ForOp::build will create such a region and insert
the terminator implicitly if none is defined, so will the parsing even
in cases when it is absent from the custom format. For example:
```mlir
loop.for %iv = %lb to %ub step %step {
... // body
}
```
"loop.for" can also operate on loop-carried variables and returns the final values
after loop termination. The initial values of the variables are passed as additional SSA
operands to the "loop.for" following the 3 loop control SSA values mentioned above
(lower bound, upper bound and step). The operation region has equivalent arguments
for each variable representing the value of the variable at the current iteration.
The region must terminate with a "loop.yield" that passes all the current iteration
variables to the next iteration, or to the "loop.for" result, if at the last iteration.
"loop.for" results hold the final values after the last iteration.
For example, to sum-reduce a memref:
```mlir
func @reduce(%buffer: memref<1024xf32>, %lb: index, %ub: index, %step: index) -> (f32) {
// Initial sum set to 0.
%sum_0 = constant 0.0 : f32
// iter_args binds initial values to the loop's region arguments.
%sum = loop.for %iv = %lb to %ub step %step iter_args(%sum_iter = %sum_0) -> (f32) {
%t = load %buffer[%iv] : memref<1024xf32>
%sum_next = addf %sum_iter, %t : f32
// Yield current iteration sum to next iteration %sum_iter or to %sum if final iteration.
loop.yield %sum_next : f32
}
return %sum : f32
}
```
If the "loop.for" defines any values, a yield must be explicitly present.
The number and types of the "loop.for" results must match the initial values
in the "iter_args" binding and the yield operands.
Another example with a nested "loop.if" (see "loop.if" for details)
to perform conditional reduction:
```mlir
func @conditional_reduce(%buffer: memref<1024xf32>, %lb: index, %ub: index, %step: index) -> (f32) {
%sum_0 = constant 0.0 : f32
%c0 = constant 0.0 : f32
%sum = loop.for %iv = %lb to %ub step %step iter_args(%sum_iter = %sum_0) -> (f32) {
%t = load %buffer[%iv] : memref<1024xf32>
%cond = cmpf "ugt", %t, %c0 : f32
%sum_next = loop.if %cond -> (f32) {
%new_sum = addf %sum_iter, %t : f32
loop.yield %new_sum : f32
} else {
loop.yield %sum_iter : f32
}
loop.yield %sum_next : f32
}
return %sum : f32
}
```
}];
let arguments = (ins Index:$lowerBound, Index:$upperBound, Index:$step);
let arguments = (ins Index:$lowerBound,
Index:$upperBound,
Index:$step,
Variadic<AnyType>:$initArgs);
let results = (outs Variadic<AnyType>:$results);
let regions = (region SizedRegion<1>:$region);
let skipDefaultBuilders = 1;
@ -76,19 +133,41 @@ def ForOp : Loop_Op<"for",
OpBuilder getBodyBuilder() {
return OpBuilder(getBody(), std::prev(getBody()->end()));
}
iterator_range<Block::args_iterator> getRegionIterArgs() {
return getBody()->getArguments().drop_front();
}
iterator_range<Operation::operand_iterator> getIterOperands() {
return getOperands().drop_front(getNumControlOperands());
}
void setLowerBound(Value bound) { getOperation()->setOperand(0, bound); }
void setUpperBound(Value bound) { getOperation()->setOperand(1, bound); }
void setStep(Value step) { getOperation()->setOperand(2, step); }
/// Number of region arguments for loop-carried values
unsigned getNumRegionIterArgs() {
return getBody()->getNumArguments() - 1;
}
/// Number of operands controlling the loop: lb, ub, step
constexpr unsigned getNumControlOperands() { return 3; }
/// Does the operation hold operands for loop-carried values
bool hasIterOperands() {
return getOperation()->getNumOperands() > getNumControlOperands();
}
/// Get Number of loop-carried values
unsigned getNumIterOperands() {
return getOperation()->getNumOperands() - getNumControlOperands();
}
}];
}
def IfOp : Loop_Op<"if",
[SingleBlockImplicitTerminator<"TerminatorOp">]> {
[SingleBlockImplicitTerminator<"YieldOp">]> {
let summary = "if-then-else operation";
let description = [{
The "loop.if" operation represents an if-then-else construct for
conditionally executing two regions of code. The operand to an if operation
is a boolean value. The operation produces no results. For example:
is a boolean value. For example:
```mlir
loop.if %b {
@ -98,9 +177,28 @@ def IfOp : Loop_Op<"if",
}
```
The 'else' block is optional, and may be omitted. For
example:
"loop.if" may also return results that are defined in its regions. The values
defined are determined by which execution path is taken.
For example:
```mlir
%x, %y = loop.if %b -> (f32, f32) {
%x_true = ...
%y_true = ...
loop.yield %x_true, %y_true : f32, f32
} else {
%x_false = ...
%y_false = ...
loop.yield %x_false, %y_false : f32, f32
}
```
"loop.if" regions are always terminated with "loop.yield". If "loop.if"
defines no values, the "loop.yield" can be left out, and will be
inserted implicitly. Otherwise, it must be explicit.
Also, if "loop.if" defines one or more values, the 'else' block cannot
be omitted.
For example:
```mlir
loop.if %b {
...
@ -108,6 +206,7 @@ def IfOp : Loop_Op<"if",
```
}];
let arguments = (ins I1:$condition);
let results = (outs Variadic<AnyType>:$results);
let regions = (region SizedRegion<1>:$thenRegion, AnyRegion:$elseRegion);
let skipDefaultBuilders = 1;
@ -131,7 +230,7 @@ def IfOp : Loop_Op<"if",
}
def ParallelOp : Loop_Op<"parallel",
[SameVariadicOperandSize, SingleBlockImplicitTerminator<"TerminatorOp">]> {
[SameVariadicOperandSize, SingleBlockImplicitTerminator<"YieldOp">]> {
let summary = "parallel for operation";
let description = [{
The "loop.parallel" operation represents a loop nest taking 3 groups of SSA
@ -157,8 +256,8 @@ def ParallelOp : Loop_Op<"parallel",
the same number of results as it has reduce operations.
The body region must contain exactly one block that terminates with
"loop.terminator". Parsing ParallelOp will create such region and insert the
terminator when it is absent from the custom format. For example:
"loop.yield" without operands. Parsing ParallelOp will create such a region
and insert the terminator when it is absent from the custom format. For example:
```mlir
loop.parallel (%iv) = (%lb) to (%ub) step (%step) {
@ -262,25 +361,23 @@ def ReduceReturnOp :
let assemblyFormat = "$result attr-dict `:` type($result)";
}
def TerminatorOp : Loop_Op<"terminator", [Terminator]> {
let summary = "cf terminator operation";
def YieldOp : Loop_Op<"yield", [Terminator]> {
let summary = "loop yield and termination operation";
let description = [{
"loop.terminator" is a special terminator operation for blocks inside
loops. It terminates the region. This operation does _not_ have a custom
syntax. However, `std` control operations omit the terminator in their
custom syntax for brevity.
```mlir
loop.terminator
```
"loop.yield" yields an SSA value from a loop dialect op region and
terminates the regions. The semantics of how the values are yielded
is defined by the parent operation.
If "loop.yield" has any operands, the operands must match the parent
operation's results.
If the parent operation defines no values, then the "loop.yield" may be
left out in the custom syntax and the builders will insert one implicitly.
Otherwise, it has to be present in the syntax to indicate which values
are yielded.
}];
// No custom parsing/printing form.
let parser = ?;
let printer = ?;
// Fully specified by traits.
let verifier = ?;
let arguments = (ins Variadic<AnyType>:$results);
let builders = [
OpBuilder<"Builder *builder, OperationState &result", [{ /* nothing to do */ }]>
];
}
#endif // LOOP_OPS

View File

@ -608,6 +608,9 @@ public:
return success();
}
/// Parse an arrow followed by a type list.
virtual ParseResult parseArrowTypeList(SmallVectorImpl<Type> &result) = 0;
/// Parse an optional arrow followed by a type list.
virtual ParseResult
parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) = 0;
@ -641,6 +644,13 @@ public:
virtual ParseResult
parseOptionalColonTypeList(SmallVectorImpl<Type> &result) = 0;
/// Parse a list of assignments of the form
/// (%x1 = %y1 : type1, %x2 = %y2 : type2, ...).
/// The list must contain at least one entry
virtual ParseResult
parseAssignmentList(SmallVectorImpl<OperandType> &lhs,
SmallVectorImpl<OperandType> &rhs) = 0;
/// Parse a keyword followed by a type.
ParseResult parseKeywordType(const char *keyword, Type &result) {
return failure(parseKeyword(keyword) || parseType(result));

View File

@ -332,7 +332,7 @@ public:
PatternMatchResult matchAndRewrite(AffineTerminatorOp op,
PatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<loop::TerminatorOp>(op);
rewriter.replaceOpWithNewOp<loop::YieldOp>(op);
return matchSuccess();
}
};

View File

@ -42,14 +42,13 @@ public:
ConversionPatternRewriter &rewriter) const override;
};
/// Pattern to erase a loop::TerminatorOp.
class TerminatorOpConversion final
: public SPIRVOpLowering<loop::TerminatorOp> {
/// Pattern to erase a loop::YieldOp.
class TerminatorOpConversion final : public SPIRVOpLowering<loop::YieldOp> {
public:
using SPIRVOpLowering<loop::TerminatorOp>::SPIRVOpLowering;
using SPIRVOpLowering<loop::YieldOp>::SPIRVOpLowering;
PatternMatchResult
matchAndRewrite(loop::TerminatorOp terminatorOp, ArrayRef<Value> operands,
matchAndRewrite(loop::YieldOp terminatorOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.eraseOp(terminatorOp);
return matchSuccess();

View File

@ -76,18 +76,60 @@ static LogicalResult verify(ForOp op) {
// Check that the body defines as single block argument for the induction
// variable.
auto *body = op.getBody();
if (body->getNumArguments() != 1 || !body->getArgument(0).getType().isIndex())
return op.emitOpError("expected body to have a single index argument for "
"the induction variable");
if (!body->getArgument(0).getType().isIndex())
return op.emitOpError(
"expected body first argument to be an index argument for "
"the induction variable");
auto opNumResults = op.getNumResults();
if (opNumResults == 0)
return success();
// If ForOp defines values, check that the number and types of
// the defined values match ForOp initial iter operands and backedge
// basic block arguments.
if (op.getNumIterOperands() != opNumResults)
return op.emitOpError(
"mismatch in number of loop-carried values and defined values");
if (op.getNumRegionIterArgs() != opNumResults)
return op.emitOpError(
"mismatch in number of basic block args and defined values");
auto iterOperands = op.getIterOperands();
auto iterArgs = op.getRegionIterArgs();
auto opResults = op.getResults();
unsigned i = 0;
for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
if (std::get<0>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter operand and defined value";
if (std::get<1>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter region arg and defined value";
i++;
}
return success();
}
static void print(OpAsmPrinter &p, ForOp op) {
bool printBlockTerminators = false;
p << op.getOperationName() << " " << op.getInductionVar() << " = "
<< op.lowerBound() << " to " << op.upperBound() << " step " << op.step();
if (op.hasIterOperands()) {
p << " iter_args(";
auto regionArgs = op.getRegionIterArgs();
auto operands = op.getIterOperands();
mlir::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) {
p << std::get<0>(it) << " = " << std::get<1>(it);
});
p << ")";
p << " -> (" << op.getResultTypes() << ")";
printBlockTerminators = true;
}
p.printRegion(op.region(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
/*printBlockTerminators=*/printBlockTerminators);
p.printOptionalAttrDict(op.getAttrs());
}
@ -108,9 +150,34 @@ static ParseResult parseForOp(OpAsmParser &parser, OperationState &result) {
parser.resolveOperand(step, indexType, result.operands))
return failure();
// Parse the optional initial iteration arguments.
SmallVector<OpAsmParser::OperandType, 4> regionArgs, operands;
SmallVector<Type, 4> argTypes;
regionArgs.push_back(inductionVariable);
if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
// Parse assignment list and results type list.
if (parser.parseAssignmentList(regionArgs, operands) ||
parser.parseArrowTypeList(result.types))
return failure();
// Resolve input operands.
for (auto operand_type : llvm::zip(operands, result.types))
if (parser.resolveOperand(std::get<0>(operand_type),
std::get<1>(operand_type), result.operands))
return failure();
}
// Induction variable.
argTypes.push_back(indexType);
// Loop carried variables
argTypes.append(result.types.begin(), result.types.end());
// Parse the body region.
Region *body = result.addRegion();
if (parser.parseRegion(*body, inductionVariable, indexType))
if (regionArgs.size() != argTypes.size())
return parser.emitError(
parser.getNameLoc(),
"mismatch in number of loop-carried values and defined values");
if (parser.parseRegion(*body, regionArgs, argTypes))
return failure();
ForOp::ensureTerminator(*body, builder, result.location);
@ -168,6 +235,9 @@ static LogicalResult verify(IfOp op) {
return op.emitOpError(
"requires that child entry blocks have no arguments");
}
if (op.getNumResults() != 0 && op.elseRegion().empty())
return op.emitOpError("must have an else block if defining values");
return success();
}
@ -183,7 +253,9 @@ static ParseResult parseIfOp(OpAsmParser &parser, OperationState &result) {
if (parser.parseOperand(cond) ||
parser.resolveOperand(cond, i1Type, result.operands))
return failure();
// Parse optional results type list.
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Parse the 'then' region.
if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
@ -199,15 +271,21 @@ static ParseResult parseIfOp(OpAsmParser &parser, OperationState &result) {
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
static void print(OpAsmPrinter &p, IfOp op) {
bool printBlockTerminators = false;
p << IfOp::getOperationName() << " " << op.condition();
if (!op.results().empty()) {
p << " -> (" << op.getResultTypes() << ")";
// Print yield explicitly if the op defines values.
printBlockTerminators = true;
}
p.printRegion(op.thenRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
/*printBlockTerminators=*/printBlockTerminators);
// Print the 'else' regions if it exists and has a block.
auto &elseRegion = op.elseRegion();
@ -215,7 +293,7 @@ static void print(OpAsmPrinter &p, IfOp op) {
p << " else";
p.printRegion(elseRegion,
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
/*printBlockTerminators=*/printBlockTerminators);
}
p.printOptionalAttrDict(op.getAttrs());
@ -434,6 +512,54 @@ static LogicalResult verify(ReduceReturnOp op) {
return success();
}
//===----------------------------------------------------------------------===//
// YieldOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(YieldOp op) {
auto parentOp = op.getParentOp();
auto results = parentOp->getResults();
auto operands = op.getOperands();
if (isa<IfOp>(parentOp) || isa<ForOp>(parentOp)) {
if (parentOp->getNumResults() != op.getNumOperands())
return op.emitOpError() << "parent of yield must have same number of "
"results as the yield operands";
for (auto e : llvm::zip(results, operands)) {
if (std::get<0>(e).getType() != std::get<1>(e).getType())
return op.emitOpError()
<< "types mismatch between yield op and its parent";
}
} else if (isa<ParallelOp>(parentOp)) {
if (op.getNumOperands() != 0)
return op.emitOpError()
<< "yield inside loop.parallel is not allowed to have operands";
} else {
return op.emitOpError()
<< "yield only terminates If, For or Parallel regions";
}
return success();
}
static ParseResult parseYieldOp(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::OperandType, 4> operands;
SmallVector<Type, 4> types;
llvm::SMLoc loc = parser.getCurrentLocation();
// Parse variadic operands list, their types, and resolve operands to SSA
// values.
if (parser.parseOperandList(operands) ||
parser.parseOptionalColonTypeList(types) ||
parser.resolveOperands(operands, types, loc, result.operands))
return failure();
return success();
}
static void print(OpAsmPrinter &p, YieldOp op) {
p << op.getOperationName();
if (op.getNumOperands() != 0)
p << ' ' << op.getOperands() << " : " << op.getOperandTypes();
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//

View File

@ -4432,6 +4432,13 @@ public:
return failure(!(result = parser.parseType()));
}
/// Parse an arrow followed by a type list.
ParseResult parseArrowTypeList(SmallVectorImpl<Type> &result) override {
if (parseArrow() || parser.parseFunctionResultTypes(result))
return failure();
return success();
}
/// Parse an optional arrow followed by a type list.
ParseResult
parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override {
@ -4462,6 +4469,26 @@ public:
return parser.parseTypeListNoParens(result);
}
/// Parse a list of assignments of the form
/// (%x1 = %y1 : type1, %x2 = %y2 : type2, ...).
/// The list must contain at least one entry
ParseResult parseAssignmentList(SmallVectorImpl<OperandType> &lhs,
SmallVectorImpl<OperandType> &rhs) {
auto parseElt = [&]() -> ParseResult {
OperandType regionArg, operand;
Type type;
if (parseRegionArgument(regionArg) || parseEqual() ||
parseOperand(operand))
return failure();
lhs.push_back(regionArg);
rhs.push_back(operand);
return success();
};
if (parseLParen())
return failure();
return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt);
}
private:
/// The source location of the operation name.
SMLoc nameLoc;

View File

@ -246,12 +246,12 @@ module {
%19 = load %16[%arg5, %arg6] : memref<?x?xf32, #map2>
%20 = addf %17, %18 : f32
store %20, %16[%arg5, %arg6] : memref<?x?xf32, #map2>
"loop.terminator"() : () -> ()
loop.yield
} { mapping = [
{processor = 3, map = #map3, bound = #map3},
{processor = 4, map = #map3, bound = #map3}
] }
"loop.terminator"() : () -> ()
loop.yield
} { mapping = [
{processor = 0, map = #map3, bound = #map3},
{processor = 1, map = #map3, bound = #map3}

View File

@ -27,7 +27,7 @@ func @linalg_generic_sum(%lhs: memref<2x2xf32>,
// CHECK: %[[SUM_ELEM:.*]] = load %[[SUM]][%[[I]], %[[J]]]
// CHECK: %[[SUM:.*]] = addf %[[LHS_ELEM]], %[[RHS_ELEM]] : f32
// CHECK: store %[[SUM]], %{{.*}}[%[[I]], %[[J]]]
// CHECK: "loop.terminator"() : () -> ()
// CHECK: loop.yield
// -----

View File

@ -29,7 +29,7 @@ func @loop_for_step_positive(%arg0: index) {
%c0 = constant 0 : index
"loop.for"(%arg0, %arg0, %c0) ({
^bb0(%arg1: index):
"loop.terminator"() : () -> ()
loop.yield
}) : (index, index, index) -> ()
return
}
@ -39,8 +39,8 @@ func @loop_for_step_positive(%arg0: index) {
func @loop_for_one_region(%arg0: index) {
// expected-error@+1 {{incorrect number of regions: expected 1 but found 2}}
"loop.for"(%arg0, %arg0, %arg0) (
{"loop.terminator"() : () -> ()},
{"loop.terminator"() : () -> ()}
{loop.yield},
{loop.yield}
) : (index, index, index) -> ()
return
}
@ -52,9 +52,9 @@ func @loop_for_single_block(%arg0: index) {
"loop.for"(%arg0, %arg0, %arg0) (
{
^bb1:
"loop.terminator"() : () -> ()
loop.yield
^bb2:
"loop.terminator"() : () -> ()
loop.yield
}
) : (index, index, index) -> ()
return
@ -63,11 +63,11 @@ func @loop_for_single_block(%arg0: index) {
// -----
func @loop_for_single_index_argument(%arg0: index) {
// expected-error@+1 {{expected body to have a single index argument for the induction variable}}
// expected-error@+1 {{op expected body first argument to be an index argument for the induction variable}}
"loop.for"(%arg0, %arg0, %arg0) (
{
^bb0(%i0 : f32):
"loop.terminator"() : () -> ()
loop.yield
}
) : (index, index, index) -> ()
return
@ -95,9 +95,9 @@ func @loop_if_not_one_block_per_region(%arg0: i1) {
// expected-error@+1 {{expects region #0 to have 0 or 1 blocks}}
"loop.if"(%arg0) ({
^bb0:
"loop.terminator"() : () -> ()
loop.yield
^bb1:
"loop.terminator"() : () -> ()
loop.yield
}, {}): (i1) -> ()
return
}
@ -108,7 +108,7 @@ func @loop_if_illegal_block_argument(%arg0: i1) {
// expected-error@+1 {{requires that child entry blocks have no arguments}}
"loop.if"(%arg0) ({
^bb0(%0 : index):
"loop.terminator"() : () -> ()
loop.yield
}, {}): (i1) -> ()
return
}
@ -130,7 +130,7 @@ func @parallel_body_arguments_wrong_type(
// expected-error@+1 {{'loop.parallel' op expects arguments for the induction variable to be of index type}}
"loop.parallel"(%arg0, %arg1, %arg2) ({
^bb0(%i0: f32):
"loop.terminator"() : () -> ()
loop.yield
}): (index, index, index) -> ()
return
}
@ -142,7 +142,7 @@ func @parallel_body_wrong_number_of_arguments(
// expected-error@+1 {{'loop.parallel' op expects the same number of induction variables as bound and step values}}
"loop.parallel"(%arg0, %arg1, %arg2) ({
^bb0(%i0: index, %i1: index):
"loop.terminator"() : () -> ()
loop.yield
}): (index, index, index) -> ()
return
}
@ -265,7 +265,7 @@ func @reduce_wrong_terminator(%arg0 : index, %arg1 : f32) {
// expected-error@+1 {{the block inside reduce should be terminated with a 'loop.reduce.return' op}}
loop.reduce(%arg1) {
^bb0(%lhs : f32, %rhs : f32):
"loop.terminator"(): () -> ()
loop.yield
} : f32
} : f32
return
@ -294,3 +294,87 @@ func @reduceReturn_not_inside_reduce(%arg0 : f32) {
}): () -> ()
return
}
// -----
func @std_if_incorrect_yield(%arg0: i1, %arg1: f32)
{
%x, %y = loop.if %arg0 -> (f32, f32) {
%0 = addf %arg1, %arg1 : f32
// expected-error@+1 {{parent of yield must have same number of results as the yield operands}}
loop.yield %0 : f32
} else {
%0 = subf %arg1, %arg1 : f32
loop.yield %0 : f32
}
return
}
// -----
func @std_if_missing_else(%arg0: i1, %arg1: f32)
{
// expected-error@+1 {{must have an else block if defining values}}
%x = loop.if %arg0 -> (f32) {
%0 = addf %arg1, %arg1 : f32
loop.yield %0 : f32
}
return
}
// -----
func @std_for_operands_mismatch(%arg0 : index, %arg1 : index, %arg2 : index) {
%s0 = constant 0.0 : f32
%t0 = constant 1 : i32
// expected-error@+1 {{mismatch in number of loop-carried values and defined values}}
%result1:3 = loop.for %i0 = %arg0 to %arg1 step %arg2 iter_args(%si = %s0, %ti = %t0) -> (f32, i32, f32) {
%sn = addf %si, %si : f32
%tn = addi %ti, %ti : i32
loop.yield %sn, %tn, %sn : f32, i32, f32
}
return
}
// -----
func @std_for_operands_mismatch_2(%arg0 : index, %arg1 : index, %arg2 : index) {
%s0 = constant 0.0 : f32
%t0 = constant 1 : i32
%u0 = constant 1.0 : f32
// expected-error@+1 {{mismatch in number of loop-carried values and defined values}}
%result1:2 = loop.for %i0 = %arg0 to %arg1 step %arg2 iter_args(%si = %s0, %ti = %t0, %ui = %u0) -> (f32, i32) {
%sn = addf %si, %si : f32
%tn = addi %ti, %ti : i32
%un = subf %ui, %ui : f32
loop.yield %sn, %tn, %un : f32, i32, f32
}
return
}
// -----
func @std_for_operands_mismatch_3(%arg0 : index, %arg1 : index, %arg2 : index) {
// expected-note@+1 {{prior use here}}
%s0 = constant 0.0 : f32
%t0 = constant 1.0 : f32
// expected-error@+1 {{expects different type than prior uses: 'i32' vs 'f32'}}
%result1:2 = loop.for %i0 = %arg0 to %arg1 step %arg2 iter_args(%si = %s0, %ti = %t0) -> (i32, i32) {
%sn = addf %si, %si : i32
%tn = addf %ti, %ti : i32
loop.yield %sn, %tn : i32, i32
}
return
}
// -----
func @parallel_invalid_yield(
%arg0: index, %arg1: index, %arg2: index) {
loop.parallel (%i0) = (%arg0) to (%arg1) step (%arg2) {
%c0 = constant 1.0 : f32
// expected-error@+1 {{yield inside loop.parallel is not allowed to have operands}}
loop.yield %c0 : f32
}
return
}

View File

@ -90,6 +90,134 @@ func @std_parallel_loop(%arg0 : index, %arg1 : index, %arg2 : index,
// CHECK-NEXT: %[[RES:.*]] = addf %[[LHS]], %[[RHS]] : f32
// CHECK-NEXT: loop.reduce.return %[[RES]] : f32
// CHECK-NEXT: } : f32
// CHECK-NEXT: "loop.terminator"() : () -> ()
// CHECK-NEXT: loop.yield
// CHECK-NEXT: } : f32
// CHECK-NEXT: "loop.terminator"() : () -> ()
// CHECK-NEXT: loop.yield
func @parallel_explicit_yield(
%arg0: index, %arg1: index, %arg2: index) {
loop.parallel (%i0) = (%arg0) to (%arg1) step (%arg2) {
loop.yield
}
return
}
// CHECK-LABEL: func @parallel_explicit_yield(
// CHECK-SAME: %[[ARG0:[A-Za-z0-9]+]]:
// CHECK-SAME: %[[ARG1:[A-Za-z0-9]+]]:
// CHECK-SAME: %[[ARG2:[A-Za-z0-9]+]]:
// CHECK-NEXT: loop.parallel (%{{.*}}) = (%[[ARG0]]) to (%[[ARG1]]) step (%[[ARG2]])
// CHECK-NEXT: loop.yield
// CHECK-NEXT: }
// CHECK-NEXT: return
// CHECK-NEXT: }
func @std_if_yield(%arg0: i1, %arg1: f32)
{
%x, %y = loop.if %arg0 -> (f32, f32) {
%0 = addf %arg1, %arg1 : f32
%1 = subf %arg1, %arg1 : f32
loop.yield %0, %1 : f32, f32
} else {
%0 = subf %arg1, %arg1 : f32
%1 = addf %arg1, %arg1 : f32
loop.yield %0, %1 : f32, f32
}
return
}
// CHECK-LABEL: func @std_if_yield(
// CHECK-SAME: %[[ARG0:[A-Za-z0-9]+]]:
// CHECK-SAME: %[[ARG1:[A-Za-z0-9]+]]:
// CHECK-NEXT: %{{.*}}:2 = loop.if %[[ARG0]] -> (f32, f32) {
// CHECK-NEXT: %[[T1:.*]] = addf %[[ARG1]], %[[ARG1]]
// CHECK-NEXT: %[[T2:.*]] = subf %[[ARG1]], %[[ARG1]]
// CHECK-NEXT: loop.yield %[[T1]], %[[T2]] : f32, f32
// CHECK-NEXT: } else {
// CHECK-NEXT: %[[T3:.*]] = subf %[[ARG1]], %[[ARG1]]
// CHECK-NEXT: %[[T4:.*]] = addf %[[ARG1]], %[[ARG1]]
// CHECK-NEXT: loop.yield %[[T3]], %[[T4]] : f32, f32
// CHECK-NEXT: }
func @std_for_yield(%arg0 : index, %arg1 : index, %arg2 : index) {
%s0 = constant 0.0 : f32
%result = loop.for %i0 = %arg0 to %arg1 step %arg2 iter_args(%si = %s0) -> (f32) {
%sn = addf %si, %si : f32
loop.yield %sn : f32
}
return
}
// CHECK-LABEL: func @std_for_yield(
// CHECK-SAME: %[[ARG0:[A-Za-z0-9]+]]:
// CHECK-SAME: %[[ARG1:[A-Za-z0-9]+]]:
// CHECK-SAME: %[[ARG2:[A-Za-z0-9]+]]:
// CHECK-NEXT: %[[INIT:.*]] = constant
// CHECK-NEXT: %{{.*}} = loop.for %{{.*}} = %[[ARG0]] to %[[ARG1]] step %[[ARG2]]
// CHECK-SAME: iter_args(%[[ITER:.*]] = %[[INIT]]) -> (f32) {
// CHECK-NEXT: %[[NEXT:.*]] = addf %[[ITER]], %[[ITER]] : f32
// CHECK-NEXT: loop.yield %[[NEXT]] : f32
// CHECK-NEXT: }
func @std_for_yield_multi(%arg0 : index, %arg1 : index, %arg2 : index) {
%s0 = constant 0.0 : f32
%t0 = constant 1 : i32
%u0 = constant 1.0 : f32
%result1:3 = loop.for %i0 = %arg0 to %arg1 step %arg2 iter_args(%si = %s0, %ti = %t0, %ui = %u0) -> (f32, i32, f32) {
%sn = addf %si, %si : f32
%tn = addi %ti, %ti : i32
%un = subf %ui, %ui : f32
loop.yield %sn, %tn, %un : f32, i32, f32
}
return
}
// CHECK-LABEL: func @std_for_yield_multi(
// CHECK-SAME: %[[ARG0:[A-Za-z0-9]+]]:
// CHECK-SAME: %[[ARG1:[A-Za-z0-9]+]]:
// CHECK-SAME: %[[ARG2:[A-Za-z0-9]+]]:
// CHECK-NEXT: %[[INIT1:.*]] = constant
// CHECK-NEXT: %[[INIT2:.*]] = constant
// CHECK-NEXT: %[[INIT3:.*]] = constant
// CHECK-NEXT: %{{.*}}:3 = loop.for %{{.*}} = %[[ARG0]] to %[[ARG1]] step %[[ARG2]]
// CHECK-SAME: iter_args(%[[ITER1:.*]] = %[[INIT1]], %[[ITER2:.*]] = %[[INIT2]], %[[ITER3:.*]] = %[[INIT3]]) -> (f32, i32, f32) {
// CHECK-NEXT: %[[NEXT1:.*]] = addf %[[ITER1]], %[[ITER1]] : f32
// CHECK-NEXT: %[[NEXT2:.*]] = addi %[[ITER2]], %[[ITER2]] : i32
// CHECK-NEXT: %[[NEXT3:.*]] = subf %[[ITER3]], %[[ITER3]] : f32
// CHECK-NEXT: loop.yield %[[NEXT1]], %[[NEXT2]], %[[NEXT3]] : f32, i32, f32
func @conditional_reduce(%buffer: memref<1024xf32>, %lb: index, %ub: index, %step: index) -> (f32) {
%sum_0 = constant 0.0 : f32
%c0 = constant 0.0 : f32
%sum = loop.for %iv = %lb to %ub step %step iter_args(%sum_iter = %sum_0) -> (f32) {
%t = load %buffer[%iv] : memref<1024xf32>
%cond = cmpf "ugt", %t, %c0 : f32
%sum_next = loop.if %cond -> (f32) {
%new_sum = addf %sum_iter, %t : f32
loop.yield %new_sum : f32
} else {
loop.yield %sum_iter : f32
}
loop.yield %sum_next : f32
}
return %sum : f32
}
// CHECK-LABEL: func @conditional_reduce(
// CHECK-SAME: %[[ARG0:[A-Za-z0-9]+]]
// CHECK-SAME: %[[ARG1:[A-Za-z0-9]+]]
// CHECK-SAME: %[[ARG2:[A-Za-z0-9]+]]
// CHECK-SAME: %[[ARG3:[A-Za-z0-9]+]]
// CHECK-NEXT: %[[INIT:.*]] = constant
// CHECK-NEXT: %[[ZERO:.*]] = constant
// CHECK-NEXT: %[[RESULT:.*]] = loop.for %[[IV:.*]] = %[[ARG1]] to %[[ARG2]] step %[[ARG3]]
// CHECK-SAME: iter_args(%[[ITER:.*]] = %[[INIT]]) -> (f32) {
// CHECK-NEXT: %[[T:.*]] = load %[[ARG0]][%[[IV]]]
// CHECK-NEXT: %[[COND:.*]] = cmpf "ugt", %[[T]], %[[ZERO]]
// CHECK-NEXT: %[[IFRES:.*]] = loop.if %[[COND]] -> (f32) {
// CHECK-NEXT: %[[THENRES:.*]] = addf %[[ITER]], %[[T]]
// CHECK-NEXT: loop.yield %[[THENRES]] : f32
// CHECK-NEXT: } else {
// CHECK-NEXT: loop.yield %[[ITER]] : f32
// CHECK-NEXT: }
// CHECK-NEXT: loop.yield %[[IFRES]] : f32
// CHECK-NEXT: }
// CHECK-NEXT: return %[[RESULT]]

View File

@ -5,10 +5,10 @@ func @fuse_empty_loops() {
%c0 = constant 0 : index
%c1 = constant 1 : index
loop.parallel (%i, %j) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
"loop.terminator"() : () -> ()
loop.yield
}
loop.parallel (%i, %j) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
"loop.terminator"() : () -> ()
loop.yield
}
"xla_lhlo.terminator"() : () -> ()
}
@ -18,7 +18,7 @@ func @fuse_empty_loops() {
// CHECK: [[C1:%.*]] = constant 1 : index
// CHECK: loop.parallel ([[I:%.*]], [[J:%.*]]) = ([[C0]], [[C0]])
// CHECK-SAME: to ([[C2]], [[C2]]) step ([[C1]], [[C1]]) {
// CHECK: "loop.terminator"() : () -> ()
// CHECK: loop.yield
// CHECK: }
// CHECK-NOT: loop.parallel
@ -35,14 +35,14 @@ func @fuse_two(%A: memref<2x2xf32>, %B: memref<2x2xf32>,
%C_elem = load %C[%i, %j] : memref<2x2xf32>
%sum_elem = addf %B_elem, %C_elem : f32
store %sum_elem, %sum[%i, %j] : memref<2x2xf32>
"loop.terminator"() : () -> ()
loop.yield
}
loop.parallel (%i, %j) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
%sum_elem = load %sum[%i, %j] : memref<2x2xf32>
%A_elem = load %A[%i, %j] : memref<2x2xf32>
%product_elem = mulf %sum_elem, %A_elem : f32
store %product_elem, %result[%i, %j] : memref<2x2xf32>
"loop.terminator"() : () -> ()
loop.yield
}
dealloc %sum : memref<2x2xf32>
return
@ -64,7 +64,7 @@ func @fuse_two(%A: memref<2x2xf32>, %B: memref<2x2xf32>,
// CHECK: [[A_ELEM:%.*]] = load [[A]]{{\[}}[[I]], [[J]]]
// CHECK: [[PRODUCT_ELEM:%.*]] = mulf [[SUM_ELEM_]], [[A_ELEM]]
// CHECK: store [[PRODUCT_ELEM]], [[RESULT]]{{\[}}[[I]], [[J]]]
// CHECK: "loop.terminator"() : () -> ()
// CHECK: loop.yield
// CHECK: }
// CHECK: dealloc [[SUM]]
@ -81,20 +81,20 @@ func @fuse_three(%lhs: memref<100x10xf32>, %rhs: memref<100xf32>,
loop.parallel (%i, %j) = (%c0, %c0) to (%c100, %c10) step (%c1, %c1) {
%rhs_elem = load %rhs[%i] : memref<100xf32>
store %rhs_elem, %broadcast_rhs[%i, %j] : memref<100x10xf32>
"loop.terminator"() : () -> ()
loop.yield
}
loop.parallel (%i, %j) = (%c0, %c0) to (%c100, %c10) step (%c1, %c1) {
%lhs_elem = load %lhs[%i, %j] : memref<100x10xf32>
%broadcast_rhs_elem = load %broadcast_rhs[%i, %j] : memref<100x10xf32>
%diff_elem = subf %lhs_elem, %broadcast_rhs_elem : f32
store %diff_elem, %diff[%i, %j] : memref<100x10xf32>
"loop.terminator"() : () -> ()
loop.yield
}
loop.parallel (%i, %j) = (%c0, %c0) to (%c100, %c10) step (%c1, %c1) {
%diff_elem = load %diff[%i, %j] : memref<100x10xf32>
%exp_elem = exp %diff_elem : f32
store %exp_elem, %result[%i, %j] : memref<100x10xf32>
"loop.terminator"() : () -> ()
loop.yield
}
dealloc %broadcast_rhs : memref<100x10xf32>
dealloc %diff : memref<100x10xf32>
@ -120,7 +120,7 @@ func @fuse_three(%lhs: memref<100x10xf32>, %rhs: memref<100xf32>,
// CHECK: [[DIFF_ELEM_:%.*]] = load [[DIFF]]{{\[}}[[I]], [[J]]]
// CHECK: [[EXP_ELEM:%.*]] = exp [[DIFF_ELEM_]]
// CHECK: store [[EXP_ELEM]], [[RESULT]]{{\[}}[[I]], [[J]]]
// CHECK: "loop.terminator"() : () -> ()
// CHECK: loop.yield
// CHECK: }
// CHECK: dealloc [[BROADCAST_RHS]]
// CHECK: dealloc [[DIFF]]
@ -133,12 +133,12 @@ func @do_not_fuse_nested_ploop1() {
%c1 = constant 1 : index
loop.parallel (%i, %j) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
loop.parallel (%k, %l) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
"loop.terminator"() : () -> ()
loop.yield
}
"loop.terminator"() : () -> ()
loop.yield
}
loop.parallel (%i, %j) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
"loop.terminator"() : () -> ()
loop.yield
}
"xla_lhlo.terminator"() : () -> ()
}
@ -154,13 +154,13 @@ func @do_not_fuse_nested_ploop2() {
%c0 = constant 0 : index
%c1 = constant 1 : index
loop.parallel (%i, %j) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
"loop.terminator"() : () -> ()
loop.yield
}
loop.parallel (%i, %j) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
loop.parallel (%k, %l) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
"loop.terminator"() : () -> ()
loop.yield
}
"loop.terminator"() : () -> ()
loop.yield
}
"xla_lhlo.terminator"() : () -> ()
}
@ -176,10 +176,10 @@ func @do_not_fuse_loops_unmatching_num_loops() {
%c0 = constant 0 : index
%c1 = constant 1 : index
loop.parallel (%i, %j) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
"loop.terminator"() : () -> ()
loop.yield
}
loop.parallel (%i) = (%c0) to (%c2) step (%c1) {
"loop.terminator"() : () -> ()
loop.yield
}
"xla_lhlo.terminator"() : () -> ()
}
@ -194,11 +194,11 @@ func @do_not_fuse_loops_with_side_effecting_ops_in_between() {
%c0 = constant 0 : index
%c1 = constant 1 : index
loop.parallel (%i, %j) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
"loop.terminator"() : () -> ()
loop.yield
}
%buffer = alloc() : memref<2x2xf32>
loop.parallel (%i, %j) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
"loop.terminator"() : () -> ()
loop.yield
}
"xla_lhlo.terminator"() : () -> ()
}
@ -214,10 +214,10 @@ func @do_not_fuse_loops_unmatching_iteration_space() {
%c2 = constant 2 : index
%c4 = constant 4 : index
loop.parallel (%i, %j) = (%c0, %c0) to (%c4, %c4) step (%c2, %c2) {
"loop.terminator"() : () -> ()
loop.yield
}
loop.parallel (%i, %j) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
"loop.terminator"() : () -> ()
loop.yield
}
"xla_lhlo.terminator"() : () -> ()
}
@ -239,7 +239,7 @@ func @do_not_fuse_unmatching_write_read_patterns(
%C_elem = load %C[%i, %j] : memref<2x2xf32>
%sum_elem = addf %B_elem, %C_elem : f32
store %sum_elem, %common_buf[%i, %j] : memref<2x2xf32>
"loop.terminator"() : () -> ()
loop.yield
}
loop.parallel (%i, %j) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
%k = addi %i, %c1 : index
@ -247,7 +247,7 @@ func @do_not_fuse_unmatching_write_read_patterns(
%A_elem = load %A[%i, %j] : memref<2x2xf32>
%product_elem = mulf %sum_elem, %A_elem : f32
store %product_elem, %result[%i, %j] : memref<2x2xf32>
"loop.terminator"() : () -> ()
loop.yield
}
dealloc %common_buf : memref<2x2xf32>
return
@ -269,7 +269,7 @@ func @do_not_fuse_unmatching_read_write_patterns(
%C_elem = load %common_buf[%i, %j] : memref<2x2xf32>
%sum_elem = addf %B_elem, %C_elem : f32
store %sum_elem, %sum[%i, %j] : memref<2x2xf32>
"loop.terminator"() : () -> ()
loop.yield
}
loop.parallel (%i, %j) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
%k = addi %i, %c1 : index
@ -277,7 +277,7 @@ func @do_not_fuse_unmatching_read_write_patterns(
%A_elem = load %A[%i, %j] : memref<2x2xf32>
%product_elem = mulf %sum_elem, %A_elem : f32
store %product_elem, %common_buf[%j, %i] : memref<2x2xf32>
"loop.terminator"() : () -> ()
loop.yield
}
dealloc %sum : memref<2x2xf32>
return
@ -294,13 +294,13 @@ func @do_not_fuse_loops_with_memref_defined_in_loop_bodies() {
%c1 = constant 1 : index
%buffer = alloc() : memref<2x2xf32>
loop.parallel (%i, %j) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
"loop.terminator"() : () -> ()
loop.yield
}
loop.parallel (%i, %j) = (%c0, %c0) to (%c2, %c2) step (%c1, %c1) {
%A = subview %buffer[%c0, %c0][%c2, %c2][%c1, %c1]
: memref<2x2xf32> to memref<?x?xf32, offset: ?, strides:[?, ?]>
%A_elem = load %A[%i, %j] : memref<?x?xf32, offset: ?, strides:[?, ?]>
"loop.terminator"() : () -> ()
loop.yield
}
"xla_lhlo.terminator"() : () -> ()
}