Revert [SCEV] Fix isKnownPredicate

It is a revert of rL327362 which causes build bot failures with assert like

Assertion `isAvailableAtLoopEntry(RHS, L) && "RHS is not available at Loop Entry"' failed.

llvm-svn: 327363
This commit is contained in:
Serguei Katkov 2018-03-13 06:36:00 +00:00
parent b05574c0d3
commit bbfbf21ddc
3 changed files with 25 additions and 117 deletions

View File

@ -829,25 +829,6 @@ public:
/// Test if the given expression is known to be non-zero.
bool isKnownNonZero(const SCEV *S);
/// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
/// \p S by substitution of all AddRec sub-expression related to loop \p L
/// with initial value of that SCEV. The second is obtained from \p S by
/// substitution of all AddRec sub-expressions related to loop \p L with post
/// increment of this AddRec in the loop \p L. In both cases all other AddRec
/// sub-expressions (not related to \p L) remain the same.
/// If the \p S contains non-invariant unknown SCEV the function returns
/// CouldNotCompute SCEV in both values of std::pair.
/// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
/// the function returns pair:
/// first = {0, +, 1}<L2>
/// second = {1, +, 1}<L1> + {0, +, 1}<L2>
/// We can see that for the first AddRec sub-expression it was replaced with
/// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
/// increment value) for the second one. In both cases AddRec expression
/// related to L2 remains the same.
std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
const SCEV *S);
/// Test if the given expression is known to satisfy the condition described
/// by Pred, LHS, and RHS.
bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,

View File

@ -8727,78 +8727,38 @@ bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
return isKnownNegative(S) || isKnownPositive(S);
}
std::pair<const SCEV *, const SCEV *>
ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
// Compute SCEV on entry of loop L.
const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
if (Start == getCouldNotCompute())
return { Start, Start };
// Compute post increment SCEV for loop L.
const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
return { Start, PostInc };
}
bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS) {
// Canonicalize the inputs first.
(void)SimplifyICmpOperands(Pred, LHS, RHS);
// We'd like to check the predicate on every iteration of the most dominated
// loop between loops used in LHS and RHS.
// To do this we use the following list of steps:
// 1. Collect set S all loops on which either LHS or RHS depend.
// 2. If S is non-empty
// a. Let PD be the element of S which is dominated by all other elements of S
// b. Let E(LHS) be value of LHS on entry of PD.
// To get E(LHS), we should just take LHS and replace all AddRecs that are
// attached to PD on with their entry values.
// Define E(RHS) in the same way.
// c. Let B(LHS) be value of L on backedge of PD.
// To get B(LHS), we should just take LHS and replace all AddRecs that are
// attached to PD on with their backedge values.
// Define B(RHS) in the same way.
// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
// so we can assert on that.
// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
// isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
// First collect all loops.
SmallPtrSet<const Loop *, 8> LoopsUsed;
getUsedLoops(LHS, LoopsUsed);
getUsedLoops(RHS, LoopsUsed);
// Domination relationship must be a linear order on collected loops.
#ifndef NDEBUG
for (auto *L1 : LoopsUsed)
for (auto *L2 : LoopsUsed)
assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
DT.dominates(L2->getHeader(), L1->getHeader())) &&
"Domination relationship is not a linear order");
#endif
if (!LoopsUsed.empty()) {
const Loop *MDL = *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
[&](const Loop *L1, const Loop *L2) {
return DT.dominates(L1->getHeader(), L2->getHeader());
});
// Get init and post increment value for LHS.
auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
if (SplitLHS.first != getCouldNotCompute()) {
// if LHS does not contain unknown non-invariant SCEV then
// get init and post increment value for RHS.
auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
if (SplitRHS.first != getCouldNotCompute()) {
// if RHS does not contain unknown non-invariant SCEV then
// check whether implication is possible.
if (isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first,
SplitRHS.first) &&
isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
SplitRHS.second))
return true;
}
// If LHS or RHS is an addrec, check to see if the condition is true in
// every iteration of the loop.
// If LHS and RHS are both addrec, both conditions must be true in
// every iteration of the loop.
const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
bool LeftGuarded = false;
bool RightGuarded = false;
if (LAR) {
const Loop *L = LAR->getLoop();
if (isAvailableAtLoopEntry(RHS, L) &&
isKnownOnEveryIteration(Pred, LAR, RHS)) {
if (!RAR) return true;
LeftGuarded = true;
}
}
if (RAR) {
const Loop *L = RAR->getLoop();
auto SwappedPred = ICmpInst::getSwappedPredicate(Pred);
if (isAvailableAtLoopEntry(LHS, L) &&
isKnownOnEveryIteration(SwappedPred, RAR, LHS)) {
if (!LAR) return true;
RightGuarded = true;
}
}
if (LeftGuarded && RightGuarded)
return true;
if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
return true;

View File

@ -1,33 +0,0 @@
; RUN: opt < %s -indvars -S | FileCheck %s
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128-ni:1"
target triple = "x86_64-unknown-linux-gnu"
declare void @foo(i64)
define void @test(i64 %a) {
entry:
br label %outer_header
outer_header:
%i = phi i64 [20, %entry], [%i.next, %outer_latch]
%i.next = add nuw nsw i64 %i, 1
br label %inner_header
inner_header:
%j = phi i64 [1, %outer_header], [%j.next, %inner_header]
%cmp = icmp ult i64 %j, %i.next
; CHECK-NOT: select
%s = select i1 %cmp, i64 %j, i64 %i
call void @foo(i64 %s)
%j.next = add nuw nsw i64 %j, 1
%cond = icmp ult i64 %j, %i
br i1 %cond, label %inner_header, label %outer_latch
outer_latch:
%cond2 = icmp ne i64 %i.next, 40
br i1 %cond2, label %outer_header, label %return
return:
ret void
}