forked from OSchip/llvm-project
Added a slew of SimplifyInstruction floating-point optimizations, many of which take advantage of fast-math flags. Test cases included.
fsub X, +0 ==> X fsub X, -0 ==> X, when we know X is not -0 fsub +/-0.0, (fsub -0.0, X) ==> X fsub nsz +/-0.0, (fsub +/-0.0, X) ==> X fsub nnan ninf X, X ==> 0.0 fadd nsz X, 0 ==> X fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 where nnan and ninf have to occur at least once somewhere in this expression fmul X, 1.0 ==> X llvm-svn: 169940
This commit is contained in:
parent
5cd69b4ce3
commit
bb6f691b01
|
@ -44,6 +44,20 @@ namespace llvm {
|
|||
const TargetLibraryInfo *TLI = 0,
|
||||
const DominatorTree *DT = 0);
|
||||
|
||||
/// Given operands for an FAdd, see if we can fold the result. If not, this
|
||||
/// returns null.
|
||||
Value *SimplifyFAddInst(Value *LHS, Value *RHS, FastMathFlags FMF,
|
||||
const DataLayout *TD = 0,
|
||||
const TargetLibraryInfo *TLI = 0,
|
||||
const DominatorTree *DT = 0);
|
||||
|
||||
/// Given operands for an FSub, see if we can fold the result. If not, this
|
||||
/// returns null.
|
||||
Value *SimplifyFSubInst(Value *LHS, Value *RHS, FastMathFlags FMF,
|
||||
const DataLayout *TD = 0,
|
||||
const TargetLibraryInfo *TLI = 0,
|
||||
const DominatorTree *DT = 0);
|
||||
|
||||
/// Given operands for an FMul, see if we can fold the result. If not, this
|
||||
/// returns null.
|
||||
Value *SimplifyFMulInst(Value *LHS, Value *RHS,
|
||||
|
|
|
@ -853,6 +853,85 @@ Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
|
|||
RecursionLimit);
|
||||
}
|
||||
|
||||
/// Given operands for an FAdd, see if we can fold the result. If not, this
|
||||
/// returns null.
|
||||
static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
|
||||
const Query &Q, unsigned MaxRecurse) {
|
||||
if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
|
||||
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
|
||||
Constant *Ops[] = { CLHS, CRHS };
|
||||
return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
|
||||
Ops, Q.TD, Q.TLI);
|
||||
}
|
||||
|
||||
// Canonicalize the constant to the RHS.
|
||||
std::swap(Op0, Op1);
|
||||
}
|
||||
|
||||
// fadd X, -0 ==> X
|
||||
if (match(Op1, m_NegZero()))
|
||||
return Op0;
|
||||
|
||||
// fadd X, 0 ==> X, when we know X is not -0
|
||||
if (match(Op1, m_Zero()) &&
|
||||
(FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
|
||||
return Op0;
|
||||
|
||||
// fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
|
||||
// where nnan and ninf have to occur at least once somewhere in this
|
||||
// expression
|
||||
Value *SubOp = 0;
|
||||
if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
|
||||
SubOp = Op1;
|
||||
else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
|
||||
SubOp = Op0;
|
||||
if (SubOp) {
|
||||
Instruction *FSub = cast<Instruction>(SubOp);
|
||||
if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
|
||||
(FMF.noInfs() || FSub->hasNoInfs()))
|
||||
return Constant::getNullValue(Op0->getType());
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// Given operands for an FSub, see if we can fold the result. If not, this
|
||||
/// returns null.
|
||||
static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
|
||||
const Query &Q, unsigned MaxRecurse) {
|
||||
if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
|
||||
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
|
||||
Constant *Ops[] = { CLHS, CRHS };
|
||||
return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
|
||||
Ops, Q.TD, Q.TLI);
|
||||
}
|
||||
}
|
||||
|
||||
// fsub X, 0 ==> X
|
||||
if (match(Op1, m_Zero()))
|
||||
return Op0;
|
||||
|
||||
// fsub X, -0 ==> X, when we know X is not -0
|
||||
if (match(Op1, m_NegZero()) &&
|
||||
(FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
|
||||
return Op0;
|
||||
|
||||
// fsub 0, (fsub -0.0, X) ==> X
|
||||
Value *X;
|
||||
if (match(Op0, m_AnyZero())) {
|
||||
if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
|
||||
return X;
|
||||
if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
|
||||
return X;
|
||||
}
|
||||
|
||||
// fsub nnan ninf x, x ==> 0.0
|
||||
if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1)
|
||||
return Constant::getNullValue(Op0->getType());
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// Given the operands for an FMul, see if we can fold the result
|
||||
static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
|
||||
FastMathFlags FMF,
|
||||
|
@ -864,18 +943,18 @@ static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
|
|||
return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
|
||||
Ops, Q.TD, Q.TLI);
|
||||
}
|
||||
|
||||
// Canonicalize the constant to the RHS.
|
||||
std::swap(Op0, Op1);
|
||||
}
|
||||
|
||||
// Check for some fast-math optimizations
|
||||
if (FMF.noNaNs()) {
|
||||
if (FMF.noSignedZeros()) {
|
||||
// fmul N S 0, x ==> 0
|
||||
if (match(Op0, m_Zero()))
|
||||
// fmul X, 1.0 ==> X
|
||||
if (match(Op1, m_FPOne()))
|
||||
return Op0;
|
||||
if (match(Op1, m_Zero()))
|
||||
|
||||
// fmul nnan nsz X, 0 ==> 0
|
||||
if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
|
||||
return Op1;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -945,6 +1024,18 @@ static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
|
|||
return 0;
|
||||
}
|
||||
|
||||
Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
|
||||
const DataLayout *TD, const TargetLibraryInfo *TLI,
|
||||
const DominatorTree *DT) {
|
||||
return ::SimplifyFAddInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
|
||||
}
|
||||
|
||||
Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
|
||||
const DataLayout *TD, const TargetLibraryInfo *TLI,
|
||||
const DominatorTree *DT) {
|
||||
return ::SimplifyFSubInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
|
||||
}
|
||||
|
||||
Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
|
||||
FastMathFlags FMF,
|
||||
const DataLayout *TD,
|
||||
|
@ -2789,12 +2880,20 @@ Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *TD,
|
|||
default:
|
||||
Result = ConstantFoldInstruction(I, TD, TLI);
|
||||
break;
|
||||
case Instruction::FAdd:
|
||||
Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
|
||||
I->getFastMathFlags(), TD, TLI, DT);
|
||||
break;
|
||||
case Instruction::Add:
|
||||
Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
|
||||
cast<BinaryOperator>(I)->hasNoSignedWrap(),
|
||||
cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
|
||||
TD, TLI, DT);
|
||||
break;
|
||||
case Instruction::FSub:
|
||||
Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
|
||||
I->getFastMathFlags(), TD, TLI, DT);
|
||||
break;
|
||||
case Instruction::Sub:
|
||||
Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
|
||||
cast<BinaryOperator>(I)->hasNoSignedWrap(),
|
||||
|
|
|
@ -33,3 +33,75 @@ define float @no_mul_zero_3(float %a) {
|
|||
; CHECK: ret float %b
|
||||
ret float %b
|
||||
}
|
||||
|
||||
; fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
|
||||
; where nnan and ninf have to occur at least once somewhere in this
|
||||
; expression
|
||||
; CHECK: fadd_fsub_0
|
||||
define float @fadd_fsub_0(float %a) {
|
||||
; X + -X ==> 0
|
||||
%t1 = fsub nnan ninf float 0.0, %a
|
||||
%zero1 = fadd nnan ninf float %t1, %a
|
||||
|
||||
%t2 = fsub nnan float 0.0, %a
|
||||
%zero2 = fadd ninf float %t2, %a
|
||||
|
||||
%t3 = fsub nnan ninf float 0.0, %a
|
||||
%zero3 = fadd float %t3, %a
|
||||
|
||||
%t4 = fsub float 0.0, %a
|
||||
%zero4 = fadd nnan ninf float %t4, %a
|
||||
|
||||
; Dont fold this
|
||||
; CHECK: %nofold = fsub float 0.0
|
||||
%nofold = fsub float 0.0, %a
|
||||
; CHECK: %no_zero = fadd nnan float %nofold, %a
|
||||
%no_zero = fadd nnan float %nofold, %a
|
||||
|
||||
; Coalesce the folded zeros
|
||||
%zero5 = fadd float %zero1, %zero2
|
||||
%zero6 = fadd float %zero3, %zero4
|
||||
%zero7 = fadd float %zero5, %zero6
|
||||
|
||||
; Should get folded
|
||||
%ret = fadd nsz float %no_zero, %zero7
|
||||
|
||||
; CHECK: ret float %no_zero
|
||||
ret float %ret
|
||||
}
|
||||
|
||||
; fsub nnan ninf x, x ==> 0.0
|
||||
; CHECK: @fsub_x_x
|
||||
define float @fsub_x_x(float %a) {
|
||||
; X - X ==> 0
|
||||
%zero1 = fsub nnan ninf float %a, %a
|
||||
|
||||
; Dont fold
|
||||
; CHECK: %no_zero1 = fsub
|
||||
%no_zero1 = fsub ninf float %a, %a
|
||||
; CHECK: %no_zero2 = fsub
|
||||
%no_zero2 = fsub nnan float %a, %a
|
||||
; CHECK: %no_zero = fadd
|
||||
%no_zero = fadd float %no_zero1, %no_zero2
|
||||
|
||||
; Should get folded
|
||||
%ret = fadd nsz float %no_zero, %zero1
|
||||
|
||||
; CHECK: ret float %no_zero
|
||||
ret float %ret
|
||||
}
|
||||
|
||||
; fadd nsz X, 0 ==> X
|
||||
; CHECK: @nofold_fadd_x_0
|
||||
define float @nofold_fadd_x_0(float %a) {
|
||||
; Dont fold
|
||||
; CHECK: %no_zero1 = fadd
|
||||
%no_zero1 = fadd ninf float %a, 0.0
|
||||
; CHECK: %no_zero2 = fadd
|
||||
%no_zero2 = fadd nnan float %a, 0.0
|
||||
; CHECK: %no_zero = fadd
|
||||
%no_zero = fadd float %no_zero1, %no_zero2
|
||||
|
||||
; CHECK: ret float %no_zero
|
||||
ret float %no_zero
|
||||
}
|
||||
|
|
|
@ -0,0 +1,35 @@
|
|||
; RUN: opt < %s -instsimplify -S | FileCheck %s
|
||||
|
||||
; fsub 0, (fsub 0, X) ==> X
|
||||
; CHECK: @fsub_0_0_x
|
||||
define float @fsub_0_0_x(float %a) {
|
||||
%t1 = fsub float -0.0, %a
|
||||
%ret = fsub float -0.0, %t1
|
||||
|
||||
; CHECK: ret float %a
|
||||
ret float %ret
|
||||
}
|
||||
|
||||
; fsub X, 0 ==> X
|
||||
; CHECK: @fsub_x_0
|
||||
define float @fsub_x_0(float %a) {
|
||||
%ret = fsub float %a, 0.0
|
||||
; CHECK ret float %a
|
||||
ret float %ret
|
||||
}
|
||||
|
||||
; fadd X, -0 ==> X
|
||||
; CHECK: @fadd_x_n0
|
||||
define float @fadd_x_n0(float %a) {
|
||||
%ret = fadd float %a, -0.0
|
||||
; CHECK ret float %a
|
||||
ret float %ret
|
||||
}
|
||||
|
||||
; fmul X, 1.0 ==> X
|
||||
; CHECK: @fmul_X_1
|
||||
define double @fmul_X_1(double %a) {
|
||||
%b = fmul double 1.000000e+00, %a ; <double> [#uses=1]
|
||||
; CHECK: ret double %a
|
||||
ret double %b
|
||||
}
|
Loading…
Reference in New Issue