Make use of new reserved/required scheduling stuff: introduce VFP and NEON locks to model domain cross stalls precisly.

llvm-svn: 100646
This commit is contained in:
Anton Korobeynikov 2010-04-07 18:19:40 +00:00
parent 0bdc6345e8
commit baeb210be7
3 changed files with 87 additions and 27 deletions

View File

@ -23,7 +23,7 @@
class FuncUnit;
class ReservationKind<bits<1> val> {
bits<1> Value = val;
int Value = val;
}
def Required : ReservationKind<0>;
@ -43,14 +43,19 @@ def Reserved : ReservationKind<1>;
// InstrStage<1, [FU_x, FU_y]> - TimeInc defaults to Cycles
// InstrStage<1, [FU_x, FU_y], 0> - TimeInc explicit
//
class InstrStage<int cycles, list<FuncUnit> units,
int timeinc = -1, ReservationKind kind = Required> {
class InstrStage2<int cycles, list<FuncUnit> units,
int timeinc, ReservationKind kind> {
int Cycles = cycles; // length of stage in machine cycles
list<FuncUnit> Units = units; // choice of functional units
int TimeInc = timeinc; // cycles till start of next stage
int Kind = kind.Value; // kind of FU reservation
}
class InstrStage<int cycles, list<FuncUnit> units,
int timeinc = -1>
: InstrStage2<cycles, units, timeinc, Required>;
//===----------------------------------------------------------------------===//
// Instruction itinerary - An itinerary represents a sequential series of steps
// required to complete an instruction. Itineraries are represented as lists of
@ -71,10 +76,10 @@ def NoItinerary : InstrItinClass;
// Instruction itinerary data - These values provide a runtime map of an
// instruction itinerary class (name) to its itinerary data.
//
class InstrItinData<InstrItinClass Class, list<InstrStage> stages,
class InstrItinData<InstrItinClass Class, list<InstrStage2> stages,
list<int> operandcycles = []> {
InstrItinClass TheClass = Class;
list<InstrStage> Stages = stages;
list<InstrStage2> Stages = stages;
list<int> OperandCycles = operandcycles;
}

View File

@ -17,6 +17,8 @@ def FU_LdSt0 : FuncUnit; // pipeline 0 load/store
def FU_LdSt1 : FuncUnit; // pipeline 1 load/store
def FU_NPipe : FuncUnit; // NEON ALU/MUL pipe
def FU_NLSPipe : FuncUnit; // NEON LS pipe
def FU_DRegsVFP: FuncUnit; // FP register set, VFP side
def FU_DRegsN : FuncUnit; // FP register set, NEON side
//===----------------------------------------------------------------------===//
// Instruction Itinerary classes used for ARM

View File

@ -593,94 +593,147 @@ def CortexA8Itineraries : ProcessorItineraries<[
// Dual issue pipeline represented by FU_Pipe0 | FU_Pipe1
//
def CortexA9Itineraries : ProcessorItineraries<[
// VFP and NEON shares the same register file. This means that every VFP
// instruction should wait for full completion of the consecutive NEON
// instruction and vice-versa. We model this behavior with two artificial FUs:
// DRegsVFP and DRegsVFP.
//
// Every VFP instruction:
// - Acquires DRegsVFP resource for 1 cycle
// - Reserves DRegsN resource for the whole duration.
// Every NEON instruction does the same but with FUs swapped.
//
// Since the reserved FU cannot be acquired this models precisly "cross-domain"
// stalls.
// VFP
// Issue through integer pipeline, and execute in NEON unit.
//
// FP Special Register to Integer Register File Move
InstrItinData<IIC_fpSTAT , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpSTAT , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<2, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_NPipe]>]>,
//
// Single-precision FP Unary
InstrItinData<IIC_fpUNA32 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpUNA32 , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<2, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_NPipe]>], [1, 1]>,
//
// Double-precision FP Unary
InstrItinData<IIC_fpUNA64 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpUNA64 , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<2, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_NPipe]>], [1, 1]>,
//
// Single-precision FP Compare
InstrItinData<IIC_fpCMP32 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpCMP32 , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<2, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_NPipe]>], [1, 1]>,
//
// Double-precision FP Compare
InstrItinData<IIC_fpCMP64 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpCMP64 , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<2, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_NPipe]>], [1, 1]>,
//
// Single to Double FP Convert
InstrItinData<IIC_fpCVTSD , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpCVTSD , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<5, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_NPipe]>], [4, 1]>,
//
// Double to Single FP Convert
InstrItinData<IIC_fpCVTDS , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpCVTDS , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<5, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_NPipe]>], [4, 1]>,
//
// Single-Precision FP to Integer Convert
InstrItinData<IIC_fpCVTSI , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpCVTSI , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<5, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_NPipe]>], [4, 1]>,
//
// Double-Precision FP to Integer Convert
InstrItinData<IIC_fpCVTDI , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpCVTDI , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<5, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_NPipe]>], [4, 1]>,
//
// Integer to Single-Precision FP Convert
InstrItinData<IIC_fpCVTIS , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpCVTIS , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<5, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_NPipe]>], [4, 1]>,
//
// Integer to Double-Precision FP Convert
InstrItinData<IIC_fpCVTID , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpCVTID , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<5, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_NPipe]>], [4, 1]>,
//
// Single-precision FP ALU
InstrItinData<IIC_fpALU32 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpALU32 , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<5, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_NPipe]>], [4, 1, 1]>,
//
// Double-precision FP ALU
InstrItinData<IIC_fpALU64 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpALU64 , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<5, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_NPipe]>], [4, 1, 1]>,
//
// Single-precision FP Multiply
InstrItinData<IIC_fpMUL32 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpMUL32 , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<6, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_NPipe]>], [5, 1, 1]>,
//
// Double-precision FP Multiply
InstrItinData<IIC_fpMUL64 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpMUL64 , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<7, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<2, [FU_NPipe]>], [6, 1, 1]>,
//
// Single-precision FP MAC
InstrItinData<IIC_fpMAC32 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpMAC32 , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<9, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_NPipe]>], [8, 0, 1, 1]>,
//
// Double-precision FP MAC
InstrItinData<IIC_fpMAC64 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpMAC64 , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<10, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<2, [FU_NPipe]>], [9, 0, 1, 1]>,
//
// Single-precision FP DIV
InstrItinData<IIC_fpDIV32 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpDIV32 , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<16, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<10, [FU_NPipe]>], [15, 1, 1]>,
//
// Double-precision FP DIV
InstrItinData<IIC_fpDIV64 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpDIV64 , [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<26, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<20, [FU_NPipe]>], [25, 1, 1]>,
//
// Single-precision FP SQRT
InstrItinData<IIC_fpSQRT32, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpSQRT32, [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<18, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<13, [FU_NPipe]>], [17, 1]>,
//
// Double-precision FP SQRT
InstrItinData<IIC_fpSQRT64, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrItinData<IIC_fpSQRT64, [InstrStage2<1, [FU_DRegsVFP], 0, Required>,
InstrStage2<33, [FU_DRegsN], 0, Reserved>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<28, [FU_NPipe]>], [32, 1]>
]>;