forked from OSchip/llvm-project
[mlir][linalg] Add named ops for depthwise 3d convolution
Also complete the set by adding a variant of depthwise 1d convolution with the multiplier != 1. Differential Revision: https://reviews.llvm.org/D127687
This commit is contained in:
parent
671eb7dc1e
commit
ba0222cdc6
|
@ -1827,6 +1827,91 @@ structured_op: !LinalgStructuredOpConfig
|
|||
- !ScalarExpression
|
||||
scalar_arg: K
|
||||
--- !LinalgOpConfig
|
||||
metadata: !LinalgOpMetadata
|
||||
name: depthwise_conv_1d_nwc_wcm
|
||||
cpp_class_name: DepthwiseConv1DNwcWcmOp
|
||||
doc: |-
|
||||
Performs depth-wise 1-D convolution.
|
||||
|
||||
Numeric casting is performed on the operands to the inner multiply, promoting
|
||||
them to the same data type as the accumulator/output.
|
||||
implements:
|
||||
- LinalgConvolutionOpInterface
|
||||
structured_op: !LinalgStructuredOpConfig
|
||||
args:
|
||||
- !LinalgOperandDefConfig
|
||||
name: I
|
||||
kind: input_tensor
|
||||
type_var: T1
|
||||
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6] -> (s0, s1 * s2 + s3 * s4,
|
||||
s5)>
|
||||
- !LinalgOperandDefConfig
|
||||
name: K
|
||||
kind: input_tensor
|
||||
type_var: T2
|
||||
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6] -> (s3, s5, s6)>
|
||||
- !LinalgOperandDefConfig
|
||||
name: O
|
||||
kind: output_tensor
|
||||
type_var: U
|
||||
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6] -> (s0, s1, s5, s6)>
|
||||
- !LinalgOperandDefConfig
|
||||
name: strides
|
||||
kind: index_attr
|
||||
index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6] -> (s2)>
|
||||
default_indices:
|
||||
- 1
|
||||
- !LinalgOperandDefConfig
|
||||
name: dilations
|
||||
kind: index_attr
|
||||
index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6] -> (s4)>
|
||||
default_indices:
|
||||
- 1
|
||||
indexing_maps: !LinalgIndexingMapsConfig
|
||||
static_indexing_maps:
|
||||
- affine_map<(d0, d1, d2, d3, d4)[s0, s1, s2, s3, s4, s5, s6] -> (d0, d1 * s2
|
||||
+ d4 * s4, d2)>
|
||||
- affine_map<(d0, d1, d2, d3, d4)[s0, s1, s2, s3, s4, s5, s6] -> (d4, d2, d3)>
|
||||
- affine_map<(d0, d1, d2, d3, d4)[s0, s1, s2, s3, s4, s5, s6] -> (d0, d1, d2,
|
||||
d3)>
|
||||
iterator_types:
|
||||
- parallel
|
||||
- parallel
|
||||
- parallel
|
||||
- parallel
|
||||
- reduction
|
||||
assignments:
|
||||
- !ScalarAssign
|
||||
arg: O
|
||||
value: !ScalarExpression
|
||||
scalar_fn:
|
||||
kind: binary
|
||||
fn_name: add
|
||||
operands:
|
||||
- !ScalarExpression
|
||||
scalar_arg: O
|
||||
- !ScalarExpression
|
||||
scalar_fn:
|
||||
kind: binary
|
||||
fn_name: mul
|
||||
operands:
|
||||
- !ScalarExpression
|
||||
scalar_fn:
|
||||
kind: type
|
||||
fn_name: cast_signed
|
||||
type_var: U
|
||||
operands:
|
||||
- !ScalarExpression
|
||||
scalar_arg: I
|
||||
- !ScalarExpression
|
||||
scalar_fn:
|
||||
kind: type
|
||||
fn_name: cast_signed
|
||||
type_var: U
|
||||
operands:
|
||||
- !ScalarExpression
|
||||
scalar_arg: K
|
||||
--- !LinalgOpConfig
|
||||
metadata: !LinalgOpMetadata
|
||||
name: depthwise_conv_2d_nhwc_hwc
|
||||
cpp_class_name: DepthwiseConv2DNhwcHwcOp
|
||||
|
@ -2276,6 +2361,205 @@ structured_op: !LinalgStructuredOpConfig
|
|||
- !ScalarExpression
|
||||
scalar_arg: KZp
|
||||
--- !LinalgOpConfig
|
||||
metadata: !LinalgOpMetadata
|
||||
name: depthwise_conv_3d_ndhwc_dhwc
|
||||
cpp_class_name: DepthwiseConv3DNdhwcDhwcOp
|
||||
doc: |-
|
||||
Performs depth-wise 3-D convolution.
|
||||
|
||||
Numeric casting is performed on the operands to the inner multiply, promoting
|
||||
them to the same data type as the accumulator/output. Multiplier is set to 1
|
||||
which is a special case for most depthwise convolutions.
|
||||
implements:
|
||||
- LinalgConvolutionOpInterface
|
||||
structured_op: !LinalgStructuredOpConfig
|
||||
args:
|
||||
- !LinalgOperandDefConfig
|
||||
name: I
|
||||
kind: input_tensor
|
||||
type_var: T1
|
||||
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
|
||||
s13] -> (s0, s1 * s2 + s3 * s4, s5 * s6 + s7 * s8, s9 * s10 + s11 * s12, s13)>
|
||||
- !LinalgOperandDefConfig
|
||||
name: K
|
||||
kind: input_tensor
|
||||
type_var: T2
|
||||
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
|
||||
s13] -> (s3, s7, s11, s13)>
|
||||
- !LinalgOperandDefConfig
|
||||
name: O
|
||||
kind: output_tensor
|
||||
type_var: U
|
||||
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
|
||||
s13] -> (s0, s1, s5, s9)>
|
||||
- !LinalgOperandDefConfig
|
||||
name: strides
|
||||
kind: index_attr
|
||||
index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
|
||||
s12, s13] -> (s2, s6, s10)>
|
||||
default_indices:
|
||||
- 1
|
||||
- 1
|
||||
- 1
|
||||
- !LinalgOperandDefConfig
|
||||
name: dilations
|
||||
kind: index_attr
|
||||
index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
|
||||
s12, s13] -> (s4, s8, s12)>
|
||||
default_indices:
|
||||
- 1
|
||||
- 1
|
||||
- 1
|
||||
indexing_maps: !LinalgIndexingMapsConfig
|
||||
static_indexing_maps:
|
||||
- affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
|
||||
s8, s9, s10, s11, s12, s13] -> (d0, d1 * s2 + d4 * s4, d2 * s6 + d5 * s8, d3
|
||||
* s10 + d6 * s12, d7)>
|
||||
- affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
|
||||
s8, s9, s10, s11, s12, s13] -> (d4, d5, d6, d7)>
|
||||
- affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
|
||||
s8, s9, s10, s11, s12, s13] -> (d0, d1, d2, d3, d7)>
|
||||
iterator_types:
|
||||
- parallel
|
||||
- parallel
|
||||
- parallel
|
||||
- parallel
|
||||
- reduction
|
||||
- reduction
|
||||
- reduction
|
||||
- parallel
|
||||
assignments:
|
||||
- !ScalarAssign
|
||||
arg: O
|
||||
value: !ScalarExpression
|
||||
scalar_fn:
|
||||
kind: binary
|
||||
fn_name: add
|
||||
operands:
|
||||
- !ScalarExpression
|
||||
scalar_arg: O
|
||||
- !ScalarExpression
|
||||
scalar_fn:
|
||||
kind: binary
|
||||
fn_name: mul
|
||||
operands:
|
||||
- !ScalarExpression
|
||||
scalar_fn:
|
||||
kind: type
|
||||
fn_name: cast_signed
|
||||
type_var: U
|
||||
operands:
|
||||
- !ScalarExpression
|
||||
scalar_arg: I
|
||||
- !ScalarExpression
|
||||
scalar_fn:
|
||||
kind: type
|
||||
fn_name: cast_signed
|
||||
type_var: U
|
||||
operands:
|
||||
- !ScalarExpression
|
||||
scalar_arg: K
|
||||
--- !LinalgOpConfig
|
||||
metadata: !LinalgOpMetadata
|
||||
name: depthwise_conv_3d_ndhwc_dhwcm
|
||||
cpp_class_name: DepthwiseConv3DNdhwcDhwcmOp
|
||||
doc: |-
|
||||
Performs depth-wise 3-D convolution.
|
||||
|
||||
Numeric casting is performed on the operands to the inner multiply, promoting
|
||||
them to the same data type as the accumulator/output.
|
||||
implements:
|
||||
- LinalgConvolutionOpInterface
|
||||
structured_op: !LinalgStructuredOpConfig
|
||||
args:
|
||||
- !LinalgOperandDefConfig
|
||||
name: I
|
||||
kind: input_tensor
|
||||
type_var: T1
|
||||
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
|
||||
s13, s14] -> (s0, s1 * s2 + s3 * s4, s5 * s6 + s7 * s8, s9 * s10 + s11 * s12,
|
||||
s13)>
|
||||
- !LinalgOperandDefConfig
|
||||
name: K
|
||||
kind: input_tensor
|
||||
type_var: T2
|
||||
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
|
||||
s13, s14] -> (s3, s7, s11, s13, s14)>
|
||||
- !LinalgOperandDefConfig
|
||||
name: O
|
||||
kind: output_tensor
|
||||
type_var: U
|
||||
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
|
||||
s13, s14] -> (s0, s1, s5, s9, s14)>
|
||||
- !LinalgOperandDefConfig
|
||||
name: strides
|
||||
kind: index_attr
|
||||
index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
|
||||
s12, s13, s14] -> (s2, s6, s10)>
|
||||
default_indices:
|
||||
- 1
|
||||
- 1
|
||||
- 1
|
||||
- !LinalgOperandDefConfig
|
||||
name: dilations
|
||||
kind: index_attr
|
||||
index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
|
||||
s12, s13, s14] -> (s4, s8, s12)>
|
||||
default_indices:
|
||||
- 1
|
||||
- 1
|
||||
- 1
|
||||
indexing_maps: !LinalgIndexingMapsConfig
|
||||
static_indexing_maps:
|
||||
- affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8)[s0, s1, s2, s3, s4, s5, s6,
|
||||
s7, s8, s9, s10, s11, s12, s13, s14] -> (d0, d1 * s2 + d5 * s4, d2 * s6 + d6
|
||||
* s8, d3 * s10 + d7 * s12, d8)>
|
||||
- affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8)[s0, s1, s2, s3, s4, s5, s6,
|
||||
s7, s8, s9, s10, s11, s12, s13, s14] -> (d5, d6, d7, d8, d4)>
|
||||
- affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8)[s0, s1, s2, s3, s4, s5, s6,
|
||||
s7, s8, s9, s10, s11, s12, s13, s14] -> (d0, d1, d2, d3, d8, d4)>
|
||||
iterator_types:
|
||||
- parallel
|
||||
- parallel
|
||||
- parallel
|
||||
- parallel
|
||||
- parallel
|
||||
- reduction
|
||||
- reduction
|
||||
- reduction
|
||||
- parallel
|
||||
assignments:
|
||||
- !ScalarAssign
|
||||
arg: O
|
||||
value: !ScalarExpression
|
||||
scalar_fn:
|
||||
kind: binary
|
||||
fn_name: add
|
||||
operands:
|
||||
- !ScalarExpression
|
||||
scalar_arg: O
|
||||
- !ScalarExpression
|
||||
scalar_fn:
|
||||
kind: binary
|
||||
fn_name: mul
|
||||
operands:
|
||||
- !ScalarExpression
|
||||
scalar_fn:
|
||||
kind: type
|
||||
fn_name: cast_signed
|
||||
type_var: U
|
||||
operands:
|
||||
- !ScalarExpression
|
||||
scalar_arg: I
|
||||
- !ScalarExpression
|
||||
scalar_fn:
|
||||
kind: type
|
||||
fn_name: cast_signed
|
||||
type_var: U
|
||||
operands:
|
||||
- !ScalarExpression
|
||||
scalar_arg: K
|
||||
--- !LinalgOpConfig
|
||||
metadata: !LinalgOpMetadata
|
||||
name: pooling_nhwc_sum
|
||||
cpp_class_name: PoolingNhwcSumOp
|
||||
|
|
|
@ -414,6 +414,26 @@ def depthwise_conv_1d_nwc_wc(I=TensorDef(T1, S.N, S.OW * S.SW + S.KW * S.DW,
|
|||
TypeFn.cast_signed(U, K[D.kw, D.ic])
|
||||
|
||||
|
||||
@linalg_structured_op
|
||||
def depthwise_conv_1d_nwc_wcm(I=TensorDef(T1, S.N, S.OW * S.SW + S.KW * S.DW,
|
||||
S.IC),
|
||||
K=TensorDef(T2, S.KW, S.IC, S.CM),
|
||||
O=TensorDef(U, S.N, S.OW, S.IC, S.CM,
|
||||
output=True),
|
||||
strides=IndexAttrDef(S.SW, default=[1]),
|
||||
dilations=IndexAttrDef(S.DW, default=[1])):
|
||||
"""Performs depth-wise 1-D convolution.
|
||||
|
||||
Numeric casting is performed on the operands to the inner multiply, promoting
|
||||
them to the same data type as the accumulator/output.
|
||||
"""
|
||||
implements(ConvolutionOpInterface)
|
||||
domain(D.n, D.ow, D.ic, D.cm, D.kw)
|
||||
O[D.n, D.ow, D.ic, D.cm] += \
|
||||
TypeFn.cast_signed(U, I[D.n, D.ow * S.SW + D.kw * S.DW, D.ic]) * \
|
||||
TypeFn.cast_signed(U, K[D.kw, D.ic, D.cm])
|
||||
|
||||
|
||||
@linalg_structured_op
|
||||
def depthwise_conv_2d_nhwc_hwc(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH,
|
||||
S.OW * S.SW + S.KW * S.DW, S.IC),
|
||||
|
@ -536,6 +556,64 @@ def depthwise_conv_2d_nhwc_hwcm_q(I=TensorDef(T1, S.N,
|
|||
TypeFn.cast_signed(U, KZp)))
|
||||
|
||||
|
||||
@linalg_structured_op
|
||||
def depthwise_conv_3d_ndhwc_dhwc(I=TensorDef(T1, S.N, S.OD * S.SD + S.KD * S.DD,
|
||||
S.OH * S.SH + S.KH * S.DH,
|
||||
S.OW * S.SW + S.KW * S.DW, S.IC),
|
||||
K=TensorDef(T2, S.KD, S.KH, S.KW, S.IC),
|
||||
O=TensorDef(U, S.N, S.OD, S.OH, S.OW,
|
||||
output=True),
|
||||
strides=IndexAttrDef(S.SD,
|
||||
S.SH,
|
||||
S.SW,
|
||||
default=[1, 1, 1]),
|
||||
dilations=IndexAttrDef(S.DD,
|
||||
S.DH,
|
||||
S.DW,
|
||||
default=[1, 1, 1])):
|
||||
"""Performs depth-wise 3-D convolution.
|
||||
|
||||
Numeric casting is performed on the operands to the inner multiply, promoting
|
||||
them to the same data type as the accumulator/output. Multiplier is set to 1
|
||||
which is a special case for most depthwise convolutions.
|
||||
"""
|
||||
implements(ConvolutionOpInterface)
|
||||
domain(D.n, D.od, D.oh, D.ow, D.kd, D.kh, D.kw, D.ic)
|
||||
O[D.n, D.od, D.oh, D.ow, D.ic] += TypeFn.cast_signed(
|
||||
U, I[D.n, D.od * S.SD + D.kd * S.DD, D.oh * S.SH + D.kh * S.DH,
|
||||
D.ow * S.SW + D.kw * S.DW, D.ic]) * TypeFn.cast_signed(
|
||||
U, K[D.kd, D.kh, D.kw, D.ic])
|
||||
|
||||
|
||||
@linalg_structured_op
|
||||
def depthwise_conv_3d_ndhwc_dhwcm(I=TensorDef(T1,
|
||||
S.N, S.OD * S.SD + S.KD * S.DD,
|
||||
S.OH * S.SH + S.KH * S.DH,
|
||||
S.OW * S.SW + S.KW * S.DW, S.IC),
|
||||
K=TensorDef(T2, S.KD, S.KH, S.KW, S.IC, S.CM),
|
||||
O=TensorDef(U, S.N, S.OD, S.OH, S.OW, S.CM,
|
||||
output=True),
|
||||
strides=IndexAttrDef(S.SD,
|
||||
S.SH,
|
||||
S.SW,
|
||||
default=[1, 1, 1]),
|
||||
dilations=IndexAttrDef(S.DD,
|
||||
S.DH,
|
||||
S.DW,
|
||||
default=[1, 1, 1])):
|
||||
"""Performs depth-wise 3-D convolution.
|
||||
|
||||
Numeric casting is performed on the operands to the inner multiply, promoting
|
||||
them to the same data type as the accumulator/output.
|
||||
"""
|
||||
implements(ConvolutionOpInterface)
|
||||
domain(D.n, D.od, D.oh, D.ow, D.cm, D.kd, D.kh, D.kw, D.ic)
|
||||
O[D.n, D.od, D.oh, D.ow, D.ic, D.cm] += TypeFn.cast_signed(
|
||||
U, I[D.n, D.od * S.SD + D.kd * S.DD, D.oh * S.SH + D.kh * S.DH,
|
||||
D.ow * S.SW + D.kw * S.DW, D.ic]) * TypeFn.cast_signed(
|
||||
U, K[D.kd, D.kh, D.kw, D.ic, D.cm])
|
||||
|
||||
|
||||
@linalg_structured_op
|
||||
def pooling_nhwc_sum(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH,
|
||||
S.OW * S.SW + S.KW * S.DW, S.C),
|
||||
|
|
|
@ -1,5 +1,33 @@
|
|||
// RUN: mlir-opt -split-input-file -verify-diagnostics %s | FileCheck %s
|
||||
|
||||
// CHECK-LABEL: func @depthwise_conv_1d_nwc_wcm
|
||||
func.func @depthwise_conv_1d_nwc_wcm(%input: tensor<1x12x8xf32>, %filter: tensor<3x8x8xf32>) -> tensor<1x10x8x8xf32> {
|
||||
%zero = arith.constant 0.000000e+00 : f32
|
||||
%init = linalg.init_tensor [1, 10, 8, 8] : tensor<1x10x8x8xf32>
|
||||
%fill = linalg.fill ins(%zero : f32) outs(%init : tensor<1x10x8x8xf32>) -> tensor<1x10x8x8xf32>
|
||||
// CHECK: depthwise_conv_1d_nwc_wcm
|
||||
%0 = linalg.depthwise_conv_1d_nwc_wcm {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>}
|
||||
ins(%input, %filter : tensor<1x12x8xf32>, tensor<3x8x8xf32>)
|
||||
outs(%fill : tensor<1x10x8x8xf32>) -> tensor<1x10x8x8xf32>
|
||||
return %0 : tensor<1x10x8x8xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func @depthwise_conv_1d_nwc_wc
|
||||
func.func @depthwise_conv_1d_nwc_wc(%input: tensor<1x12x8xf32>, %filter: tensor<3x8xf32>) -> tensor<1x10x8xf32> {
|
||||
%zero = arith.constant 0.000000e+00 : f32
|
||||
%init = linalg.init_tensor [1, 10, 8] : tensor<1x10x8xf32>
|
||||
%fill = linalg.fill ins(%zero : f32) outs(%init : tensor<1x10x8xf32>) -> tensor<1x10x8xf32>
|
||||
// CHECK: depthwise_conv_1d_nwc_wc
|
||||
%0 = linalg.depthwise_conv_1d_nwc_wc {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>}
|
||||
ins(%input, %filter : tensor<1x12x8xf32>, tensor<3x8xf32>)
|
||||
outs(%fill : tensor<1x10x8xf32>) -> tensor<1x10x8xf32>
|
||||
return %0 : tensor<1x10x8xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func @depthwise_conv_2d_nhwc_hwcm_tensor
|
||||
func.func @depthwise_conv_2d_nhwc_hwcm_tensor(%input: tensor<2x4x5x2xf32>, %filter: tensor<2x2x2x3xf32>) -> tensor<2x3x4x2x3xf32> {
|
||||
%zero = arith.constant 0.000000e+00 : f32
|
||||
|
@ -130,6 +158,34 @@ func.func @depthwise_conv_2d_input_nhwc_filter_wrong_stride_size(%input: memref<
|
|||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func @depthwise_conv_3d_ndhwc_dhwcm
|
||||
func.func @depthwise_conv_3d_ndhwc_dhwcm(%input: tensor<2x6x13x12x6xf32>, %filter: tensor<2x1x3x6x6xf32>) -> tensor<2x3x13x4x6x6xf32> {
|
||||
%zero = arith.constant 0.000000e+00 : f32
|
||||
%init = linalg.init_tensor [2, 3, 13, 4, 6, 6] : tensor<2x3x13x4x6x6xf32>
|
||||
%fill = linalg.fill ins(%zero : f32) outs(%init : tensor<2x3x13x4x6x6xf32>) -> tensor<2x3x13x4x6x6xf32>
|
||||
// CHECK: depthwise_conv_3d_ndhwc_dhwcm
|
||||
%0 = linalg.depthwise_conv_3d_ndhwc_dhwcm {dilations = dense<1> : tensor<3xi64>, strides = dense<[2, 1, 3]> : tensor<3xi64>}
|
||||
ins(%input, %filter : tensor<2x6x13x12x6xf32>, tensor<2x1x3x6x6xf32>)
|
||||
outs(%fill : tensor<2x3x13x4x6x6xf32>) -> tensor<2x3x13x4x6x6xf32>
|
||||
return %0 : tensor<2x3x13x4x6x6xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func @depthwise_conv_3d_ndhwc_dhwc
|
||||
func.func @depthwise_conv_3d_ndhwc_dhwc(%input: tensor<2x6x13x12x6xf32>, %filter: tensor<2x1x3x6xf32>) -> tensor<2x3x13x4x6xf32> {
|
||||
%zero = arith.constant 0.000000e+00 : f32
|
||||
%init = linalg.init_tensor [2, 3, 13, 4, 6] : tensor<2x3x13x4x6xf32>
|
||||
%fill = linalg.fill ins(%zero : f32) outs(%init : tensor<2x3x13x4x6xf32>) -> tensor<2x3x13x4x6xf32>
|
||||
// CHECK: depthwise_conv_3d_ndhwc_dhwc
|
||||
%0 = linalg.depthwise_conv_3d_ndhwc_dhwc {dilations = dense<1> : tensor<3xi64>, strides = dense<[2, 1, 3]> : tensor<3xi64>}
|
||||
ins(%input, %filter : tensor<2x6x13x12x6xf32>, tensor<2x1x3x6xf32>)
|
||||
outs(%fill : tensor<2x3x13x4x6xf32>) -> tensor<2x3x13x4x6xf32>
|
||||
return %0 : tensor<2x3x13x4x6xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func @conv_1d_nwc_wcf
|
||||
func.func @conv_1d_nwc_wcf(%input: tensor<?x?x?xf32>, %filter: tensor<?x?x?xf32>, %init: tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
|
||||
// CHECK: %{{.+}} = linalg.conv_1d_nwc_wcf
|
||||
|
|
Loading…
Reference in New Issue