[fir] Add complex operations conversion from FIR LLVM IR

This patch add conversion for primitive operations on complex types.
- fir.addc
- fir.subc
- fir.mulc
- fir.divc
- fir.negc

This adds also the type conversion for !fir.complex<KIND> type.

This patch is part of the upstreaming effort from fir-dev branch.

Reviewed By: rovka

Differential Revision: https://reviews.llvm.org/D113434

Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
This commit is contained in:
Valentin Clement 2021-11-09 11:04:55 +01:00
parent 2ca1cd7e37
commit b9bc64ba14
No known key found for this signature in database
GPG Key ID: 086D54783C928776
6 changed files with 401 additions and 7 deletions

View File

@ -14,6 +14,7 @@
#include "PassDetail.h" #include "PassDetail.h"
#include "flang/Optimizer/Dialect/FIROps.h" #include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h" #include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Support/FIRContext.h"
#include "mlir/Conversion/ArithmeticToLLVM/ArithmeticToLLVM.h" #include "mlir/Conversion/ArithmeticToLLVM/ArithmeticToLLVM.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h" #include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h" #include "mlir/Conversion/LLVMCommon/TypeConverter.h"
@ -487,6 +488,175 @@ struct InsertOnRangeOpConversion
return success(); return success();
} }
}; };
static mlir::Type getComplexEleTy(mlir::Type complex) {
if (auto cc = complex.dyn_cast<mlir::ComplexType>())
return cc.getElementType();
return complex.cast<fir::ComplexType>().getElementType();
}
//
// Primitive operations on Complex types
//
/// Generate inline code for complex addition/subtraction
template <typename LLVMOP, typename OPTY>
mlir::LLVM::InsertValueOp complexSum(OPTY sumop, mlir::ValueRange opnds,
mlir::ConversionPatternRewriter &rewriter,
fir::LLVMTypeConverter &lowering) {
mlir::Value a = opnds[0];
mlir::Value b = opnds[1];
auto loc = sumop.getLoc();
auto ctx = sumop.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
mlir::Type eleTy = lowering.convertType(getComplexEleTy(sumop.getType()));
mlir::Type ty = lowering.convertType(sumop.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
auto rx = rewriter.create<LLVMOP>(loc, eleTy, x0, x1);
auto ry = rewriter.create<LLVMOP>(loc, eleTy, y0, y1);
auto r0 = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r0, rx, c0);
return rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ry, c1);
}
struct AddcOpConversion : public FIROpConversion<fir::AddcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AddcOp addc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: (x + iy) + (x' + iy')
// result: (x + x') + i(y + y')
auto r = complexSum<mlir::LLVM::FAddOp>(addc, adaptor.getOperands(),
rewriter, lowerTy());
rewriter.replaceOp(addc, r.getResult());
return success();
}
};
struct SubcOpConversion : public FIROpConversion<fir::SubcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SubcOp subc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: (x + iy) - (x' + iy')
// result: (x - x') + i(y - y')
auto r = complexSum<mlir::LLVM::FSubOp>(subc, adaptor.getOperands(),
rewriter, lowerTy());
rewriter.replaceOp(subc, r.getResult());
return success();
}
};
/// Inlined complex multiply
struct MulcOpConversion : public FIROpConversion<fir::MulcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::MulcOp mulc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// TODO: Can we use a call to __muldc3 ?
// given: (x + iy) * (x' + iy')
// result: (xx'-yy')+i(xy'+yx')
mlir::Value a = adaptor.getOperands()[0];
mlir::Value b = adaptor.getOperands()[1];
auto loc = mulc.getLoc();
auto *ctx = mulc.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
mlir::Type eleTy = convertType(getComplexEleTy(mulc.getType()));
mlir::Type ty = convertType(mulc.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1);
auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1);
auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1);
auto ri = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xy, yx);
auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1);
auto rr = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, xx, yy);
auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0);
auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1);
rewriter.replaceOp(mulc, r0.getResult());
return success();
}
};
/// Inlined complex division
struct DivcOpConversion : public FIROpConversion<fir::DivcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::DivcOp divc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// TODO: Can we use a call to __divdc3 instead?
// Just generate inline code for now.
// given: (x + iy) / (x' + iy')
// result: ((xx'+yy')/d) + i((yx'-xy')/d) where d = x'x' + y'y'
mlir::Value a = adaptor.getOperands()[0];
mlir::Value b = adaptor.getOperands()[1];
auto loc = divc.getLoc();
auto *ctx = divc.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
mlir::Type eleTy = convertType(getComplexEleTy(divc.getType()));
mlir::Type ty = convertType(divc.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1);
auto x1x1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x1, x1);
auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1);
auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1);
auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1);
auto y1y1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y1, y1);
auto d = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, x1x1, y1y1);
auto rrn = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xx, yy);
auto rin = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, yx, xy);
auto rr = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rrn, d);
auto ri = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rin, d);
auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0);
auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1);
rewriter.replaceOp(divc, r0.getResult());
return success();
}
};
/// Inlined complex negation
struct NegcOpConversion : public FIROpConversion<fir::NegcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::NegcOp neg, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: -(x + iy)
// result: -x - iy
auto *ctxt = neg.getContext();
auto eleTy = convertType(getComplexEleTy(neg.getType()));
auto ty = convertType(neg.getType());
auto loc = neg.getLoc();
mlir::Value o0 = adaptor.getOperands()[0];
auto c0 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(1));
auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c0);
auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c1);
auto nrp = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, rp);
auto nip = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, ip);
auto r = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, o0, nrp, c0);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(neg, ty, r, nip, c1);
return success();
}
};
} // namespace } // namespace
namespace { namespace {
@ -504,12 +674,13 @@ public:
auto *context = getModule().getContext(); auto *context = getModule().getContext();
fir::LLVMTypeConverter typeConverter{getModule()}; fir::LLVMTypeConverter typeConverter{getModule()};
mlir::OwningRewritePatternList pattern(context); mlir::OwningRewritePatternList pattern(context);
pattern.insert< pattern.insert<AddcOpConversion, AddrOfOpConversion, CallOpConversion,
AddrOfOpConversion, CallOpConversion, ExtractValueOpConversion, DivcOpConversion, ExtractValueOpConversion,
HasValueOpConversion, GlobalOpConversion, InsertOnRangeOpConversion, HasValueOpConversion, GlobalOpConversion,
InsertValueOpConversion, SelectOpConversion, SelectRankOpConversion, InsertOnRangeOpConversion, InsertValueOpConversion,
UndefOpConversion, UnreachableOpConversion, ZeroOpConversion>( NegcOpConversion, MulcOpConversion, SelectOpConversion,
typeConverter); SelectRankOpConversion, SubcOpConversion, UndefOpConversion,
UnreachableOpConversion, ZeroOpConversion>(typeConverter);
mlir::populateStdToLLVMConversionPatterns(typeConverter, pattern); mlir::populateStdToLLVMConversionPatterns(typeConverter, pattern);
mlir::arith::populateArithmeticToLLVMConversionPatterns(typeConverter, mlir::arith::populateArithmeticToLLVMConversionPatterns(typeConverter,
pattern); pattern);

View File

@ -35,6 +35,13 @@ struct GenericTarget : public CodeGenSpecifics {
using CodeGenSpecifics::CodeGenSpecifics; using CodeGenSpecifics::CodeGenSpecifics;
using AT = CodeGenSpecifics::Attributes; using AT = CodeGenSpecifics::Attributes;
mlir::Type complexMemoryType(mlir::Type eleTy) const override {
assert(fir::isa_real(eleTy));
// { t, t } struct of 2 eleTy
mlir::TypeRange range = {eleTy, eleTy};
return mlir::TupleType::get(eleTy.getContext(), range);
}
Marshalling boxcharArgumentType(mlir::Type eleTy, bool sret) const override { Marshalling boxcharArgumentType(mlir::Type eleTy, bool sret) const override {
CodeGenSpecifics::Marshalling marshal; CodeGenSpecifics::Marshalling marshal;
auto idxTy = mlir::IntegerType::get(eleTy.getContext(), S::defaultWidth); auto idxTy = mlir::IntegerType::get(eleTy.getContext(), S::defaultWidth);

View File

@ -65,6 +65,9 @@ public:
CodeGenSpecifics() = delete; CodeGenSpecifics() = delete;
virtual ~CodeGenSpecifics() {} virtual ~CodeGenSpecifics() {}
/// Type presentation of a `complex<ele>` type value in memory.
virtual mlir::Type complexMemoryType(mlir::Type eleTy) const = 0;
/// Type representation of a `complex<eleTy>` type argument when passed by /// Type representation of a `complex<eleTy>` type argument when passed by
/// value. An argument value may need to be passed as a (safe) reference /// value. An argument value may need to be passed as a (safe) reference
/// argument. /// argument.

View File

@ -14,6 +14,7 @@
#define FORTRAN_OPTIMIZER_CODEGEN_TYPECONVERTER_H #define FORTRAN_OPTIMIZER_CODEGEN_TYPECONVERTER_H
#include "DescriptorModel.h" #include "DescriptorModel.h"
#include "Target.h"
#include "flang/Lower/Todo.h" // remove when TODO's are done #include "flang/Lower/Todo.h" // remove when TODO's are done
#include "flang/Optimizer/Support/FIRContext.h" #include "flang/Optimizer/Support/FIRContext.h"
#include "flang/Optimizer/Support/KindMapping.h" #include "flang/Optimizer/Support/KindMapping.h"
@ -28,7 +29,10 @@ class LLVMTypeConverter : public mlir::LLVMTypeConverter {
public: public:
LLVMTypeConverter(mlir::ModuleOp module) LLVMTypeConverter(mlir::ModuleOp module)
: mlir::LLVMTypeConverter(module.getContext()), : mlir::LLVMTypeConverter(module.getContext()),
kindMapping(getKindMapping(module)) { kindMapping(getKindMapping(module)),
specifics(CodeGenSpecifics::get(module.getContext(),
getTargetTriple(module),
getKindMapping(module))) {
LLVM_DEBUG(llvm::dbgs() << "FIR type converter\n"); LLVM_DEBUG(llvm::dbgs() << "FIR type converter\n");
// Each conversion should return a value of type mlir::Type. // Each conversion should return a value of type mlir::Type.
@ -39,6 +43,10 @@ public:
}); });
addConversion( addConversion(
[&](fir::RecordType derived) { return convertRecordType(derived); }); [&](fir::RecordType derived) { return convertRecordType(derived); });
addConversion(
[&](fir::ComplexType cmplx) { return convertComplexType(cmplx); });
addConversion(
[&](fir::RealType real) { return convertRealType(real.getFKind()); });
addConversion( addConversion(
[&](fir::ReferenceType ref) { return convertPointerLike(ref); }); [&](fir::ReferenceType ref) { return convertPointerLike(ref); });
addConversion( addConversion(
@ -140,6 +148,24 @@ public:
/*isPacked=*/false)); /*isPacked=*/false));
} }
// Use the target specifics to figure out how to map complex to LLVM IR. The
// use of complex values in function signatures is handled before conversion
// to LLVM IR dialect here.
//
// fir.complex<T> | std.complex<T> --> llvm<"{t,t}">
template <typename C>
mlir::Type convertComplexType(C cmplx) {
LLVM_DEBUG(llvm::dbgs() << "type convert: " << cmplx << '\n');
auto eleTy = cmplx.getElementType();
return convertType(specifics->complexMemoryType(eleTy));
}
// convert a front-end kind value to either a std or LLVM IR dialect type
// fir.real<n> --> llvm.anyfloat where anyfloat is a kind mapping
mlir::Type convertRealType(fir::KindTy kind) {
return fromRealTypeID(kindMapping.getRealTypeID(kind), kind);
}
template <typename A> template <typename A>
mlir::Type convertPointerLike(A &ty) { mlir::Type convertPointerLike(A &ty) {
mlir::Type eleTy = ty.getEleTy(); mlir::Type eleTy = ty.getEleTy();
@ -187,8 +213,33 @@ public:
return mlir::LLVM::LLVMPointerType::get(baseTy); return mlir::LLVM::LLVMPointerType::get(baseTy);
} }
/// Convert llvm::Type::TypeID to mlir::Type
mlir::Type fromRealTypeID(llvm::Type::TypeID typeID, fir::KindTy kind) {
switch (typeID) {
case llvm::Type::TypeID::HalfTyID:
return mlir::FloatType::getF16(&getContext());
case llvm::Type::TypeID::BFloatTyID:
return mlir::FloatType::getBF16(&getContext());
case llvm::Type::TypeID::FloatTyID:
return mlir::FloatType::getF32(&getContext());
case llvm::Type::TypeID::DoubleTyID:
return mlir::FloatType::getF64(&getContext());
case llvm::Type::TypeID::X86_FP80TyID:
return mlir::FloatType::getF80(&getContext());
case llvm::Type::TypeID::FP128TyID:
return mlir::FloatType::getF128(&getContext());
default:
emitError(UnknownLoc::get(&getContext()))
<< "unsupported type: !fir.real<" << kind << ">";
return {};
}
}
KindMapping &getKindMap() { return kindMapping; }
private: private:
KindMapping kindMapping; KindMapping kindMapping;
std::unique_ptr<CodeGenSpecifics> specifics;
}; };
} // namespace fir } // namespace fir

View File

@ -376,3 +376,137 @@ func @test_call_return_val() -> i32 {
// CHECK-NEXT: %0 = llvm.call @dummy_return_val() : () -> i32 // CHECK-NEXT: %0 = llvm.call @dummy_return_val() : () -> i32
// CHECK-NEXT: llvm.return %0 : i32 // CHECK-NEXT: llvm.return %0 : i32
// CHECK-NEXT: } // CHECK-NEXT: }
// -----
// Test FIR complex addition conversion
// given: (x + iy) + (x' + iy')
// result: (x + x') + i(y + y')
func @fir_complex_add(%a: !fir.complex<16>, %b: !fir.complex<16>) -> !fir.complex<16> {
%c = fir.addc %a, %b : !fir.complex<16>
return %c : !fir.complex<16>
}
// CHECK-LABEL: llvm.func @fir_complex_add(
// CHECK-SAME: %[[ARG0:.*]]: !llvm.struct<(f128, f128)>,
// CHECK-SAME: %[[ARG1:.*]]: !llvm.struct<(f128, f128)>) -> !llvm.struct<(f128, f128)> {
// CHECK: %[[X0:.*]] = llvm.extractvalue %[[ARG0]][0 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[Y0:.*]] = llvm.extractvalue %[[ARG0]][1 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[X1:.*]] = llvm.extractvalue %[[ARG1]][0 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[Y1:.*]] = llvm.extractvalue %[[ARG1]][1 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[ADD_X0_X1:.*]] = llvm.fadd %[[X0]], %[[X1]] : f128
// CHECK: %[[ADD_Y0_Y1:.*]] = llvm.fadd %[[Y0]], %[[Y1]] : f128
// CHECK: %{{.*}} = llvm.mlir.undef : !llvm.struct<(f128, f128)>
// CHECK: %{{.*}} = llvm.insertvalue %[[ADD_X0_X1]], %{{.*}}[0 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %{{.*}} = llvm.insertvalue %[[ADD_Y0_Y1]], %{{.*}}[1 : i32] : !llvm.struct<(f128, f128)>
// CHECK: llvm.return %{{.*}} : !llvm.struct<(f128, f128)>
// -----
// Test FIR complex substraction conversion
// given: (x + iy) - (x' + iy')
// result: (x - x') + i(y - y')
func @fir_complex_sub(%a: !fir.complex<16>, %b: !fir.complex<16>) -> !fir.complex<16> {
%c = fir.subc %a, %b : !fir.complex<16>
return %c : !fir.complex<16>
}
// CHECK-LABEL: llvm.func @fir_complex_sub(
// CHECK-SAME: %[[ARG0:.*]]: !llvm.struct<(f128, f128)>,
// CHECK-SAME: %[[ARG1:.*]]: !llvm.struct<(f128, f128)>) -> !llvm.struct<(f128, f128)> {
// CHECK: %[[X0:.*]] = llvm.extractvalue %[[ARG0]][0 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[Y0:.*]] = llvm.extractvalue %[[ARG0]][1 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[X1:.*]] = llvm.extractvalue %[[ARG1]][0 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[Y1:.*]] = llvm.extractvalue %[[ARG1]][1 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[SUB_X0_X1:.*]] = llvm.fsub %[[X0]], %[[X1]] : f128
// CHECK: %[[SUB_Y0_Y1:.*]] = llvm.fsub %[[Y0]], %[[Y1]] : f128
// CHECK: %{{.*}} = llvm.mlir.undef : !llvm.struct<(f128, f128)>
// CHECK: %{{.*}} = llvm.insertvalue %[[SUB_X0_X1]], %{{.*}}[0 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %{{.*}} = llvm.insertvalue %[[SUB_Y0_Y1]], %{{.*}}[1 : i32] : !llvm.struct<(f128, f128)>
// CHECK: llvm.return %{{.*}} : !llvm.struct<(f128, f128)>
// -----
// Test FIR complex multiply conversion
// given: (x + iy) * (x' + iy')
// result: (xx'-yy')+i(xy'+yx')
func @fir_complex_mul(%a: !fir.complex<16>, %b: !fir.complex<16>) -> !fir.complex<16> {
%c = fir.mulc %a, %b : !fir.complex<16>
return %c : !fir.complex<16>
}
// CHECK-LABEL: llvm.func @fir_complex_mul(
// CHECK-SAME: %[[ARG0:.*]]: !llvm.struct<(f128, f128)>,
// CHECK-SAME: %[[ARG1:.*]]: !llvm.struct<(f128, f128)>) -> !llvm.struct<(f128, f128)> {
// CHECK: %[[X0:.*]] = llvm.extractvalue %[[ARG0]][0 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[Y0:.*]] = llvm.extractvalue %[[ARG0]][1 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[X1:.*]] = llvm.extractvalue %[[ARG1]][0 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[Y1:.*]] = llvm.extractvalue %[[ARG1]][1 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[MUL_X0_X1:.*]] = llvm.fmul %[[X0]], %[[X1]] : f128
// CHECK: %[[MUL_Y0_X1:.*]] = llvm.fmul %[[Y0]], %[[X1]] : f128
// CHECK: %[[MUL_X0_Y1:.*]] = llvm.fmul %[[X0]], %[[Y1]] : f128
// CHECK: %[[ADD:.*]] = llvm.fadd %[[MUL_X0_Y1]], %[[MUL_Y0_X1]] : f128
// CHECK: %[[MUL_Y0_Y1:.*]] = llvm.fmul %[[Y0]], %[[Y1]] : f128
// CHECK: %[[SUB:.*]] = llvm.fsub %[[MUL_X0_X1]], %[[MUL_Y0_Y1]] : f128
// CHECK: %{{.*}} = llvm.mlir.undef : !llvm.struct<(f128, f128)>
// CHECK: %{{.*}} = llvm.insertvalue %[[SUB]], %{{.*}}[0 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %{{.*}} = llvm.insertvalue %[[ADD]], %{{.*}}[1 : i32] : !llvm.struct<(f128, f128)>
// CHECK: llvm.return %{{.*}} : !llvm.struct<(f128, f128)>
// -----
// Test FIR complex division conversion
// given: (x + iy) / (x' + iy')
// result: ((xx'+yy')/d) + i((yx'-xy')/d) where d = x'x' + y'y'
func @fir_complex_div(%a: !fir.complex<16>, %b: !fir.complex<16>) -> !fir.complex<16> {
%c = fir.divc %a, %b : !fir.complex<16>
return %c : !fir.complex<16>
}
// CHECK-LABEL: llvm.func @fir_complex_div(
// CHECK-SAME: %[[ARG0:.*]]: !llvm.struct<(f128, f128)>,
// CHECK-SAME: %[[ARG1:.*]]: !llvm.struct<(f128, f128)>) -> !llvm.struct<(f128, f128)> {
// CHECK: %[[X0:.*]] = llvm.extractvalue %[[ARG0]][0 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[Y0:.*]] = llvm.extractvalue %[[ARG0]][1 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[X1:.*]] = llvm.extractvalue %[[ARG1]][0 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[Y1:.*]] = llvm.extractvalue %[[ARG1]][1 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[MUL_X0_X1:.*]] = llvm.fmul %[[X0]], %[[X1]] : f128
// CHECK: %[[MUL_X1_X1:.*]] = llvm.fmul %[[X1]], %[[X1]] : f128
// CHECK: %[[MUL_Y0_X1:.*]] = llvm.fmul %[[Y0]], %[[X1]] : f128
// CHECK: %[[MUL_X0_Y1:.*]] = llvm.fmul %[[X0]], %[[Y1]] : f128
// CHECK: %[[MUL_Y0_Y1:.*]] = llvm.fmul %[[Y0]], %[[Y1]] : f128
// CHECK: %[[MUL_Y1_Y1:.*]] = llvm.fmul %[[Y1]], %[[Y1]] : f128
// CHECK: %[[ADD_X1X1_Y1Y1:.*]] = llvm.fadd %[[MUL_X1_X1]], %[[MUL_Y1_Y1]] : f128
// CHECK: %[[ADD_X0X1_Y0Y1:.*]] = llvm.fadd %[[MUL_X0_X1]], %[[MUL_Y0_Y1]] : f128
// CHECK: %[[SUB_Y0X1_X0Y1:.*]] = llvm.fsub %[[MUL_Y0_X1]], %[[MUL_X0_Y1]] : f128
// CHECK: %[[DIV0:.*]] = llvm.fdiv %[[ADD_X0X1_Y0Y1]], %[[ADD_X1X1_Y1Y1]] : f128
// CHECK: %[[DIV1:.*]] = llvm.fdiv %[[SUB_Y0X1_X0Y1]], %[[ADD_X1X1_Y1Y1]] : f128
// CHECK: %{{.*}} = llvm.mlir.undef : !llvm.struct<(f128, f128)>
// CHECK: %{{.*}} = llvm.insertvalue %[[DIV0]], %{{.*}}[0 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %{{.*}} = llvm.insertvalue %[[DIV1]], %{{.*}}[1 : i32] : !llvm.struct<(f128, f128)>
// CHECK: llvm.return %{{.*}} : !llvm.struct<(f128, f128)>
// -----
// Test FIR complex negation conversion
// given: -(x + iy)
// result: -x - iy
func @fir_complex_neg(%a: !fir.complex<16>) -> !fir.complex<16> {
%c = fir.negc %a : !fir.complex<16>
return %c : !fir.complex<16>
}
// CHECK-LABEL: llvm.func @fir_complex_neg(
// CHECK-SAME: %[[ARG0:.*]]: !llvm.struct<(f128, f128)>) -> !llvm.struct<(f128, f128)> {
// CHECK: %[[X:.*]] = llvm.extractvalue %[[ARG0]][0 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[Y:.*]] = llvm.extractvalue %[[ARG0]][1 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %[[NEGX:.*]] = llvm.fneg %[[X]] : f128
// CHECK: %[[NEGY:.*]] = llvm.fneg %[[Y]] : f128
// CHECK: %{{.*}} = llvm.insertvalue %[[NEGX]], %{{.*}}[0 : i32] : !llvm.struct<(f128, f128)>
// CHECK: %{{.*}} = llvm.insertvalue %[[NEGY]], %{{.*}}[1 : i32] : !llvm.struct<(f128, f128)>
// CHECK: llvm.return %{{.*}} : !llvm.struct<(f128, f128)>

View File

@ -72,3 +72,31 @@ func private @foo3(%arg0: !fir.logical<8>)
func private @foo4(%arg0: !fir.logical<16>) func private @foo4(%arg0: !fir.logical<16>)
// CHECK-LABEL: foo4 // CHECK-LABEL: foo4
// CHECK-SAME: i128 // CHECK-SAME: i128
// -----
// Test `!fir.complex<KIND>` conversion.
func private @foo0(%arg0: !fir.complex<2>)
// CHECK-LABEL: foo0
// CHECK-SAME: !llvm.struct<(f16, f16)>)
func private @foo1(%arg0: !fir.complex<3>)
// CHECK-LABEL: foo1
// CHECK-SAME: !llvm.struct<(bf16, bf16)>)
func private @foo2(%arg0: !fir.complex<4>)
// CHECK-LABEL: foo2
// CHECK-SAME: !llvm.struct<(f32, f32)>)
func private @foo3(%arg0: !fir.complex<8>)
// CHECK-LABEL: foo3
// CHECK-SAME: !llvm.struct<(f64, f64)>)
func private @foo4(%arg0: !fir.complex<10>)
// CHECK-LABEL: foo4
// CHECK-SAME: !llvm.struct<(f80, f80)>)
func private @foo5(%arg0: !fir.complex<16>)
// CHECK-LABEL: foo5
// CHECK-SAME: !llvm.struct<(f128, f128)>)