[libc++] Avoid creating temporaries in unary expressions involving valarray

Currently, unary expressions involving valarray will create a temporary.
This leads to dangling references in expressions like `-a * b`, because
`-a` is a temporary and the resulting expression will refer to it. This
patch fixes the problem by creating a lazy expression to perform the unary
operation instead of eagerly creating a temporary valarray. This is
permitted by the Standard, which does not specify the exact type of
most expressions involving valarrays.

This is technically an ABI break, however I believe the actual potential
for breakage is very low.

rdar://90152242

Differential Revision: https://reviews.llvm.org/D125019
This commit is contained in:
Louis Dionne 2022-05-05 12:24:43 -04:00
parent 04d4130a51
commit b8f6f9e741
6 changed files with 75 additions and 48 deletions

View File

@ -122,6 +122,17 @@ ABI Changes
token used when constructing a ``std::random_device`` will now be ignored instead of
interpreted as a file to read entropy from.
- ``std::valarray``'s unary operators ``!``, ``+``, ``~`` and ``-`` now return an expression
object instead of a ``valarray``. This was done to fix an issue where any expression involving
other ``valarray`` operators and one of these unary operators would end up with a dangling
reference. This is a potential ABI break for code that exposes ``std::valarray`` on an ABI
boundary, specifically if the return type of an ABI-boundary function is ``auto``-deduced
from an expression involving unary operators on ``valarray``. If you are concerned by this,
you can audit whether your executable or library exports any function that returns a
``valarray``, and if so ensure that any such function uses ``std::valarray`` directly
as a return type instead of relying on the type of ``valarray``-expressions, which is
not guaranteed by the Standard anyway.
Build System Changes
--------------------

View File

@ -923,10 +923,14 @@ public:
#endif // _LIBCPP_CXX03_LANG
// unary operators:
valarray operator+() const;
valarray operator-() const;
valarray operator~() const;
valarray<bool> operator!() const;
_LIBCPP_INLINE_VISIBILITY
__val_expr<_UnaryOp<__unary_plus<_Tp>, const valarray&> > operator+() const;
_LIBCPP_INLINE_VISIBILITY
__val_expr<_UnaryOp<negate<_Tp>, const valarray&> > operator-() const;
_LIBCPP_INLINE_VISIBILITY
__val_expr<_UnaryOp<__bit_not<_Tp>, const valarray&> > operator~() const;
_LIBCPP_INLINE_VISIBILITY
__val_expr<_UnaryOp<logical_not<_Tp>, const valarray&> > operator!() const;
// computed assignment:
_LIBCPP_INLINE_VISIBILITY
@ -3300,63 +3304,39 @@ valarray<_Tp>::operator[](valarray<size_t>&& __vs)
#endif // _LIBCPP_CXX03_LANG
template <class _Tp>
valarray<_Tp>
inline
__val_expr<_UnaryOp<__unary_plus<_Tp>, const valarray<_Tp>&> >
valarray<_Tp>::operator+() const
{
valarray<value_type> __r;
size_t __n = size();
if (__n)
{
__r.__begin_ = __r.__end_ = allocator<value_type>().allocate(__n);
for (const value_type* __p = __begin_; __n; ++__r.__end_, ++__p, --__n)
::new ((void*)__r.__end_) value_type(+*__p);
}
return __r;
using _Op = _UnaryOp<__unary_plus<_Tp>, const valarray<_Tp>&>;
return __val_expr<_Op>(_Op(__unary_plus<_Tp>(), *this));
}
template <class _Tp>
valarray<_Tp>
inline
__val_expr<_UnaryOp<negate<_Tp>, const valarray<_Tp>&> >
valarray<_Tp>::operator-() const
{
valarray<value_type> __r;
size_t __n = size();
if (__n)
{
__r.__begin_ = __r.__end_ = allocator<value_type>().allocate(__n);
for (const value_type* __p = __begin_; __n; ++__r.__end_, ++__p, --__n)
::new ((void*)__r.__end_) value_type(-*__p);
}
return __r;
using _Op = _UnaryOp<negate<_Tp>, const valarray<_Tp>&>;
return __val_expr<_Op>(_Op(negate<_Tp>(), *this));
}
template <class _Tp>
valarray<_Tp>
inline
__val_expr<_UnaryOp<__bit_not<_Tp>, const valarray<_Tp>&> >
valarray<_Tp>::operator~() const
{
valarray<value_type> __r;
size_t __n = size();
if (__n)
{
__r.__begin_ = __r.__end_ = allocator<value_type>().allocate(__n);
for (const value_type* __p = __begin_; __n; ++__r.__end_, ++__p, --__n)
::new ((void*)__r.__end_) value_type(~*__p);
}
return __r;
using _Op = _UnaryOp<__bit_not<_Tp>, const valarray<_Tp>&>;
return __val_expr<_Op>(_Op(__bit_not<_Tp>(), *this));
}
template <class _Tp>
valarray<bool>
inline
__val_expr<_UnaryOp<logical_not<_Tp>, const valarray<_Tp>&> >
valarray<_Tp>::operator!() const
{
valarray<bool> __r;
size_t __n = size();
if (__n)
{
__r.__begin_ = __r.__end_ = allocator<bool>().allocate(__n);
for (const value_type* __p = __begin_; __n; ++__r.__end_, ++__p, --__n)
::new ((void*)__r.__end_) bool(!*__p);
}
return __r;
using _Op = _UnaryOp<logical_not<_Tp>, const valarray<_Tp>&>;
return __val_expr<_Op>(_Op(logical_not<_Tp>(), *this));
}
template <class _Tp>

View File

@ -54,6 +54,15 @@ int main(int, char**)
for (std::size_t i = 0; i < v2.size(); ++i)
assert(v2[i] == ~(2*v[i]));
}
{
// Make sure we don't have dangling reference problems with unary expressions
int array[] = {1, 2, 3};
std::valarray<int> a(array, 3);
std::valarray<int> b(array, 3);
auto c = ~a + b;
assert(c.size() == 3);
assert(c[0] == (~1 + 1) && c[1] == (~2 + 2) && c[2] == (~3 + 3));
}
return 0;
return 0;
}

View File

@ -64,6 +64,15 @@ int main(int, char**)
for (std::size_t i = 0; i < v2.size(); ++i)
assert(v2[i] == -2*v[i]);
}
{
// Make sure we don't have dangling reference problems with unary expressions
int array[] = {1, 2, 3};
std::valarray<int> a(array, 3);
std::valarray<int> b(array, 3);
auto c = -a * b;
assert(c.size() == 3);
assert(c[0] == -1 && c[1] == -4 && c[2] == -9);
}
return 0;
return 0;
}

View File

@ -40,6 +40,15 @@ int main(int, char**)
for (std::size_t i = 0; i < v2.size(); ++i)
assert(v2[i] == !(v[i] + v[i]));
}
{
// Make sure we don't have dangling reference problems with unary expressions
bool array[] = {true, false, true};
std::valarray<bool> a(array, 3);
std::valarray<bool> b(array, 3);
auto c = !a && b;
assert(c.size() == 3);
assert(c[0] == false && c[1] == false && c[2] == false);
}
return 0;
return 0;
}

View File

@ -64,6 +64,15 @@ int main(int, char**)
for (std::size_t i = 0; i < v2.size(); ++i)
assert(v2[i] == +2*v[i]);
}
{
// Make sure we don't have dangling reference problems with unary expressions
int array[] = {1, 2, 3};
std::valarray<int> a(array, 3);
std::valarray<int> b(array, 3);
auto c = +a * b;
assert(c.size() == 3);
assert(c[0] == 1 && c[1] == 4 && c[2] == 9);
}
return 0;
return 0;
}