forked from OSchip/llvm-project
Expose the WriteTypeSymbolic function from the library. Refactor code to make
this function explicit. Cause WriteAsOperand to use symbolic types as available. llvm-svn: 1031
This commit is contained in:
parent
790409a07a
commit
b86620e9b1
|
@ -26,6 +26,21 @@
|
|||
#include <algorithm>
|
||||
#include <map>
|
||||
|
||||
static const Module *getModuleFromVal(const Value *V) {
|
||||
if (const MethodArgument *MA =dyn_cast<const MethodArgument>(V))
|
||||
return MA->getParent() ? MA->getParent()->getParent() : 0;
|
||||
else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V))
|
||||
return BB->getParent() ? BB->getParent()->getParent() : 0;
|
||||
else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
|
||||
const Method *M = I->getParent() ? I->getParent()->getParent() : 0;
|
||||
return M ? M->getParent() : 0;
|
||||
} else if (const GlobalValue *GV =dyn_cast<const GlobalValue>(V))
|
||||
return GV->getParent();
|
||||
else if (const Module *Mod = dyn_cast<const Module>(V))
|
||||
return Mod;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static SlotCalculator *createSlotCalculator(const Value *V) {
|
||||
assert(!isa<Type>(V) && "Can't create an SC for a type!");
|
||||
if (const MethodArgument *MA =dyn_cast<const MethodArgument>(V)){
|
||||
|
@ -48,11 +63,8 @@ static SlotCalculator *createSlotCalculator(const Value *V) {
|
|||
// ostream. This can be useful when you just want to print int %reg126, not the
|
||||
// whole instruction that generated it.
|
||||
//
|
||||
ostream &WriteAsOperand(ostream &Out, const Value *V, bool PrintType,
|
||||
bool PrintName, SlotCalculator *Table) {
|
||||
if (PrintType)
|
||||
Out << " " << V->getType()->getDescription();
|
||||
|
||||
static void WriteAsOperandInternal(ostream &Out, const Value *V, bool PrintName,
|
||||
SlotCalculator *Table) {
|
||||
if (PrintName && V->hasName()) {
|
||||
Out << " %" << V->getName();
|
||||
} else {
|
||||
|
@ -63,11 +75,13 @@ ostream &WriteAsOperand(ostream &Out, const Value *V, bool PrintType,
|
|||
if (Table) {
|
||||
Slot = Table->getValSlot(V);
|
||||
} else {
|
||||
if (const Type *Ty = dyn_cast<const Type>(V))
|
||||
return Out << " " << Ty;
|
||||
if (const Type *Ty = dyn_cast<const Type>(V)) {
|
||||
Out << " " << Ty->getDescription();
|
||||
return;
|
||||
}
|
||||
|
||||
Table = createSlotCalculator(V);
|
||||
if (Table == 0) return Out << "BAD VALUE TYPE!";
|
||||
if (Table == 0) { Out << "BAD VALUE TYPE!"; return; }
|
||||
|
||||
Slot = Table->getValSlot(V);
|
||||
delete Table;
|
||||
|
@ -77,6 +91,164 @@ ostream &WriteAsOperand(ostream &Out, const Value *V, bool PrintType,
|
|||
Out << "<badref>"; // Not embeded into a location?
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// If the module has a symbol table, take all global types and stuff their
|
||||
// names into the TypeNames map.
|
||||
//
|
||||
static void fillTypeNameTable(const Module *M,
|
||||
map<const Type *, string> &TypeNames) {
|
||||
if (M && M->hasSymbolTable()) {
|
||||
const SymbolTable *ST = M->getSymbolTable();
|
||||
SymbolTable::const_iterator PI = ST->find(Type::TypeTy);
|
||||
if (PI != ST->end()) {
|
||||
SymbolTable::type_const_iterator I = PI->second.begin();
|
||||
for (; I != PI->second.end(); ++I) {
|
||||
// As a heuristic, don't insert pointer to primitive types, because
|
||||
// they are used too often to have a single useful name.
|
||||
//
|
||||
const Type *Ty = cast<const Type>(I->second);
|
||||
if (!isa<PointerType>(Ty) ||
|
||||
!cast<PointerType>(Ty)->getValueType()->isPrimitiveType())
|
||||
TypeNames.insert(make_pair(Ty, "%"+I->first));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
|
||||
map<const Type *, string> &TypeNames) {
|
||||
if (Ty->isPrimitiveType()) return Ty->getDescription(); // Base case
|
||||
|
||||
// Check to see if the type is named.
|
||||
map<const Type *, string>::iterator I = TypeNames.find(Ty);
|
||||
if (I != TypeNames.end()) return I->second;
|
||||
|
||||
// Check to see if the Type is already on the stack...
|
||||
unsigned Slot = 0, CurSize = TypeStack.size();
|
||||
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
|
||||
|
||||
// This is another base case for the recursion. In this case, we know
|
||||
// that we have looped back to a type that we have previously visited.
|
||||
// Generate the appropriate upreference to handle this.
|
||||
//
|
||||
if (Slot < CurSize)
|
||||
return "\\" + utostr(CurSize-Slot); // Here's the upreference
|
||||
|
||||
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
|
||||
|
||||
string Result;
|
||||
switch (Ty->getPrimitiveID()) {
|
||||
case Type::MethodTyID: {
|
||||
const MethodType *MTy = cast<const MethodType>(Ty);
|
||||
Result = calcTypeName(MTy->getReturnType(), TypeStack, TypeNames) + " (";
|
||||
for (MethodType::ParamTypes::const_iterator
|
||||
I = MTy->getParamTypes().begin(),
|
||||
E = MTy->getParamTypes().end(); I != E; ++I) {
|
||||
if (I != MTy->getParamTypes().begin())
|
||||
Result += ", ";
|
||||
Result += calcTypeName(*I, TypeStack, TypeNames);
|
||||
}
|
||||
if (MTy->isVarArg()) {
|
||||
if (!MTy->getParamTypes().empty()) Result += ", ";
|
||||
Result += "...";
|
||||
}
|
||||
Result += ")";
|
||||
break;
|
||||
}
|
||||
case Type::StructTyID: {
|
||||
const StructType *STy = cast<const StructType>(Ty);
|
||||
Result = "{ ";
|
||||
for (StructType::ElementTypes::const_iterator
|
||||
I = STy->getElementTypes().begin(),
|
||||
E = STy->getElementTypes().end(); I != E; ++I) {
|
||||
if (I != STy->getElementTypes().begin())
|
||||
Result += ", ";
|
||||
Result += calcTypeName(*I, TypeStack, TypeNames);
|
||||
}
|
||||
Result += " }";
|
||||
break;
|
||||
}
|
||||
case Type::PointerTyID:
|
||||
Result = calcTypeName(cast<const PointerType>(Ty)->getValueType(),
|
||||
TypeStack, TypeNames) + " *";
|
||||
break;
|
||||
case Type::ArrayTyID: {
|
||||
const ArrayType *ATy = cast<const ArrayType>(Ty);
|
||||
int NumElements = ATy->getNumElements();
|
||||
Result = "[";
|
||||
if (NumElements != -1) Result += itostr(NumElements) + " x ";
|
||||
Result += calcTypeName(ATy->getElementType(), TypeStack, TypeNames) + "]";
|
||||
break;
|
||||
}
|
||||
default:
|
||||
assert(0 && "Unhandled case in getTypeProps!");
|
||||
Result = "<error>";
|
||||
}
|
||||
|
||||
TypeStack.pop_back(); // Remove self from stack...
|
||||
return Result;
|
||||
}
|
||||
|
||||
|
||||
// printTypeInt - The internal guts of printing out a type that has a
|
||||
// potentially named portion.
|
||||
//
|
||||
static ostream &printTypeInt(ostream &Out, const Type *Ty,
|
||||
map<const Type *, string> &TypeNames) {
|
||||
// Primitive types always print out their description, regardless of whether
|
||||
// they have been named or not.
|
||||
//
|
||||
if (Ty->isPrimitiveType()) return Out << Ty->getDescription();
|
||||
|
||||
// Check to see if the type is named.
|
||||
map<const Type *, string>::iterator I = TypeNames.find(Ty);
|
||||
if (I != TypeNames.end()) return Out << I->second;
|
||||
|
||||
// Otherwise we have a type that has not been named but is a derived type.
|
||||
// Carefully recurse the type hierarchy to print out any contained symbolic
|
||||
// names.
|
||||
//
|
||||
vector<const Type *> TypeStack;
|
||||
string TypeName = calcTypeName(Ty, TypeStack, TypeNames);
|
||||
TypeNames.insert(make_pair(Ty, TypeName)); // Cache type name for later use
|
||||
return Out << TypeName;
|
||||
}
|
||||
|
||||
// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
|
||||
// type, iff there is an entry in the modules symbol table for the specified
|
||||
// type or one of it's component types. This is slower than a simple x << Type;
|
||||
//
|
||||
ostream &WriteTypeSymbolic(ostream &Out, const Type *Ty, const Module *M) {
|
||||
Out << " ";
|
||||
|
||||
// If they want us to print out a type, attempt to make it symbolic if there
|
||||
// is a symbol table in the module...
|
||||
if (M && M->hasSymbolTable()) {
|
||||
map<const Type *, string> TypeNames;
|
||||
fillTypeNameTable(M, TypeNames);
|
||||
|
||||
return printTypeInt(Out, V->getType(), TypeNames);
|
||||
} else {
|
||||
return Out << V->getType()->getDescription();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// WriteAsOperand - Write the name of the specified value out to the specified
|
||||
// ostream. This can be useful when you just want to print int %reg126, not the
|
||||
// whole instruction that generated it.
|
||||
//
|
||||
ostream &WriteAsOperand(ostream &Out, const Value *V, bool PrintType,
|
||||
bool PrintName, SlotCalculator *Table) {
|
||||
if (PrintType) {
|
||||
WriteTypeSymbolic(Ty, getModuleFromVal(V));
|
||||
}
|
||||
|
||||
WriteAsOperandInternal(Out, V, PrintName, Table);
|
||||
return Out;
|
||||
}
|
||||
|
||||
|
@ -94,22 +266,7 @@ public:
|
|||
// If the module has a symbol table, take all global types and stuff their
|
||||
// names into the TypeNames map.
|
||||
//
|
||||
if (M && M->hasSymbolTable()) {
|
||||
const SymbolTable *ST = M->getSymbolTable();
|
||||
SymbolTable::const_iterator PI = ST->find(Type::TypeTy);
|
||||
if (PI != ST->end()) {
|
||||
SymbolTable::type_const_iterator I = PI->second.begin();
|
||||
for (; I != PI->second.end(); ++I) {
|
||||
// As a heuristic, don't insert pointer to primitive types, because
|
||||
// they are used too often to have a single useful name.
|
||||
//
|
||||
const Type *Ty = cast<const Type>(I->second);
|
||||
if (!isa<PointerType>(Ty) ||
|
||||
!cast<PointerType>(Ty)->getValueType()->isPrimitiveType())
|
||||
TypeNames.insert(make_pair(Ty, "%"+I->first));
|
||||
}
|
||||
}
|
||||
}
|
||||
fillTypeNameTable(M, TypeNames);
|
||||
}
|
||||
|
||||
inline void write(const Module *M) { printModule(M); }
|
||||
|
@ -135,16 +292,13 @@ private :
|
|||
// printInfoComment - Print a little comment after the instruction indicating
|
||||
// which slot it occupies.
|
||||
void printInfoComment(const Value *V);
|
||||
|
||||
|
||||
string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack);
|
||||
};
|
||||
|
||||
|
||||
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
|
||||
bool PrintName) {
|
||||
if (PrintType) { Out << " "; printType(Operand->getType()); }
|
||||
WriteAsOperand(Out, Operand, false, PrintName, &Table);
|
||||
WriteAsOperandInternal(Out, Operand, PrintName, &Table);
|
||||
}
|
||||
|
||||
|
||||
|
@ -447,101 +601,11 @@ void AssemblyWriter::printInstruction(const Instruction *I) {
|
|||
}
|
||||
|
||||
|
||||
string AssemblyWriter::calcTypeName(const Type *Ty,
|
||||
vector<const Type *> &TypeStack) {
|
||||
if (Ty->isPrimitiveType()) return Ty->getDescription(); // Base case
|
||||
|
||||
// Check to see if the type is named.
|
||||
map<const Type *, string>::iterator I = TypeNames.find(Ty);
|
||||
if (I != TypeNames.end()) return I->second;
|
||||
|
||||
// Check to see if the Type is already on the stack...
|
||||
unsigned Slot = 0, CurSize = TypeStack.size();
|
||||
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
|
||||
|
||||
// This is another base case for the recursion. In this case, we know
|
||||
// that we have looped back to a type that we have previously visited.
|
||||
// Generate the appropriate upreference to handle this.
|
||||
//
|
||||
if (Slot < CurSize)
|
||||
return "\\" + utostr(CurSize-Slot); // Here's the upreference
|
||||
|
||||
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
|
||||
|
||||
string Result;
|
||||
switch (Ty->getPrimitiveID()) {
|
||||
case Type::MethodTyID: {
|
||||
const MethodType *MTy = cast<const MethodType>(Ty);
|
||||
Result = calcTypeName(MTy->getReturnType(), TypeStack)+" (";
|
||||
for (MethodType::ParamTypes::const_iterator
|
||||
I = MTy->getParamTypes().begin(),
|
||||
E = MTy->getParamTypes().end(); I != E; ++I) {
|
||||
if (I != MTy->getParamTypes().begin())
|
||||
Result += ", ";
|
||||
Result += calcTypeName(*I, TypeStack);
|
||||
}
|
||||
if (MTy->isVarArg()) {
|
||||
if (!MTy->getParamTypes().empty()) Result += ", ";
|
||||
Result += "...";
|
||||
}
|
||||
Result += ")";
|
||||
break;
|
||||
}
|
||||
case Type::StructTyID: {
|
||||
const StructType *STy = cast<const StructType>(Ty);
|
||||
Result = "{ ";
|
||||
for (StructType::ElementTypes::const_iterator
|
||||
I = STy->getElementTypes().begin(),
|
||||
E = STy->getElementTypes().end(); I != E; ++I) {
|
||||
if (I != STy->getElementTypes().begin())
|
||||
Result += ", ";
|
||||
Result += calcTypeName(*I, TypeStack);
|
||||
}
|
||||
Result += " }";
|
||||
break;
|
||||
}
|
||||
case Type::PointerTyID:
|
||||
Result = calcTypeName(cast<const PointerType>(Ty)->getValueType(),
|
||||
TypeStack) + " *";
|
||||
break;
|
||||
case Type::ArrayTyID: {
|
||||
const ArrayType *ATy = cast<const ArrayType>(Ty);
|
||||
int NumElements = ATy->getNumElements();
|
||||
Result = "[";
|
||||
if (NumElements != -1) Result += itostr(NumElements) + " x ";
|
||||
Result += calcTypeName(ATy->getElementType(), TypeStack) + "]";
|
||||
break;
|
||||
}
|
||||
default:
|
||||
assert(0 && "Unhandled case in getTypeProps!");
|
||||
Result = "<error>";
|
||||
}
|
||||
|
||||
TypeStack.pop_back(); // Remove self from stack...
|
||||
return Result;
|
||||
}
|
||||
|
||||
// printType - Go to extreme measures to attempt to print out a short, symbolic
|
||||
// version of a type name.
|
||||
//
|
||||
ostream &AssemblyWriter::printType(const Type *Ty) {
|
||||
// Primitive types always print out their description, regardless of whether
|
||||
// they have been named or not.
|
||||
//
|
||||
if (Ty->isPrimitiveType()) return Out << Ty->getDescription();
|
||||
|
||||
// Check to see if the type is named.
|
||||
map<const Type *, string>::iterator I = TypeNames.find(Ty);
|
||||
if (I != TypeNames.end()) return Out << I->second;
|
||||
|
||||
// Otherwise we have a type that has not been named but is a derived type.
|
||||
// Carefully recurse the type hierarchy to print out any contained symbolic
|
||||
// names.
|
||||
//
|
||||
vector<const Type *> TypeStack;
|
||||
string TypeName = calcTypeName(Ty, TypeStack);
|
||||
TypeNames.insert(make_pair(Ty, TypeName)); // Cache type name for later use
|
||||
return Out << TypeName;
|
||||
return printTypeInt(Out, Ty, TypeNames);
|
||||
}
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue