diff --git a/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp index f6658964ae85..77b2404b49d4 100644 --- a/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp +++ b/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp @@ -865,30 +865,6 @@ Value *FAddCombine::createAddendVal return createFMul(OpndVal, Coeff.getValue(Instr->getType())); } -// dyn_castFoldableMul - If this value is a multiply that can be folded into -// other computations (because it has a constant operand), return the -// non-constant operand of the multiply, and set CST to point to the multiplier. -// Otherwise, return null. -// -static inline Value *dyn_castFoldableMul(Value *V, Constant *&CST) { - if (!V->hasOneUse() || !V->getType()->isIntOrIntVectorTy()) - return nullptr; - - Instruction *I = dyn_cast(V); - if (!I) return nullptr; - - if (I->getOpcode() == Instruction::Mul) - if ((CST = dyn_cast(I->getOperand(1)))) - return I->getOperand(0); - if (I->getOpcode() == Instruction::Shl) - if ((CST = dyn_cast(I->getOperand(1)))) { - // The multiplier is really 1 << CST. - CST = ConstantExpr::getShl(ConstantInt::get(V->getType(), 1), CST); - return I->getOperand(0); - } - return nullptr; -} - // If one of the operands only has one non-zero bit, and if the other // operand has a known-zero bit in a more significant place than it (not // including the sign bit) the ripple may go up to and fill the zero, but @@ -1089,24 +1065,6 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) { if (Value *V = dyn_castNegVal(RHS)) return BinaryOperator::CreateSub(LHS, V); - - { - Constant *C2; - if (Value *X = dyn_castFoldableMul(LHS, C2)) { - if (X == RHS) // X*C + X --> X * (C+1) - return BinaryOperator::CreateMul(RHS, AddOne(C2)); - - // X*C1 + X*C2 --> X * (C1+C2) - Constant *C1; - if (X == dyn_castFoldableMul(RHS, C1)) - return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2)); - } - - // X + X*C --> X * (C+1) - if (dyn_castFoldableMul(RHS, C2) == LHS) - return BinaryOperator::CreateMul(LHS, AddOne(C2)); - } - // A+B --> A|B iff A and B have no bits set in common. if (IntegerType *IT = dyn_cast(I.getType())) { APInt LHSKnownOne(IT->getBitWidth(), 0); @@ -1593,16 +1551,6 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) { } } - Constant *C1; - if (Value *X = dyn_castFoldableMul(Op0, C1)) { - if (X == Op1) // X*C - X --> X * (C-1) - return BinaryOperator::CreateMul(Op1, SubOne(C1)); - - Constant *C2; // X*C1 - X*C2 -> X * (C1-C2) - if (X == dyn_castFoldableMul(Op1, C2)) - return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2)); - } - // Optimize pointer differences into the same array into a size. Consider: // &A[10] - &A[0]: we should compile this to "10". if (DL) { diff --git a/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp b/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp index 991ad796a7e3..88d7a0d59eac 100644 --- a/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp +++ b/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp @@ -395,6 +395,127 @@ static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, return false; } +/// This function returns identity value for given opcode, which can be used to +/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). +static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) { + if (isa(V)) + return nullptr; + + if (OpCode == Instruction::Mul) + return ConstantInt::get(V->getType(), 1); + + // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc. + + return nullptr; +} + +/// This function factors binary ops which can be combined using distributive +/// laws. This also factor SHL as MUL e.g. SHL(X, 2) ==> MUL(X, 4). +Instruction::BinaryOps getBinOpsForFactorization(BinaryOperator *Op, + Value *&LHS, Value *&RHS) { + if (!Op) + return Instruction::BinaryOpsEnd; + + if (Op->getOpcode() == Instruction::Shl) { + if (Constant *CST = dyn_cast(Op->getOperand(1))) { + // The multiplier is really 1 << CST. + RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST); + LHS = Op->getOperand(0); + return Instruction::Mul; + } + } + + // TODO: We can add other conversions e.g. shr => div etc. + + LHS = Op->getOperand(0); + RHS = Op->getOperand(1); + return Op->getOpcode(); +} + +/// This tries to simplify binary operations by factorizing out common terms +/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). +static Value *tryFactorization(InstCombiner::BuilderTy *Builder, + const DataLayout *DL, BinaryOperator &I, + Instruction::BinaryOps InnerOpcode, Value *A, + Value *B, Value *C, Value *D) { + + // If any of A, B, C, D are null, we can not factor I, return early. + // Checking A and C should be enough. + if (!A || !C || !B || !D) + return nullptr; + + Value *SimplifiedInst = nullptr; + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); + + // Does "X op' Y" always equal "Y op' X"? + bool InnerCommutative = Instruction::isCommutative(InnerOpcode); + + // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? + if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) + // Does the instruction have the form "(A op' B) op (A op' D)" or, in the + // commutative case, "(A op' B) op (C op' A)"? + if (A == C || (InnerCommutative && A == D)) { + if (A != C) + std::swap(C, D); + // Consider forming "A op' (B op D)". + // If "B op D" simplifies then it can be formed with no cost. + Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL); + // If "B op D" doesn't simplify then only go on if both of the existing + // operations "A op' B" and "C op' D" will be zapped as no longer used. + if (!V && LHS->hasOneUse() && RHS->hasOneUse()) + V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); + if (V) { + SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V); + } + } + + // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? + if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) + // Does the instruction have the form "(A op' B) op (C op' B)" or, in the + // commutative case, "(A op' B) op (B op' D)"? + if (B == D || (InnerCommutative && B == C)) { + if (B != D) + std::swap(C, D); + // Consider forming "(A op C) op' B". + // If "A op C" simplifies then it can be formed with no cost. + Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL); + + // If "A op C" doesn't simplify then only go on if both of the existing + // operations "A op' B" and "C op' D" will be zapped as no longer used. + if (!V && LHS->hasOneUse() && RHS->hasOneUse()) + V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); + if (V) { + SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B); + } + } + + if (SimplifiedInst) { + ++NumFactor; + SimplifiedInst->takeName(&I); + + // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. + // TODO: Check for NUW. + if (BinaryOperator *BO = dyn_cast(SimplifiedInst)) { + if (isa(SimplifiedInst)) { + bool HasNSW = false; + if (isa(&I)) + HasNSW = I.hasNoSignedWrap(); + + if (BinaryOperator *Op0 = dyn_cast(LHS)) + if (isa(Op0)) + HasNSW &= Op0->hasNoSignedWrap(); + + if (BinaryOperator *Op1 = dyn_cast(RHS)) + if (isa(Op1)) + HasNSW &= Op1->hasNoSignedWrap(); + BO->setHasNoSignedWrap(HasNSW); + } + } + } + return SimplifiedInst; +} + /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations /// which some other binary operation distributes over either by factorizing /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this @@ -404,65 +525,33 @@ Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); BinaryOperator *Op0 = dyn_cast(LHS); BinaryOperator *Op1 = dyn_cast(RHS); - Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op // Factorization. - if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) { - // The instruction has the form "(A op' B) op (C op' D)". Try to factorize - // a common term. - Value *A = Op0->getOperand(0), *B = Op0->getOperand(1); - Value *C = Op1->getOperand(0), *D = Op1->getOperand(1); - Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' + Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; + Instruction::BinaryOps LHSOpcode = getBinOpsForFactorization(Op0, A, B); + Instruction::BinaryOps RHSOpcode = getBinOpsForFactorization(Op1, C, D); - // Does "X op' Y" always equal "Y op' X"? - bool InnerCommutative = Instruction::isCommutative(InnerOpcode); - - // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? - if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) - // Does the instruction have the form "(A op' B) op (A op' D)" or, in the - // commutative case, "(A op' B) op (C op' A)"? - if (A == C || (InnerCommutative && A == D)) { - if (A != C) - std::swap(C, D); - // Consider forming "A op' (B op D)". - // If "B op D" simplifies then it can be formed with no cost. - Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL); - // If "B op D" doesn't simplify then only go on if both of the existing - // operations "A op' B" and "C op' D" will be zapped as no longer used. - if (!V && Op0->hasOneUse() && Op1->hasOneUse()) - V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName()); - if (V) { - ++NumFactor; - V = Builder->CreateBinOp(InnerOpcode, A, V); - V->takeName(&I); - return V; - } - } - - // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? - if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) - // Does the instruction have the form "(A op' B) op (C op' B)" or, in the - // commutative case, "(A op' B) op (B op' D)"? - if (B == D || (InnerCommutative && B == C)) { - if (B != D) - std::swap(C, D); - // Consider forming "(A op C) op' B". - // If "A op C" simplifies then it can be formed with no cost. - Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL); - // If "A op C" doesn't simplify then only go on if both of the existing - // operations "A op' B" and "C op' D" will be zapped as no longer used. - if (!V && Op0->hasOneUse() && Op1->hasOneUse()) - V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName()); - if (V) { - ++NumFactor; - V = Builder->CreateBinOp(InnerOpcode, V, B); - V->takeName(&I); - return V; - } - } + // The instruction has the form "(A op' B) op (C op' D)". Try to factorize + // a common term. + if (LHSOpcode == RHSOpcode) { + if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D)) + return V; } + // The instruction has the form "(A op' B) op (C)". Try to factorize common + // term. + if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS, + getIdentityValue(LHSOpcode, RHS))) + return V; + + // The instruction has the form "(B) op (C op' D)". Try to factorize common + // term. + if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS, + getIdentityValue(RHSOpcode, LHS), C, D)) + return V; + // Expansion. + Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { // The instruction has the form "(A op' B) op C". See if expanding it out // to "(A op C) op' (B op C)" results in simplifications. diff --git a/llvm/test/Transforms/InstCombine/add2.ll b/llvm/test/Transforms/InstCombine/add2.ll index aaf3a7a235bf..c728b4437af4 100644 --- a/llvm/test/Transforms/InstCombine/add2.ll +++ b/llvm/test/Transforms/InstCombine/add2.ll @@ -86,3 +86,71 @@ define i16 @test9(i16 %a) { ; CHECK-NEXT: %d = mul i16 %a, -32767 ; CHECK-NEXT: ret i16 %d } + +define i16 @add_nsw_mul_nsw(i16 %x) { + %add1 = add nsw i16 %x, %x + %add2 = add nsw i16 %add1, %x + ret i16 %add2 +; CHECK-LABEL: @add_nsw_mul_nsw( +; CHECK-NEXT: %add2 = mul nsw i16 %x, 3 +; CHECK-NEXT: ret i16 %add2 +} + +define i16 @mul_add_to_mul_1(i16 %x) { + %mul1 = mul nsw i16 %x, 8 + %add2 = add nsw i16 %x, %mul1 + ret i16 %add2 +; CHECK-LABEL: @mul_add_to_mul_1( +; CHECK-NEXT: %add2 = mul nsw i16 %x, 9 +; CHECK-NEXT: ret i16 %add2 +} + +define i16 @mul_add_to_mul_2(i16 %x) { + %mul1 = mul nsw i16 %x, 8 + %add2 = add nsw i16 %mul1, %x + ret i16 %add2 +; CHECK-LABEL: @mul_add_to_mul_2( +; CHECK-NEXT: %add2 = mul nsw i16 %x, 9 +; CHECK-NEXT: ret i16 %add2 +} + +define i16 @mul_add_to_mul_3(i16 %a) { + %mul1 = mul i16 %a, 2 + %mul2 = mul i16 %a, 3 + %add = add nsw i16 %mul1, %mul2 + ret i16 %add +; CHECK-LABEL: @mul_add_to_mul_3( +; CHECK-NEXT: %add = mul i16 %a, 5 +; CHECK-NEXT: ret i16 %add +} + +define i16 @mul_add_to_mul_4(i16 %a) { + %mul1 = mul nsw i16 %a, 2 + %mul2 = mul nsw i16 %a, 7 + %add = add nsw i16 %mul1, %mul2 + ret i16 %add +; CHECK-LABEL: @mul_add_to_mul_4( +; CHECK-NEXT: %add = mul nsw i16 %a, 9 +; CHECK-NEXT: ret i16 %add +} + +define i16 @mul_add_to_mul_5(i16 %a) { + %mul1 = mul nsw i16 %a, 3 + %mul2 = mul nsw i16 %a, 7 + %add = add nsw i16 %mul1, %mul2 + ret i16 %add +; CHECK-LABEL: @mul_add_to_mul_5( +; CHECK-NEXT: %add = mul nsw i16 %a, 10 +; CHECK-NEXT: ret i16 %add +} + +define i32 @mul_add_to_mul_6(i32 %x, i32 %y) { + %mul1 = mul nsw i32 %x, %y + %mul2 = mul nsw i32 %mul1, 5 + %add = add nsw i32 %mul1, %mul2 + ret i32 %add +; CHECK-LABEL: @mul_add_to_mul_6( +; CHECK-NEXT: %mul1 = mul nsw i32 %x, %y +; CHECK-NEXT: %add = mul nsw i32 %mul1, 6 +; CHECK-NEXT: ret i32 %add +}