Refactored and updated SimplifyUsingDistributiveLaws() to

* Find factorization opportunities using identity values.
 * Find factorization opportunities by treating shl(X, C) as mul (X, shl(C))
 * Keep NSW flag while simplifying instruction using factorization.

This fixes PR19263.

Differential Revision: http://reviews.llvm.org/D3799

llvm-svn: 211261
This commit is contained in:
Dinesh Dwivedi 2014-06-19 08:29:18 +00:00
parent fb39de3be7
commit b62e52e1b5
3 changed files with 210 additions and 105 deletions

View File

@ -865,30 +865,6 @@ Value *FAddCombine::createAddendVal
return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
}
// dyn_castFoldableMul - If this value is a multiply that can be folded into
// other computations (because it has a constant operand), return the
// non-constant operand of the multiply, and set CST to point to the multiplier.
// Otherwise, return null.
//
static inline Value *dyn_castFoldableMul(Value *V, Constant *&CST) {
if (!V->hasOneUse() || !V->getType()->isIntOrIntVectorTy())
return nullptr;
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return nullptr;
if (I->getOpcode() == Instruction::Mul)
if ((CST = dyn_cast<Constant>(I->getOperand(1))))
return I->getOperand(0);
if (I->getOpcode() == Instruction::Shl)
if ((CST = dyn_cast<Constant>(I->getOperand(1)))) {
// The multiplier is really 1 << CST.
CST = ConstantExpr::getShl(ConstantInt::get(V->getType(), 1), CST);
return I->getOperand(0);
}
return nullptr;
}
// If one of the operands only has one non-zero bit, and if the other
// operand has a known-zero bit in a more significant place than it (not
// including the sign bit) the ripple may go up to and fill the zero, but
@ -1089,24 +1065,6 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (Value *V = dyn_castNegVal(RHS))
return BinaryOperator::CreateSub(LHS, V);
{
Constant *C2;
if (Value *X = dyn_castFoldableMul(LHS, C2)) {
if (X == RHS) // X*C + X --> X * (C+1)
return BinaryOperator::CreateMul(RHS, AddOne(C2));
// X*C1 + X*C2 --> X * (C1+C2)
Constant *C1;
if (X == dyn_castFoldableMul(RHS, C1))
return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
}
// X + X*C --> X * (C+1)
if (dyn_castFoldableMul(RHS, C2) == LHS)
return BinaryOperator::CreateMul(LHS, AddOne(C2));
}
// A+B --> A|B iff A and B have no bits set in common.
if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
APInt LHSKnownOne(IT->getBitWidth(), 0);
@ -1593,16 +1551,6 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
}
}
Constant *C1;
if (Value *X = dyn_castFoldableMul(Op0, C1)) {
if (X == Op1) // X*C - X --> X * (C-1)
return BinaryOperator::CreateMul(Op1, SubOne(C1));
Constant *C2; // X*C1 - X*C2 -> X * (C1-C2)
if (X == dyn_castFoldableMul(Op1, C2))
return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
}
// Optimize pointer differences into the same array into a size. Consider:
// &A[10] - &A[0]: we should compile this to "10".
if (DL) {

View File

@ -395,6 +395,127 @@ static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
return false;
}
/// This function returns identity value for given opcode, which can be used to
/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
if (isa<Constant>(V))
return nullptr;
if (OpCode == Instruction::Mul)
return ConstantInt::get(V->getType(), 1);
// TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
return nullptr;
}
/// This function factors binary ops which can be combined using distributive
/// laws. This also factor SHL as MUL e.g. SHL(X, 2) ==> MUL(X, 4).
Instruction::BinaryOps getBinOpsForFactorization(BinaryOperator *Op,
Value *&LHS, Value *&RHS) {
if (!Op)
return Instruction::BinaryOpsEnd;
if (Op->getOpcode() == Instruction::Shl) {
if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
// The multiplier is really 1 << CST.
RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
LHS = Op->getOperand(0);
return Instruction::Mul;
}
}
// TODO: We can add other conversions e.g. shr => div etc.
LHS = Op->getOperand(0);
RHS = Op->getOperand(1);
return Op->getOpcode();
}
/// This tries to simplify binary operations by factorizing out common terms
/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
const DataLayout *DL, BinaryOperator &I,
Instruction::BinaryOps InnerOpcode, Value *A,
Value *B, Value *C, Value *D) {
// If any of A, B, C, D are null, we can not factor I, return early.
// Checking A and C should be enough.
if (!A || !C || !B || !D)
return nullptr;
Value *SimplifiedInst = nullptr;
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
// Does "X op' Y" always equal "Y op' X"?
bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
// Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
// Does the instruction have the form "(A op' B) op (A op' D)" or, in the
// commutative case, "(A op' B) op (C op' A)"?
if (A == C || (InnerCommutative && A == D)) {
if (A != C)
std::swap(C, D);
// Consider forming "A op' (B op D)".
// If "B op D" simplifies then it can be formed with no cost.
Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
// If "B op D" doesn't simplify then only go on if both of the existing
// operations "A op' B" and "C op' D" will be zapped as no longer used.
if (!V && LHS->hasOneUse() && RHS->hasOneUse())
V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
if (V) {
SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
}
}
// Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
// Does the instruction have the form "(A op' B) op (C op' B)" or, in the
// commutative case, "(A op' B) op (B op' D)"?
if (B == D || (InnerCommutative && B == C)) {
if (B != D)
std::swap(C, D);
// Consider forming "(A op C) op' B".
// If "A op C" simplifies then it can be formed with no cost.
Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
// If "A op C" doesn't simplify then only go on if both of the existing
// operations "A op' B" and "C op' D" will be zapped as no longer used.
if (!V && LHS->hasOneUse() && RHS->hasOneUse())
V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
if (V) {
SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
}
}
if (SimplifiedInst) {
++NumFactor;
SimplifiedInst->takeName(&I);
// Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
// TODO: Check for NUW.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
bool HasNSW = false;
if (isa<OverflowingBinaryOperator>(&I))
HasNSW = I.hasNoSignedWrap();
if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
if (isa<OverflowingBinaryOperator>(Op0))
HasNSW &= Op0->hasNoSignedWrap();
if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
if (isa<OverflowingBinaryOperator>(Op1))
HasNSW &= Op1->hasNoSignedWrap();
BO->setHasNoSignedWrap(HasNSW);
}
}
}
return SimplifiedInst;
}
/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
/// which some other binary operation distributes over either by factorizing
/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
@ -404,65 +525,33 @@ Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
// Factorization.
if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
// The instruction has the form "(A op' B) op (C op' D)". Try to factorize
// a common term.
Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
Instruction::BinaryOps LHSOpcode = getBinOpsForFactorization(Op0, A, B);
Instruction::BinaryOps RHSOpcode = getBinOpsForFactorization(Op1, C, D);
// Does "X op' Y" always equal "Y op' X"?
bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
// Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
// Does the instruction have the form "(A op' B) op (A op' D)" or, in the
// commutative case, "(A op' B) op (C op' A)"?
if (A == C || (InnerCommutative && A == D)) {
if (A != C)
std::swap(C, D);
// Consider forming "A op' (B op D)".
// If "B op D" simplifies then it can be formed with no cost.
Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
// If "B op D" doesn't simplify then only go on if both of the existing
// operations "A op' B" and "C op' D" will be zapped as no longer used.
if (!V && Op0->hasOneUse() && Op1->hasOneUse())
V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
if (V) {
++NumFactor;
V = Builder->CreateBinOp(InnerOpcode, A, V);
V->takeName(&I);
return V;
}
}
// Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
// Does the instruction have the form "(A op' B) op (C op' B)" or, in the
// commutative case, "(A op' B) op (B op' D)"?
if (B == D || (InnerCommutative && B == C)) {
if (B != D)
std::swap(C, D);
// Consider forming "(A op C) op' B".
// If "A op C" simplifies then it can be formed with no cost.
Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
// If "A op C" doesn't simplify then only go on if both of the existing
// operations "A op' B" and "C op' D" will be zapped as no longer used.
if (!V && Op0->hasOneUse() && Op1->hasOneUse())
V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
if (V) {
++NumFactor;
V = Builder->CreateBinOp(InnerOpcode, V, B);
V->takeName(&I);
return V;
}
}
// The instruction has the form "(A op' B) op (C op' D)". Try to factorize
// a common term.
if (LHSOpcode == RHSOpcode) {
if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
return V;
}
// The instruction has the form "(A op' B) op (C)". Try to factorize common
// term.
if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
getIdentityValue(LHSOpcode, RHS)))
return V;
// The instruction has the form "(B) op (C op' D)". Try to factorize common
// term.
if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
getIdentityValue(RHSOpcode, LHS), C, D))
return V;
// Expansion.
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
// The instruction has the form "(A op' B) op C". See if expanding it out
// to "(A op C) op' (B op C)" results in simplifications.

View File

@ -86,3 +86,71 @@ define i16 @test9(i16 %a) {
; CHECK-NEXT: %d = mul i16 %a, -32767
; CHECK-NEXT: ret i16 %d
}
define i16 @add_nsw_mul_nsw(i16 %x) {
%add1 = add nsw i16 %x, %x
%add2 = add nsw i16 %add1, %x
ret i16 %add2
; CHECK-LABEL: @add_nsw_mul_nsw(
; CHECK-NEXT: %add2 = mul nsw i16 %x, 3
; CHECK-NEXT: ret i16 %add2
}
define i16 @mul_add_to_mul_1(i16 %x) {
%mul1 = mul nsw i16 %x, 8
%add2 = add nsw i16 %x, %mul1
ret i16 %add2
; CHECK-LABEL: @mul_add_to_mul_1(
; CHECK-NEXT: %add2 = mul nsw i16 %x, 9
; CHECK-NEXT: ret i16 %add2
}
define i16 @mul_add_to_mul_2(i16 %x) {
%mul1 = mul nsw i16 %x, 8
%add2 = add nsw i16 %mul1, %x
ret i16 %add2
; CHECK-LABEL: @mul_add_to_mul_2(
; CHECK-NEXT: %add2 = mul nsw i16 %x, 9
; CHECK-NEXT: ret i16 %add2
}
define i16 @mul_add_to_mul_3(i16 %a) {
%mul1 = mul i16 %a, 2
%mul2 = mul i16 %a, 3
%add = add nsw i16 %mul1, %mul2
ret i16 %add
; CHECK-LABEL: @mul_add_to_mul_3(
; CHECK-NEXT: %add = mul i16 %a, 5
; CHECK-NEXT: ret i16 %add
}
define i16 @mul_add_to_mul_4(i16 %a) {
%mul1 = mul nsw i16 %a, 2
%mul2 = mul nsw i16 %a, 7
%add = add nsw i16 %mul1, %mul2
ret i16 %add
; CHECK-LABEL: @mul_add_to_mul_4(
; CHECK-NEXT: %add = mul nsw i16 %a, 9
; CHECK-NEXT: ret i16 %add
}
define i16 @mul_add_to_mul_5(i16 %a) {
%mul1 = mul nsw i16 %a, 3
%mul2 = mul nsw i16 %a, 7
%add = add nsw i16 %mul1, %mul2
ret i16 %add
; CHECK-LABEL: @mul_add_to_mul_5(
; CHECK-NEXT: %add = mul nsw i16 %a, 10
; CHECK-NEXT: ret i16 %add
}
define i32 @mul_add_to_mul_6(i32 %x, i32 %y) {
%mul1 = mul nsw i32 %x, %y
%mul2 = mul nsw i32 %mul1, 5
%add = add nsw i32 %mul1, %mul2
ret i32 %add
; CHECK-LABEL: @mul_add_to_mul_6(
; CHECK-NEXT: %mul1 = mul nsw i32 %x, %y
; CHECK-NEXT: %add = mul nsw i32 %mul1, 6
; CHECK-NEXT: ret i32 %add
}