diff --git a/llvm/lib/Analysis/ScalarEvolution.cpp b/llvm/lib/Analysis/ScalarEvolution.cpp index 791042c61fb7..b3905cc01e84 100644 --- a/llvm/lib/Analysis/ScalarEvolution.cpp +++ b/llvm/lib/Analysis/ScalarEvolution.cpp @@ -7032,20 +7032,21 @@ static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic // modulo (N / D). // - // (N / D) may need BW+1 bits in its representation. Hence, we'll use this - // bit width during computations. + // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent + // (N / D) in general. The inverse itself always fits into BW bits, though, + // so we immediately truncate it. APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D APInt Mod(BW + 1, 0); Mod.setBit(BW - Mult2); // Mod = N / D - APInt I = AD.multiplicativeInverse(Mod); + APInt I = AD.multiplicativeInverse(Mod).trunc(BW); // 4. Compute the minimum unsigned root of the equation: // I * (B / D) mod (N / D) - APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); + // To simplify the computation, we factor out the divide by D: + // (I * B mod N) / D + APInt Result = (I * B).lshr(Mult2); - // The result is guaranteed to be less than 2^BW so we may truncate it to BW - // bits. - return SE.getConstant(Result.trunc(BW)); + return SE.getConstant(Result); } /// Find the roots of the quadratic equation for the given quadratic chrec