[X86] Prevent non-temporal loads from folding into instructions by blocking them in X86DAGToDAGISel::IsProfitableToFold rather than with a predicate.

Remove tryFoldVecLoad since tryFoldLoad would call IsProfitableToFold and pick up the new check.

This saves about 5K out of ~600K on the generated isel table.

llvm-svn: 344189
This commit is contained in:
Craig Topper 2018-10-10 21:48:34 +00:00
parent 7329be16c2
commit b5421c498d
2 changed files with 31 additions and 54 deletions

View File

@ -239,12 +239,6 @@ namespace {
return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
}
// Try to fold a vector load. This makes sure the load isn't non-temporal.
bool tryFoldVecLoad(SDNode *Root, SDNode *P, SDValue N,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment);
/// Implement addressing mode selection for inline asm expressions.
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
unsigned ConstraintID,
@ -516,6 +510,10 @@ X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
if (N.getOpcode() != ISD::LOAD)
return true;
// Don't fold non-temporal loads if we have an instruction for them.
if (useNonTemporalLoad(cast<LoadSDNode>(N)))
return false;
// If N is a load, do additional profitability checks.
if (U == Root) {
switch (U->getOpcode()) {
@ -2053,20 +2051,6 @@ bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
N.getOperand(1), Base, Scale, Index, Disp, Segment);
}
bool X86DAGToDAGISel::tryFoldVecLoad(SDNode *Root, SDNode *P, SDValue N,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment) {
if (!ISD::isNON_EXTLoad(N.getNode()) ||
useNonTemporalLoad(cast<LoadSDNode>(N)) ||
!IsProfitableToFold(N, P, Root) ||
!IsLegalToFold(N, P, Root, OptLevel))
return false;
return selectAddr(N.getNode(),
N.getOperand(1), Base, Scale, Index, Disp, Segment);
}
/// Return an SDNode that returns the value of the global base register.
/// Output instructions required to initialize the global base register,
/// if necessary.
@ -2595,8 +2579,8 @@ MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
// alignment on this load.
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
if (MayFoldLoad && N1->getOpcode() == ISD::BITCAST && N1->hasOneUse() &&
tryFoldVecLoad(Node, N1.getNode(), N1.getOperand(0), Tmp0, Tmp1, Tmp2,
Tmp3, Tmp4)) {
tryFoldLoad(Node, N1.getNode(), N1.getOperand(0), Tmp0, Tmp1, Tmp2,
Tmp3, Tmp4)) {
SDValue Load = N1.getOperand(0);
SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
Load.getOperand(0) };
@ -2632,8 +2616,8 @@ MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
// alignment on this load.
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
if (MayFoldLoad && N2->getOpcode() == ISD::BITCAST && N2->hasOneUse() &&
tryFoldVecLoad(Node, N2.getNode(), N2.getOperand(0), Tmp0, Tmp1, Tmp2,
Tmp3, Tmp4)) {
tryFoldLoad(Node, N2.getNode(), N2.getOperand(0), Tmp0, Tmp1, Tmp2,
Tmp3, Tmp4)) {
SDValue Load = N2.getOperand(0);
SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
Load.getOperand(0), InFlag };

View File

@ -647,28 +647,22 @@ def sdmem : Operand<v2f64> {
// SSE pattern fragments
//===----------------------------------------------------------------------===//
// Vector load wrappers to prevent folding of non-temporal aligned loads on
// supporting targets.
def vecload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return !useNonTemporalLoad(cast<LoadSDNode>(N));
}]>;
// 128-bit load pattern fragments
// NOTE: all 128-bit integer vector loads are promoted to v2i64
def loadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (vecload node:$ptr))>;
def loadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (vecload node:$ptr))>;
def loadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (vecload node:$ptr))>;
def loadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (load node:$ptr))>;
def loadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (load node:$ptr))>;
def loadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (load node:$ptr))>;
// 256-bit load pattern fragments
// NOTE: all 256-bit integer vector loads are promoted to v4i64
def loadv8f32 : PatFrag<(ops node:$ptr), (v8f32 (vecload node:$ptr))>;
def loadv4f64 : PatFrag<(ops node:$ptr), (v4f64 (vecload node:$ptr))>;
def loadv4i64 : PatFrag<(ops node:$ptr), (v4i64 (vecload node:$ptr))>;
def loadv8f32 : PatFrag<(ops node:$ptr), (v8f32 (load node:$ptr))>;
def loadv4f64 : PatFrag<(ops node:$ptr), (v4f64 (load node:$ptr))>;
def loadv4i64 : PatFrag<(ops node:$ptr), (v4i64 (load node:$ptr))>;
// 512-bit load pattern fragments
def loadv16f32 : PatFrag<(ops node:$ptr), (v16f32 (vecload node:$ptr))>;
def loadv8f64 : PatFrag<(ops node:$ptr), (v8f64 (vecload node:$ptr))>;
def loadv8i64 : PatFrag<(ops node:$ptr), (v8i64 (vecload node:$ptr))>;
def loadv16f32 : PatFrag<(ops node:$ptr), (v16f32 (load node:$ptr))>;
def loadv8f64 : PatFrag<(ops node:$ptr), (v8f64 (load node:$ptr))>;
def loadv8i64 : PatFrag<(ops node:$ptr), (v8i64 (load node:$ptr))>;
// 128-/256-/512-bit extload pattern fragments
def extloadv2f32 : PatFrag<(ops node:$ptr), (v2f64 (extloadvf32 node:$ptr))>;
@ -682,46 +676,45 @@ def alignedstore : PatFrag<(ops node:$val, node:$ptr),
return St->getAlignment() >= St->getMemoryVT().getStoreSize();
}]>;
// Like 'load', but always requires 128-bit vector alignment.
def alignedvecload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
// Like 'load', but always requires vector size alignment.
def alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
auto *Ld = cast<LoadSDNode>(N);
return Ld->getAlignment() >= Ld->getMemoryVT().getStoreSize() &&
!useNonTemporalLoad(cast<LoadSDNode>(N));
return Ld->getAlignment() >= Ld->getMemoryVT().getStoreSize();
}]>;
// 128-bit aligned load pattern fragments
// NOTE: all 128-bit integer vector loads are promoted to v2i64
def alignedloadv4f32 : PatFrag<(ops node:$ptr),
(v4f32 (alignedvecload node:$ptr))>;
(v4f32 (alignedload node:$ptr))>;
def alignedloadv2f64 : PatFrag<(ops node:$ptr),
(v2f64 (alignedvecload node:$ptr))>;
(v2f64 (alignedload node:$ptr))>;
def alignedloadv2i64 : PatFrag<(ops node:$ptr),
(v2i64 (alignedvecload node:$ptr))>;
(v2i64 (alignedload node:$ptr))>;
// 256-bit aligned load pattern fragments
// NOTE: all 256-bit integer vector loads are promoted to v4i64
def alignedloadv8f32 : PatFrag<(ops node:$ptr),
(v8f32 (alignedvecload node:$ptr))>;
(v8f32 (alignedload node:$ptr))>;
def alignedloadv4f64 : PatFrag<(ops node:$ptr),
(v4f64 (alignedvecload node:$ptr))>;
(v4f64 (alignedload node:$ptr))>;
def alignedloadv4i64 : PatFrag<(ops node:$ptr),
(v4i64 (alignedvecload node:$ptr))>;
(v4i64 (alignedload node:$ptr))>;
// 512-bit aligned load pattern fragments
def alignedloadv16f32 : PatFrag<(ops node:$ptr),
(v16f32 (alignedvecload node:$ptr))>;
(v16f32 (alignedload node:$ptr))>;
def alignedloadv8f64 : PatFrag<(ops node:$ptr),
(v8f64 (alignedvecload node:$ptr))>;
(v8f64 (alignedload node:$ptr))>;
def alignedloadv8i64 : PatFrag<(ops node:$ptr),
(v8i64 (alignedvecload node:$ptr))>;
(v8i64 (alignedload node:$ptr))>;
// Like 'vecload', but uses special alignment checks suitable for use in
// Like 'load', but uses special alignment checks suitable for use in
// memory operands in most SSE instructions, which are required to
// be naturally aligned on some targets but not on others. If the subtarget
// allows unaligned accesses, match any load, though this may require
// setting a feature bit in the processor (on startup, for example).
// Opteron 10h and later implement such a feature.
def memop : PatFrag<(ops node:$ptr), (vecload node:$ptr), [{
def memop : PatFrag<(ops node:$ptr), (load node:$ptr), [{
auto *Ld = cast<LoadSDNode>(N);
return Subtarget->hasSSEUnalignedMem() ||
Ld->getAlignment() >= Ld->getMemoryVT().getStoreSize();