forked from OSchip/llvm-project
[Atomics][LoopIdiom] Recognize unordered atomic memcpy
Summary: Expanding the loop idiom test for memcpy to also recognize unordered atomic memcpy. The only difference for recognizing an unordered atomic memcpy and instead of a normal memcpy is that the loads and/or stores involved are unordered atomic operations. Background: http://lists.llvm.org/pipermail/llvm-dev/2017-May/112779.html Patch by Daniel Neilson! Reviewers: reames, anna, skatkov Reviewed By: reames, anna Subscribers: llvm-commits, mzolotukhin Differential Revision: https://reviews.llvm.org/D33243 llvm-svn: 304806
This commit is contained in:
parent
e4cda7417c
commit
b2a212c070
|
@ -722,6 +722,10 @@ public:
|
|||
/// if false is returned.
|
||||
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
|
||||
|
||||
/// \returns The maximum element size, in bytes, for an element
|
||||
/// unordered-atomic memory intrinsic.
|
||||
unsigned getAtomicMemIntrinsicMaxElementSize() const;
|
||||
|
||||
/// \returns A value which is the result of the given memory intrinsic. New
|
||||
/// instructions may be created to extract the result from the given intrinsic
|
||||
/// memory operation. Returns nullptr if the target cannot create a result
|
||||
|
@ -923,6 +927,7 @@ public:
|
|||
virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
|
||||
virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
|
||||
MemIntrinsicInfo &Info) = 0;
|
||||
virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
|
||||
virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
|
||||
Type *ExpectedType) = 0;
|
||||
virtual bool areInlineCompatible(const Function *Caller,
|
||||
|
@ -1224,6 +1229,9 @@ public:
|
|||
MemIntrinsicInfo &Info) override {
|
||||
return Impl.getTgtMemIntrinsic(Inst, Info);
|
||||
}
|
||||
unsigned getAtomicMemIntrinsicMaxElementSize() const override {
|
||||
return Impl.getAtomicMemIntrinsicMaxElementSize();
|
||||
}
|
||||
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
|
||||
Type *ExpectedType) override {
|
||||
return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
|
||||
|
|
|
@ -427,6 +427,15 @@ public:
|
|||
return false;
|
||||
}
|
||||
|
||||
unsigned getAtomicMemIntrinsicMaxElementSize() const {
|
||||
// Note for overrides: You must ensure for all element unordered-atomic
|
||||
// memory intrinsics that all power-of-2 element sizes up to, and
|
||||
// including, the return value of this method have a corresponding
|
||||
// runtime lib call. These runtime lib call definitions can be found
|
||||
// in RuntimeLibcalls.h
|
||||
return 0;
|
||||
}
|
||||
|
||||
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
|
||||
Type *ExpectedType) {
|
||||
return nullptr;
|
||||
|
|
|
@ -435,6 +435,28 @@ public:
|
|||
MDNode *ScopeTag = nullptr,
|
||||
MDNode *NoAliasTag = nullptr);
|
||||
|
||||
/// \brief Create and insert an atomic memcpy between the specified
|
||||
/// pointers.
|
||||
///
|
||||
/// If the pointers aren't i8*, they will be converted. If a TBAA tag is
|
||||
/// specified, it will be added to the instruction. Likewise with alias.scope
|
||||
/// and noalias tags.
|
||||
CallInst *CreateElementAtomicMemCpy(
|
||||
Value *Dst, Value *Src, uint64_t NumElements, uint32_t ElementSize,
|
||||
MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
|
||||
MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) {
|
||||
return CreateElementAtomicMemCpy(Dst, Src, getInt64(NumElements),
|
||||
ElementSize, TBAATag, TBAAStructTag,
|
||||
ScopeTag, NoAliasTag);
|
||||
}
|
||||
|
||||
CallInst *CreateElementAtomicMemCpy(Value *Dst, Value *Src,
|
||||
Value *NumElements, uint32_t ElementSize,
|
||||
MDNode *TBAATag = nullptr,
|
||||
MDNode *TBAAStructTag = nullptr,
|
||||
MDNode *ScopeTag = nullptr,
|
||||
MDNode *NoAliasTag = nullptr);
|
||||
|
||||
/// \brief Create and insert a memmove between the specified
|
||||
/// pointers.
|
||||
///
|
||||
|
|
|
@ -468,6 +468,10 @@ bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
|
|||
return TTIImpl->getTgtMemIntrinsic(Inst, Info);
|
||||
}
|
||||
|
||||
unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
|
||||
return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
|
||||
}
|
||||
|
||||
Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
|
||||
IntrinsicInst *Inst, Type *ExpectedType) const {
|
||||
return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
|
||||
|
|
|
@ -134,6 +134,38 @@ CreateMemCpy(Value *Dst, Value *Src, Value *Size, unsigned Align,
|
|||
return CI;
|
||||
}
|
||||
|
||||
CallInst *IRBuilderBase::CreateElementAtomicMemCpy(
|
||||
Value *Dst, Value *Src, Value *NumElements, uint32_t ElementSize,
|
||||
MDNode *TBAATag, MDNode *TBAAStructTag, MDNode *ScopeTag,
|
||||
MDNode *NoAliasTag) {
|
||||
Dst = getCastedInt8PtrValue(Dst);
|
||||
Src = getCastedInt8PtrValue(Src);
|
||||
|
||||
Value *Ops[] = {Dst, Src, NumElements, getInt32(ElementSize)};
|
||||
Type *Tys[] = {Dst->getType(), Src->getType()};
|
||||
Module *M = BB->getParent()->getParent();
|
||||
Value *TheFn =
|
||||
Intrinsic::getDeclaration(M, Intrinsic::memcpy_element_atomic, Tys);
|
||||
|
||||
CallInst *CI = createCallHelper(TheFn, Ops, this);
|
||||
|
||||
// Set the TBAA info if present.
|
||||
if (TBAATag)
|
||||
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
|
||||
|
||||
// Set the TBAA Struct info if present.
|
||||
if (TBAAStructTag)
|
||||
CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
|
||||
|
||||
if (ScopeTag)
|
||||
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
|
||||
|
||||
if (NoAliasTag)
|
||||
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
|
||||
|
||||
return CI;
|
||||
}
|
||||
|
||||
CallInst *IRBuilderBase::
|
||||
CreateMemMove(Value *Dst, Value *Src, Value *Size, unsigned Align,
|
||||
bool isVolatile, MDNode *TBAATag, MDNode *ScopeTag,
|
||||
|
|
|
@ -1383,6 +1383,8 @@ int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
|
|||
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
|
||||
}
|
||||
|
||||
unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
|
||||
|
||||
int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
|
||||
ArrayRef<Type *> Tys, FastMathFlags FMF,
|
||||
unsigned ScalarizationCostPassed) {
|
||||
|
|
|
@ -76,6 +76,8 @@ public:
|
|||
int getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE,
|
||||
const SCEV *Ptr);
|
||||
|
||||
unsigned getAtomicMemIntrinsicMaxElementSize() const;
|
||||
|
||||
int getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
|
||||
ArrayRef<Type *> Tys, FastMathFlags FMF,
|
||||
unsigned ScalarizationCostPassed = UINT_MAX);
|
||||
|
|
|
@ -116,6 +116,7 @@ private:
|
|||
Memset,
|
||||
MemsetPattern,
|
||||
Memcpy,
|
||||
UnorderedAtomicMemcpy,
|
||||
DontUse // Dummy retval never to be used. Allows catching errors in retval
|
||||
// handling.
|
||||
};
|
||||
|
@ -353,8 +354,12 @@ static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
|
|||
|
||||
LoopIdiomRecognize::LegalStoreKind
|
||||
LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
|
||||
|
||||
// Don't touch volatile stores.
|
||||
if (!SI->isSimple())
|
||||
if (SI->isVolatile())
|
||||
return LegalStoreKind::None;
|
||||
// We only want simple or unordered-atomic stores.
|
||||
if (!SI->isUnordered())
|
||||
return LegalStoreKind::None;
|
||||
|
||||
// Don't convert stores of non-integral pointer types to memsets (which stores
|
||||
|
@ -395,15 +400,18 @@ LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
|
|||
Value *SplatValue = isBytewiseValue(StoredVal);
|
||||
Constant *PatternValue = nullptr;
|
||||
|
||||
// Note: memset and memset_pattern on unordered-atomic is yet not supported
|
||||
bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
|
||||
|
||||
// If we're allowed to form a memset, and the stored value would be
|
||||
// acceptable for memset, use it.
|
||||
if (HasMemset && SplatValue &&
|
||||
if (!UnorderedAtomic && HasMemset && SplatValue &&
|
||||
// Verify that the stored value is loop invariant. If not, we can't
|
||||
// promote the memset.
|
||||
CurLoop->isLoopInvariant(SplatValue)) {
|
||||
// It looks like we can use SplatValue.
|
||||
return LegalStoreKind::Memset;
|
||||
} else if (HasMemsetPattern &&
|
||||
} else if (!UnorderedAtomic && HasMemsetPattern &&
|
||||
// Don't create memset_pattern16s with address spaces.
|
||||
StorePtr->getType()->getPointerAddressSpace() == 0 &&
|
||||
(PatternValue = getMemSetPatternValue(StoredVal, DL))) {
|
||||
|
@ -422,7 +430,12 @@ LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
|
|||
|
||||
// The store must be feeding a non-volatile load.
|
||||
LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
|
||||
if (!LI || !LI->isSimple())
|
||||
|
||||
// Only allow non-volatile loads
|
||||
if (!LI || LI->isVolatile())
|
||||
return LegalStoreKind::None;
|
||||
// Only allow simple or unordered-atomic loads
|
||||
if (!LI->isUnordered())
|
||||
return LegalStoreKind::None;
|
||||
|
||||
// See if the pointer expression is an AddRec like {base,+,1} on the current
|
||||
|
@ -438,7 +451,9 @@ LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
|
|||
return LegalStoreKind::None;
|
||||
|
||||
// Success. This store can be converted into a memcpy.
|
||||
return LegalStoreKind::Memcpy;
|
||||
UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
|
||||
return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
|
||||
: LegalStoreKind::Memcpy;
|
||||
}
|
||||
// This store can't be transformed into a memset/memcpy.
|
||||
return LegalStoreKind::None;
|
||||
|
@ -469,6 +484,7 @@ void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
|
|||
StoreRefsForMemsetPattern[Ptr].push_back(SI);
|
||||
} break;
|
||||
case LegalStoreKind::Memcpy:
|
||||
case LegalStoreKind::UnorderedAtomicMemcpy:
|
||||
StoreRefsForMemcpy.push_back(SI);
|
||||
break;
|
||||
default:
|
||||
|
@ -882,7 +898,7 @@ bool LoopIdiomRecognize::processLoopStridedStore(
|
|||
/// for (i) A[i] = B[i];
|
||||
bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
|
||||
const SCEV *BECount) {
|
||||
assert(SI->isSimple() && "Expected only non-volatile stores.");
|
||||
assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
|
||||
|
||||
Value *StorePtr = SI->getPointerOperand();
|
||||
const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
|
||||
|
@ -892,7 +908,7 @@ bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
|
|||
|
||||
// The store must be feeding a non-volatile load.
|
||||
LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
|
||||
assert(LI->isSimple() && "Expected only non-volatile stores.");
|
||||
assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
|
||||
|
||||
// See if the pointer expression is an AddRec like {base,+,1} on the current
|
||||
// loop, which indicates a strided load. If we have something else, it's a
|
||||
|
@ -966,16 +982,47 @@ bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
|
|||
|
||||
const SCEV *NumBytesS =
|
||||
SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
|
||||
if (StoreSize != 1)
|
||||
NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
|
||||
SCEV::FlagNUW);
|
||||
|
||||
Value *NumBytes =
|
||||
Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
|
||||
unsigned Align = std::min(SI->getAlignment(), LI->getAlignment());
|
||||
CallInst *NewCall = nullptr;
|
||||
// Check whether to generate an unordered atomic memcpy:
|
||||
// If the load or store are atomic, then they must neccessarily be unordered
|
||||
// by previous checks.
|
||||
if (!SI->isAtomic() && !LI->isAtomic()) {
|
||||
if (StoreSize != 1)
|
||||
NumBytesS = SE->getMulExpr(
|
||||
NumBytesS, SE->getConstant(IntPtrTy, StoreSize), SCEV::FlagNUW);
|
||||
|
||||
CallInst *NewCall =
|
||||
Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
|
||||
std::min(SI->getAlignment(), LI->getAlignment()));
|
||||
Value *NumBytes =
|
||||
Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
|
||||
|
||||
NewCall = Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes, Align);
|
||||
} else {
|
||||
// We cannot allow unaligned ops for unordered load/store, so reject
|
||||
// anything where the alignment isn't at least the element size.
|
||||
if (Align < StoreSize)
|
||||
return false;
|
||||
|
||||
// If the element.atomic memcpy is not lowered into explicit
|
||||
// loads/stores later, then it will be lowered into an element-size
|
||||
// specific lib call. If the lib call doesn't exist for our store size, then
|
||||
// we shouldn't generate the memcpy.
|
||||
if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
|
||||
return false;
|
||||
|
||||
Value *NumElements =
|
||||
Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
|
||||
|
||||
NewCall = Builder.CreateElementAtomicMemCpy(StoreBasePtr, LoadBasePtr,
|
||||
NumElements, StoreSize);
|
||||
// Propagate alignment info onto the pointer args. Note that unordered
|
||||
// atomic loads/stores are *required* by the spec to have an alignment
|
||||
// but non-atomic loads/stores may not.
|
||||
NewCall->addParamAttr(0, Attribute::getWithAlignment(NewCall->getContext(),
|
||||
SI->getAlignment()));
|
||||
NewCall->addParamAttr(1, Attribute::getWithAlignment(NewCall->getContext(),
|
||||
LI->getAlignment()));
|
||||
}
|
||||
NewCall->setDebugLoc(SI->getDebugLoc());
|
||||
|
||||
DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n"
|
||||
|
|
|
@ -0,0 +1,28 @@
|
|||
; RUN: opt -basicaa -loop-idiom < %s -S | FileCheck %s
|
||||
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
|
||||
|
||||
;; memcpy.atomic formation (atomic load & store) -- element size 2
|
||||
;; Will not create call due to a max element size of 0
|
||||
define void @test1(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test1(
|
||||
; CHECK-NOT: call void @llvm.memcpy.element.atomic
|
||||
; CHECK: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i16, i32 10000
|
||||
%Dest = alloca i16, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i16, i16* %Base, i64 %indvar
|
||||
%DestI = getelementptr i16, i16* %Dest, i64 %indvar
|
||||
%V = load atomic i16, i16* %I.0.014 unordered, align 2
|
||||
store atomic i16 %V, i16* %DestI unordered, align 2
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
|
@ -0,0 +1,452 @@
|
|||
; RUN: opt -basicaa -loop-idiom < %s -S | FileCheck %s
|
||||
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
;; memcpy.atomic formation (atomic load & store)
|
||||
define void @test1(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test1(
|
||||
; CHECK: call void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* align 1 %Dest, i8* align 1 %Base, i64 %Size, i32 1)
|
||||
; CHECK-NOT: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i8, i32 10000
|
||||
%Dest = alloca i8, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
|
||||
%DestI = getelementptr i8, i8* %Dest, i64 %indvar
|
||||
%V = load atomic i8, i8* %I.0.014 unordered, align 1
|
||||
store atomic i8 %V, i8* %DestI unordered, align 1
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
;; memcpy.atomic formation (atomic store, normal load)
|
||||
define void @test2(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test2(
|
||||
; CHECK: call void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* align 1 %Dest, i8* align 1 %Base, i64 %Size, i32 1)
|
||||
; CHECK-NOT: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i8, i32 10000
|
||||
%Dest = alloca i8, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
|
||||
%DestI = getelementptr i8, i8* %Dest, i64 %indvar
|
||||
%V = load i8, i8* %I.0.014, align 1
|
||||
store atomic i8 %V, i8* %DestI unordered, align 1
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
;; memcpy.atomic formation rejection (atomic store, normal load w/ no align)
|
||||
define void @test2b(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test2b(
|
||||
; CHECK-NOT: call void @llvm.memcpy.element.atomic
|
||||
; CHECK: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i8, i32 10000
|
||||
%Dest = alloca i8, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
|
||||
%DestI = getelementptr i8, i8* %Dest, i64 %indvar
|
||||
%V = load i8, i8* %I.0.014
|
||||
store atomic i8 %V, i8* %DestI unordered, align 1
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
;; memcpy.atomic formation rejection (atomic store, normal load w/ bad align)
|
||||
define void @test2c(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test2c(
|
||||
; CHECK-NOT: call void @llvm.memcpy.element.atomic
|
||||
; CHECK: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i32, i32 10000
|
||||
%Dest = alloca i32, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i32, i32* %Base, i64 %indvar
|
||||
%DestI = getelementptr i32, i32* %Dest, i64 %indvar
|
||||
%V = load i32, i32* %I.0.014, align 2
|
||||
store atomic i32 %V, i32* %DestI unordered, align 4
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
;; memcpy.atomic formation rejection (atomic store w/ bad align, normal load)
|
||||
define void @test2d(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test2d(
|
||||
; CHECK-NOT: call void @llvm.memcpy.element.atomic
|
||||
; CHECK: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i32, i32 10000
|
||||
%Dest = alloca i32, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i32, i32* %Base, i64 %indvar
|
||||
%DestI = getelementptr i32, i32* %Dest, i64 %indvar
|
||||
%V = load i32, i32* %I.0.014, align 4
|
||||
store atomic i32 %V, i32* %DestI unordered, align 2
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
|
||||
;; memcpy.atomic formation (normal store, atomic load)
|
||||
define void @test3(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test3(
|
||||
; CHECK: call void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* align 1 %Dest, i8* align 1 %Base, i64 %Size, i32 1)
|
||||
; CHECK-NOT: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i8, i32 10000
|
||||
%Dest = alloca i8, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
|
||||
%DestI = getelementptr i8, i8* %Dest, i64 %indvar
|
||||
%V = load atomic i8, i8* %I.0.014 unordered, align 1
|
||||
store i8 %V, i8* %DestI, align 1
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
;; memcpy.atomic formation rejection (normal store w/ no align, atomic load)
|
||||
define void @test3b(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test3b(
|
||||
; CHECK-NOT: call void @llvm.memcpy.element.atomic
|
||||
; CHECK: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i8, i32 10000
|
||||
%Dest = alloca i8, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
|
||||
%DestI = getelementptr i8, i8* %Dest, i64 %indvar
|
||||
%V = load atomic i8, i8* %I.0.014 unordered, align 1
|
||||
store i8 %V, i8* %DestI
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
;; memcpy.atomic formation rejection (normal store, atomic load w/ bad align)
|
||||
define void @test3c(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test3c(
|
||||
; CHECK-NOT: call void @llvm.memcpy.element.atomic
|
||||
; CHECK: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i32, i32 10000
|
||||
%Dest = alloca i32, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i32, i32* %Base, i64 %indvar
|
||||
%DestI = getelementptr i32, i32* %Dest, i64 %indvar
|
||||
%V = load atomic i32, i32* %I.0.014 unordered, align 2
|
||||
store i32 %V, i32* %DestI, align 4
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
;; memcpy.atomic formation rejection (normal store w/ bad align, atomic load)
|
||||
define void @test3d(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test3d(
|
||||
; CHECK-NOT: call void @llvm.memcpy.element.atomic
|
||||
; CHECK: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i32, i32 10000
|
||||
%Dest = alloca i32, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i32, i32* %Base, i64 %indvar
|
||||
%DestI = getelementptr i32, i32* %Dest, i64 %indvar
|
||||
%V = load atomic i32, i32* %I.0.014 unordered, align 4
|
||||
store i32 %V, i32* %DestI, align 2
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
|
||||
;; memcpy.atomic formation rejection (atomic load, ordered-atomic store)
|
||||
define void @test4(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test4(
|
||||
; CHECK-NOT: call void @llvm.memcpy.element.atomic
|
||||
; CHECK: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i8, i32 10000
|
||||
%Dest = alloca i8, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
|
||||
%DestI = getelementptr i8, i8* %Dest, i64 %indvar
|
||||
%V = load atomic i8, i8* %I.0.014 unordered, align 1
|
||||
store atomic i8 %V, i8* %DestI monotonic, align 1
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
;; memcpy.atomic formation rejection (ordered-atomic load, unordered-atomic store)
|
||||
define void @test5(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test5(
|
||||
; CHECK-NOT: call void @llvm.memcpy.element.atomic
|
||||
; CHECK: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i8, i32 10000
|
||||
%Dest = alloca i8, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
|
||||
%DestI = getelementptr i8, i8* %Dest, i64 %indvar
|
||||
%V = load atomic i8, i8* %I.0.014 monotonic, align 1
|
||||
store atomic i8 %V, i8* %DestI unordered, align 1
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
;; memcpy.atomic formation (atomic load & store) -- element size 2
|
||||
define void @test6(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test6(
|
||||
; CHECK: call void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* align 2 %Dest{{[0-9]*}}, i8* align 2 %Base{{[0-9]*}}, i64 %Size, i32 2)
|
||||
; CHECK-NOT: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i16, i32 10000
|
||||
%Dest = alloca i16, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i16, i16* %Base, i64 %indvar
|
||||
%DestI = getelementptr i16, i16* %Dest, i64 %indvar
|
||||
%V = load atomic i16, i16* %I.0.014 unordered, align 2
|
||||
store atomic i16 %V, i16* %DestI unordered, align 2
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
;; memcpy.atomic formation (atomic load & store) -- element size 4
|
||||
define void @test7(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test7(
|
||||
; CHECK: call void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* align 4 %Dest{{[0-9]*}}, i8* align 4 %Base{{[0-9]*}}, i64 %Size, i32 4)
|
||||
; CHECK-NOT: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i32, i32 10000
|
||||
%Dest = alloca i32, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i32, i32* %Base, i64 %indvar
|
||||
%DestI = getelementptr i32, i32* %Dest, i64 %indvar
|
||||
%V = load atomic i32, i32* %I.0.014 unordered, align 4
|
||||
store atomic i32 %V, i32* %DestI unordered, align 4
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
;; memcpy.atomic formation (atomic load & store) -- element size 8
|
||||
define void @test8(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test8(
|
||||
; CHECK: call void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* align 8 %Dest{{[0-9]*}}, i8* align 8 %Base{{[0-9]*}}, i64 %Size, i32 8)
|
||||
; CHECK-NOT: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i64, i32 10000
|
||||
%Dest = alloca i64, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i64, i64* %Base, i64 %indvar
|
||||
%DestI = getelementptr i64, i64* %Dest, i64 %indvar
|
||||
%V = load atomic i64, i64* %I.0.014 unordered, align 8
|
||||
store atomic i64 %V, i64* %DestI unordered, align 8
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
;; memcpy.atomic formation rejection (atomic load & store) -- element size 16
|
||||
define void @test9(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test9(
|
||||
; CHECK: call void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* align 16 %Dest{{[0-9]*}}, i8* align 16 %Base{{[0-9]*}}, i64 %Size, i32 16)
|
||||
; CHECK-NOT: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i128, i32 10000
|
||||
%Dest = alloca i128, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i128, i128* %Base, i64 %indvar
|
||||
%DestI = getelementptr i128, i128* %Dest, i64 %indvar
|
||||
%V = load atomic i128, i128* %I.0.014 unordered, align 16
|
||||
store atomic i128 %V, i128* %DestI unordered, align 16
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
;; memcpy.atomic formation rejection (atomic load & store) -- element size 32
|
||||
define void @test10(i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test10(
|
||||
; CHECK-NOT: call void @llvm.memcpy.element.atomic
|
||||
; CHECK: store
|
||||
; CHECK: ret void
|
||||
bb.nph:
|
||||
%Base = alloca i256, i32 10000
|
||||
%Dest = alloca i256, i32 10000
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i256, i256* %Base, i64 %indvar
|
||||
%DestI = getelementptr i256, i256* %Dest, i64 %indvar
|
||||
%V = load atomic i256, i256* %I.0.014 unordered, align 32
|
||||
store atomic i256 %V, i256* %DestI unordered, align 32
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
|
||||
|
||||
; Make sure that atomic memset doesn't get recognized by mistake
|
||||
define void @test_nomemset(i8* %Base, i64 %Size) nounwind ssp {
|
||||
; CHECK-LABEL: @test_nomemset(
|
||||
; CHECK-NOT: call void @llvm.memset
|
||||
; CHECK: store
|
||||
; CHECK: ret void
|
||||
bb.nph: ; preds = %entry
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %bb.nph, %for.body
|
||||
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
|
||||
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
|
||||
store atomic i8 0, i8* %I.0.014 unordered, align 1
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, %Size
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
; Verify that unordered memset_pattern isn't recognized.
|
||||
; This is a replica of test11_pattern from basic.ll
|
||||
define void @test_nomemset_pattern(i32* nocapture %P) nounwind ssp {
|
||||
; CHECK-LABEL: @test_nomemset_pattern(
|
||||
; CHECK-NEXT: entry:
|
||||
; CHECK-NOT: bitcast
|
||||
; CHECK-NOT: memset_pattern
|
||||
; CHECK: store atomic
|
||||
; CHECK: ret void
|
||||
entry:
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %entry, %for.body
|
||||
%indvar = phi i64 [ 0, %entry ], [ %indvar.next, %for.body ]
|
||||
%arrayidx = getelementptr i32, i32* %P, i64 %indvar
|
||||
store atomic i32 1, i32* %arrayidx unordered, align 4
|
||||
%indvar.next = add i64 %indvar, 1
|
||||
%exitcond = icmp eq i64 %indvar.next, 10000
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end: ; preds = %for.body
|
||||
ret void
|
||||
}
|
Loading…
Reference in New Issue