[Atomics][LoopIdiom] Recognize unordered atomic memcpy

Summary:
Expanding the loop idiom test for memcpy to also recognize
unordered atomic memcpy. The only difference for recognizing
an unordered atomic memcpy and instead of a normal memcpy is
that the loads and/or stores involved are unordered atomic operations.

Background:  http://lists.llvm.org/pipermail/llvm-dev/2017-May/112779.html

Patch by Daniel Neilson!

Reviewers: reames, anna, skatkov

Reviewed By: reames, anna

Subscribers: llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D33243

llvm-svn: 304806
This commit is contained in:
Anna Thomas 2017-06-06 16:45:25 +00:00
parent e4cda7417c
commit b2a212c070
10 changed files with 621 additions and 15 deletions

View File

@ -722,6 +722,10 @@ public:
/// if false is returned.
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
/// \returns The maximum element size, in bytes, for an element
/// unordered-atomic memory intrinsic.
unsigned getAtomicMemIntrinsicMaxElementSize() const;
/// \returns A value which is the result of the given memory intrinsic. New
/// instructions may be created to extract the result from the given intrinsic
/// memory operation. Returns nullptr if the target cannot create a result
@ -923,6 +927,7 @@ public:
virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) = 0;
virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) = 0;
virtual bool areInlineCompatible(const Function *Caller,
@ -1224,6 +1229,9 @@ public:
MemIntrinsicInfo &Info) override {
return Impl.getTgtMemIntrinsic(Inst, Info);
}
unsigned getAtomicMemIntrinsicMaxElementSize() const override {
return Impl.getAtomicMemIntrinsicMaxElementSize();
}
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) override {
return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);

View File

@ -427,6 +427,15 @@ public:
return false;
}
unsigned getAtomicMemIntrinsicMaxElementSize() const {
// Note for overrides: You must ensure for all element unordered-atomic
// memory intrinsics that all power-of-2 element sizes up to, and
// including, the return value of this method have a corresponding
// runtime lib call. These runtime lib call definitions can be found
// in RuntimeLibcalls.h
return 0;
}
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) {
return nullptr;

View File

@ -435,6 +435,28 @@ public:
MDNode *ScopeTag = nullptr,
MDNode *NoAliasTag = nullptr);
/// \brief Create and insert an atomic memcpy between the specified
/// pointers.
///
/// If the pointers aren't i8*, they will be converted. If a TBAA tag is
/// specified, it will be added to the instruction. Likewise with alias.scope
/// and noalias tags.
CallInst *CreateElementAtomicMemCpy(
Value *Dst, Value *Src, uint64_t NumElements, uint32_t ElementSize,
MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) {
return CreateElementAtomicMemCpy(Dst, Src, getInt64(NumElements),
ElementSize, TBAATag, TBAAStructTag,
ScopeTag, NoAliasTag);
}
CallInst *CreateElementAtomicMemCpy(Value *Dst, Value *Src,
Value *NumElements, uint32_t ElementSize,
MDNode *TBAATag = nullptr,
MDNode *TBAAStructTag = nullptr,
MDNode *ScopeTag = nullptr,
MDNode *NoAliasTag = nullptr);
/// \brief Create and insert a memmove between the specified
/// pointers.
///

View File

@ -468,6 +468,10 @@ bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
return TTIImpl->getTgtMemIntrinsic(Inst, Info);
}
unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
}
Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
IntrinsicInst *Inst, Type *ExpectedType) const {
return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);

View File

@ -134,6 +134,38 @@ CreateMemCpy(Value *Dst, Value *Src, Value *Size, unsigned Align,
return CI;
}
CallInst *IRBuilderBase::CreateElementAtomicMemCpy(
Value *Dst, Value *Src, Value *NumElements, uint32_t ElementSize,
MDNode *TBAATag, MDNode *TBAAStructTag, MDNode *ScopeTag,
MDNode *NoAliasTag) {
Dst = getCastedInt8PtrValue(Dst);
Src = getCastedInt8PtrValue(Src);
Value *Ops[] = {Dst, Src, NumElements, getInt32(ElementSize)};
Type *Tys[] = {Dst->getType(), Src->getType()};
Module *M = BB->getParent()->getParent();
Value *TheFn =
Intrinsic::getDeclaration(M, Intrinsic::memcpy_element_atomic, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
// Set the TBAA Struct info if present.
if (TBAAStructTag)
CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
return CI;
}
CallInst *IRBuilderBase::
CreateMemMove(Value *Dst, Value *Src, Value *Size, unsigned Align,
bool isVolatile, MDNode *TBAATag, MDNode *ScopeTag,

View File

@ -1383,6 +1383,8 @@ int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
}
unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
ArrayRef<Type *> Tys, FastMathFlags FMF,
unsigned ScalarizationCostPassed) {

View File

@ -76,6 +76,8 @@ public:
int getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE,
const SCEV *Ptr);
unsigned getAtomicMemIntrinsicMaxElementSize() const;
int getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
ArrayRef<Type *> Tys, FastMathFlags FMF,
unsigned ScalarizationCostPassed = UINT_MAX);

View File

@ -116,6 +116,7 @@ private:
Memset,
MemsetPattern,
Memcpy,
UnorderedAtomicMemcpy,
DontUse // Dummy retval never to be used. Allows catching errors in retval
// handling.
};
@ -353,8 +354,12 @@ static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
LoopIdiomRecognize::LegalStoreKind
LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
// Don't touch volatile stores.
if (!SI->isSimple())
if (SI->isVolatile())
return LegalStoreKind::None;
// We only want simple or unordered-atomic stores.
if (!SI->isUnordered())
return LegalStoreKind::None;
// Don't convert stores of non-integral pointer types to memsets (which stores
@ -395,15 +400,18 @@ LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
Value *SplatValue = isBytewiseValue(StoredVal);
Constant *PatternValue = nullptr;
// Note: memset and memset_pattern on unordered-atomic is yet not supported
bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
// If we're allowed to form a memset, and the stored value would be
// acceptable for memset, use it.
if (HasMemset && SplatValue &&
if (!UnorderedAtomic && HasMemset && SplatValue &&
// Verify that the stored value is loop invariant. If not, we can't
// promote the memset.
CurLoop->isLoopInvariant(SplatValue)) {
// It looks like we can use SplatValue.
return LegalStoreKind::Memset;
} else if (HasMemsetPattern &&
} else if (!UnorderedAtomic && HasMemsetPattern &&
// Don't create memset_pattern16s with address spaces.
StorePtr->getType()->getPointerAddressSpace() == 0 &&
(PatternValue = getMemSetPatternValue(StoredVal, DL))) {
@ -422,7 +430,12 @@ LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
// The store must be feeding a non-volatile load.
LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
if (!LI || !LI->isSimple())
// Only allow non-volatile loads
if (!LI || LI->isVolatile())
return LegalStoreKind::None;
// Only allow simple or unordered-atomic loads
if (!LI->isUnordered())
return LegalStoreKind::None;
// See if the pointer expression is an AddRec like {base,+,1} on the current
@ -438,7 +451,9 @@ LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
return LegalStoreKind::None;
// Success. This store can be converted into a memcpy.
return LegalStoreKind::Memcpy;
UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
: LegalStoreKind::Memcpy;
}
// This store can't be transformed into a memset/memcpy.
return LegalStoreKind::None;
@ -469,6 +484,7 @@ void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
StoreRefsForMemsetPattern[Ptr].push_back(SI);
} break;
case LegalStoreKind::Memcpy:
case LegalStoreKind::UnorderedAtomicMemcpy:
StoreRefsForMemcpy.push_back(SI);
break;
default:
@ -882,7 +898,7 @@ bool LoopIdiomRecognize::processLoopStridedStore(
/// for (i) A[i] = B[i];
bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
const SCEV *BECount) {
assert(SI->isSimple() && "Expected only non-volatile stores.");
assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
Value *StorePtr = SI->getPointerOperand();
const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
@ -892,7 +908,7 @@ bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
// The store must be feeding a non-volatile load.
LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
assert(LI->isSimple() && "Expected only non-volatile stores.");
assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
// See if the pointer expression is an AddRec like {base,+,1} on the current
// loop, which indicates a strided load. If we have something else, it's a
@ -966,16 +982,47 @@ bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
const SCEV *NumBytesS =
SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
if (StoreSize != 1)
NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
SCEV::FlagNUW);
Value *NumBytes =
Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
unsigned Align = std::min(SI->getAlignment(), LI->getAlignment());
CallInst *NewCall = nullptr;
// Check whether to generate an unordered atomic memcpy:
// If the load or store are atomic, then they must neccessarily be unordered
// by previous checks.
if (!SI->isAtomic() && !LI->isAtomic()) {
if (StoreSize != 1)
NumBytesS = SE->getMulExpr(
NumBytesS, SE->getConstant(IntPtrTy, StoreSize), SCEV::FlagNUW);
CallInst *NewCall =
Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
std::min(SI->getAlignment(), LI->getAlignment()));
Value *NumBytes =
Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
NewCall = Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes, Align);
} else {
// We cannot allow unaligned ops for unordered load/store, so reject
// anything where the alignment isn't at least the element size.
if (Align < StoreSize)
return false;
// If the element.atomic memcpy is not lowered into explicit
// loads/stores later, then it will be lowered into an element-size
// specific lib call. If the lib call doesn't exist for our store size, then
// we shouldn't generate the memcpy.
if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
return false;
Value *NumElements =
Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
NewCall = Builder.CreateElementAtomicMemCpy(StoreBasePtr, LoadBasePtr,
NumElements, StoreSize);
// Propagate alignment info onto the pointer args. Note that unordered
// atomic loads/stores are *required* by the spec to have an alignment
// but non-atomic loads/stores may not.
NewCall->addParamAttr(0, Attribute::getWithAlignment(NewCall->getContext(),
SI->getAlignment()));
NewCall->addParamAttr(1, Attribute::getWithAlignment(NewCall->getContext(),
LI->getAlignment()));
}
NewCall->setDebugLoc(SI->getDebugLoc());
DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n"

View File

@ -0,0 +1,28 @@
; RUN: opt -basicaa -loop-idiom < %s -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
;; memcpy.atomic formation (atomic load & store) -- element size 2
;; Will not create call due to a max element size of 0
define void @test1(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test1(
; CHECK-NOT: call void @llvm.memcpy.element.atomic
; CHECK: store
; CHECK: ret void
bb.nph:
%Base = alloca i16, i32 10000
%Dest = alloca i16, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i16, i16* %Base, i64 %indvar
%DestI = getelementptr i16, i16* %Dest, i64 %indvar
%V = load atomic i16, i16* %I.0.014 unordered, align 2
store atomic i16 %V, i16* %DestI unordered, align 2
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}

View File

@ -0,0 +1,452 @@
; RUN: opt -basicaa -loop-idiom < %s -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
target triple = "x86_64-unknown-linux-gnu"
;; memcpy.atomic formation (atomic load & store)
define void @test1(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test1(
; CHECK: call void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* align 1 %Dest, i8* align 1 %Base, i64 %Size, i32 1)
; CHECK-NOT: store
; CHECK: ret void
bb.nph:
%Base = alloca i8, i32 10000
%Dest = alloca i8, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
%DestI = getelementptr i8, i8* %Dest, i64 %indvar
%V = load atomic i8, i8* %I.0.014 unordered, align 1
store atomic i8 %V, i8* %DestI unordered, align 1
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
;; memcpy.atomic formation (atomic store, normal load)
define void @test2(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test2(
; CHECK: call void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* align 1 %Dest, i8* align 1 %Base, i64 %Size, i32 1)
; CHECK-NOT: store
; CHECK: ret void
bb.nph:
%Base = alloca i8, i32 10000
%Dest = alloca i8, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
%DestI = getelementptr i8, i8* %Dest, i64 %indvar
%V = load i8, i8* %I.0.014, align 1
store atomic i8 %V, i8* %DestI unordered, align 1
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
;; memcpy.atomic formation rejection (atomic store, normal load w/ no align)
define void @test2b(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test2b(
; CHECK-NOT: call void @llvm.memcpy.element.atomic
; CHECK: store
; CHECK: ret void
bb.nph:
%Base = alloca i8, i32 10000
%Dest = alloca i8, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
%DestI = getelementptr i8, i8* %Dest, i64 %indvar
%V = load i8, i8* %I.0.014
store atomic i8 %V, i8* %DestI unordered, align 1
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
;; memcpy.atomic formation rejection (atomic store, normal load w/ bad align)
define void @test2c(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test2c(
; CHECK-NOT: call void @llvm.memcpy.element.atomic
; CHECK: store
; CHECK: ret void
bb.nph:
%Base = alloca i32, i32 10000
%Dest = alloca i32, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i32, i32* %Base, i64 %indvar
%DestI = getelementptr i32, i32* %Dest, i64 %indvar
%V = load i32, i32* %I.0.014, align 2
store atomic i32 %V, i32* %DestI unordered, align 4
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
;; memcpy.atomic formation rejection (atomic store w/ bad align, normal load)
define void @test2d(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test2d(
; CHECK-NOT: call void @llvm.memcpy.element.atomic
; CHECK: store
; CHECK: ret void
bb.nph:
%Base = alloca i32, i32 10000
%Dest = alloca i32, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i32, i32* %Base, i64 %indvar
%DestI = getelementptr i32, i32* %Dest, i64 %indvar
%V = load i32, i32* %I.0.014, align 4
store atomic i32 %V, i32* %DestI unordered, align 2
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
;; memcpy.atomic formation (normal store, atomic load)
define void @test3(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test3(
; CHECK: call void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* align 1 %Dest, i8* align 1 %Base, i64 %Size, i32 1)
; CHECK-NOT: store
; CHECK: ret void
bb.nph:
%Base = alloca i8, i32 10000
%Dest = alloca i8, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
%DestI = getelementptr i8, i8* %Dest, i64 %indvar
%V = load atomic i8, i8* %I.0.014 unordered, align 1
store i8 %V, i8* %DestI, align 1
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
;; memcpy.atomic formation rejection (normal store w/ no align, atomic load)
define void @test3b(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test3b(
; CHECK-NOT: call void @llvm.memcpy.element.atomic
; CHECK: store
; CHECK: ret void
bb.nph:
%Base = alloca i8, i32 10000
%Dest = alloca i8, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
%DestI = getelementptr i8, i8* %Dest, i64 %indvar
%V = load atomic i8, i8* %I.0.014 unordered, align 1
store i8 %V, i8* %DestI
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
;; memcpy.atomic formation rejection (normal store, atomic load w/ bad align)
define void @test3c(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test3c(
; CHECK-NOT: call void @llvm.memcpy.element.atomic
; CHECK: store
; CHECK: ret void
bb.nph:
%Base = alloca i32, i32 10000
%Dest = alloca i32, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i32, i32* %Base, i64 %indvar
%DestI = getelementptr i32, i32* %Dest, i64 %indvar
%V = load atomic i32, i32* %I.0.014 unordered, align 2
store i32 %V, i32* %DestI, align 4
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
;; memcpy.atomic formation rejection (normal store w/ bad align, atomic load)
define void @test3d(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test3d(
; CHECK-NOT: call void @llvm.memcpy.element.atomic
; CHECK: store
; CHECK: ret void
bb.nph:
%Base = alloca i32, i32 10000
%Dest = alloca i32, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i32, i32* %Base, i64 %indvar
%DestI = getelementptr i32, i32* %Dest, i64 %indvar
%V = load atomic i32, i32* %I.0.014 unordered, align 4
store i32 %V, i32* %DestI, align 2
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
;; memcpy.atomic formation rejection (atomic load, ordered-atomic store)
define void @test4(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test4(
; CHECK-NOT: call void @llvm.memcpy.element.atomic
; CHECK: store
; CHECK: ret void
bb.nph:
%Base = alloca i8, i32 10000
%Dest = alloca i8, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
%DestI = getelementptr i8, i8* %Dest, i64 %indvar
%V = load atomic i8, i8* %I.0.014 unordered, align 1
store atomic i8 %V, i8* %DestI monotonic, align 1
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
;; memcpy.atomic formation rejection (ordered-atomic load, unordered-atomic store)
define void @test5(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test5(
; CHECK-NOT: call void @llvm.memcpy.element.atomic
; CHECK: store
; CHECK: ret void
bb.nph:
%Base = alloca i8, i32 10000
%Dest = alloca i8, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
%DestI = getelementptr i8, i8* %Dest, i64 %indvar
%V = load atomic i8, i8* %I.0.014 monotonic, align 1
store atomic i8 %V, i8* %DestI unordered, align 1
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
;; memcpy.atomic formation (atomic load & store) -- element size 2
define void @test6(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test6(
; CHECK: call void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* align 2 %Dest{{[0-9]*}}, i8* align 2 %Base{{[0-9]*}}, i64 %Size, i32 2)
; CHECK-NOT: store
; CHECK: ret void
bb.nph:
%Base = alloca i16, i32 10000
%Dest = alloca i16, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i16, i16* %Base, i64 %indvar
%DestI = getelementptr i16, i16* %Dest, i64 %indvar
%V = load atomic i16, i16* %I.0.014 unordered, align 2
store atomic i16 %V, i16* %DestI unordered, align 2
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
;; memcpy.atomic formation (atomic load & store) -- element size 4
define void @test7(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test7(
; CHECK: call void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* align 4 %Dest{{[0-9]*}}, i8* align 4 %Base{{[0-9]*}}, i64 %Size, i32 4)
; CHECK-NOT: store
; CHECK: ret void
bb.nph:
%Base = alloca i32, i32 10000
%Dest = alloca i32, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i32, i32* %Base, i64 %indvar
%DestI = getelementptr i32, i32* %Dest, i64 %indvar
%V = load atomic i32, i32* %I.0.014 unordered, align 4
store atomic i32 %V, i32* %DestI unordered, align 4
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
;; memcpy.atomic formation (atomic load & store) -- element size 8
define void @test8(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test8(
; CHECK: call void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* align 8 %Dest{{[0-9]*}}, i8* align 8 %Base{{[0-9]*}}, i64 %Size, i32 8)
; CHECK-NOT: store
; CHECK: ret void
bb.nph:
%Base = alloca i64, i32 10000
%Dest = alloca i64, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i64, i64* %Base, i64 %indvar
%DestI = getelementptr i64, i64* %Dest, i64 %indvar
%V = load atomic i64, i64* %I.0.014 unordered, align 8
store atomic i64 %V, i64* %DestI unordered, align 8
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
;; memcpy.atomic formation rejection (atomic load & store) -- element size 16
define void @test9(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test9(
; CHECK: call void @llvm.memcpy.element.atomic.p0i8.p0i8(i8* align 16 %Dest{{[0-9]*}}, i8* align 16 %Base{{[0-9]*}}, i64 %Size, i32 16)
; CHECK-NOT: store
; CHECK: ret void
bb.nph:
%Base = alloca i128, i32 10000
%Dest = alloca i128, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i128, i128* %Base, i64 %indvar
%DestI = getelementptr i128, i128* %Dest, i64 %indvar
%V = load atomic i128, i128* %I.0.014 unordered, align 16
store atomic i128 %V, i128* %DestI unordered, align 16
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
;; memcpy.atomic formation rejection (atomic load & store) -- element size 32
define void @test10(i64 %Size) nounwind ssp {
; CHECK-LABEL: @test10(
; CHECK-NOT: call void @llvm.memcpy.element.atomic
; CHECK: store
; CHECK: ret void
bb.nph:
%Base = alloca i256, i32 10000
%Dest = alloca i256, i32 10000
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i256, i256* %Base, i64 %indvar
%DestI = getelementptr i256, i256* %Dest, i64 %indvar
%V = load atomic i256, i256* %I.0.014 unordered, align 32
store atomic i256 %V, i256* %DestI unordered, align 32
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
; Make sure that atomic memset doesn't get recognized by mistake
define void @test_nomemset(i8* %Base, i64 %Size) nounwind ssp {
; CHECK-LABEL: @test_nomemset(
; CHECK-NOT: call void @llvm.memset
; CHECK: store
; CHECK: ret void
bb.nph: ; preds = %entry
br label %for.body
for.body: ; preds = %bb.nph, %for.body
%indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.body ]
%I.0.014 = getelementptr i8, i8* %Base, i64 %indvar
store atomic i8 0, i8* %I.0.014 unordered, align 1
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, %Size
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
; Verify that unordered memset_pattern isn't recognized.
; This is a replica of test11_pattern from basic.ll
define void @test_nomemset_pattern(i32* nocapture %P) nounwind ssp {
; CHECK-LABEL: @test_nomemset_pattern(
; CHECK-NEXT: entry:
; CHECK-NOT: bitcast
; CHECK-NOT: memset_pattern
; CHECK: store atomic
; CHECK: ret void
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%indvar = phi i64 [ 0, %entry ], [ %indvar.next, %for.body ]
%arrayidx = getelementptr i32, i32* %P, i64 %indvar
store atomic i32 1, i32* %arrayidx unordered, align 4
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, 10000
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}