forked from OSchip/llvm-project
[LV] Process pointer IVs with PHINodes in collectLoopUniforms
This patch moves the processing of pointer induction variables in collectLoopUniforms from the consecutive pointer phase of the analysis to the phi node phase. Previously, if a pointer induction variable was used by both a scalarized non-memory instruction as well as a vectorized memory instruction, we would incorrectly identify the pointer as uniform. Pointer induction variables should be treated the same as other phi nodes. That is, they are uniform if all users of the induction variable and induction variable update are uniform. Differential Revision: https://reviews.llvm.org/D24511 llvm-svn: 281485
This commit is contained in:
parent
13065b00ba
commit
b25e87fca5
|
@ -5393,9 +5393,18 @@ void LoopVectorizationLegality::collectLoopUniforms() {
|
|||
if (!Ptr)
|
||||
continue;
|
||||
|
||||
// True if all users of Ptr are memory accesses that have Ptr as their
|
||||
// pointer operand.
|
||||
auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool {
|
||||
return getPointerOperand(U) == Ptr;
|
||||
});
|
||||
|
||||
// Ensure the memory instruction will not be scalarized, making its
|
||||
// pointer operand non-uniform.
|
||||
if (memoryInstructionMustBeScalarized(&I))
|
||||
// pointer operand non-uniform. If the pointer operand is used by some
|
||||
// instruction other than a memory access, we're not going to check if
|
||||
// that other instruction may be scalarized here. Thus, conservatively
|
||||
// assume the pointer operand may be non-uniform.
|
||||
if (!UsersAreMemAccesses || memoryInstructionMustBeScalarized(&I))
|
||||
PossibleNonUniformPtrs.insert(Ptr);
|
||||
|
||||
// If the memory instruction will be vectorized and its pointer operand
|
||||
|
@ -5433,11 +5442,18 @@ void LoopVectorizationLegality::collectLoopUniforms() {
|
|||
}
|
||||
}
|
||||
|
||||
// Returns true if Ptr is the pointer operand of a memory access instruction
|
||||
// I, and I is known to not require scalarization.
|
||||
auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
|
||||
return getPointerOperand(I) == Ptr && !memoryInstructionMustBeScalarized(I);
|
||||
};
|
||||
|
||||
// For an instruction to be added into Worklist above, all its users inside
|
||||
// the loop should also be in Worklist. However, this condition cannot be
|
||||
// true for phi nodes that form a cyclic dependence. We must process phi
|
||||
// nodes separately. An induction variable will remain uniform if all users
|
||||
// of the induction variable and induction variable update remain uniform.
|
||||
// The code below handles both pointer and non-pointer induction variables.
|
||||
for (auto &Induction : Inductions) {
|
||||
auto *Ind = Induction.first;
|
||||
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
|
||||
|
@ -5446,7 +5462,8 @@ void LoopVectorizationLegality::collectLoopUniforms() {
|
|||
// vectorization.
|
||||
auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
|
||||
auto *I = cast<Instruction>(U);
|
||||
return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
|
||||
return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
|
||||
isVectorizedMemAccessUse(I, Ind);
|
||||
});
|
||||
if (!UniformInd)
|
||||
continue;
|
||||
|
@ -5455,7 +5472,8 @@ void LoopVectorizationLegality::collectLoopUniforms() {
|
|||
// uniform after vectorization.
|
||||
auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
|
||||
auto *I = cast<Instruction>(U);
|
||||
return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
|
||||
return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
|
||||
isVectorizedMemAccessUse(I, IndUpdate);
|
||||
});
|
||||
if (!UniformIndUpdate)
|
||||
continue;
|
||||
|
|
|
@ -269,3 +269,172 @@ for.body:
|
|||
for.end:
|
||||
ret void
|
||||
}
|
||||
|
||||
; CHECK-LABEL: pointer_iv_uniform
|
||||
;
|
||||
; Check that a pointer induction variable is recognized as uniform and remains
|
||||
; uniform after vectorization.
|
||||
;
|
||||
; CHECK: LV: Found uniform instruction: %p = phi i32* [ %tmp03, %for.body ], [ %a, %entry ]
|
||||
; CHECK: vector.body
|
||||
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
|
||||
; CHECK-NOT: getelementptr
|
||||
; CHECK: %next.gep = getelementptr i32, i32* %a, i64 %index
|
||||
; CHECK-NOT: getelementptr
|
||||
; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
|
||||
;
|
||||
define void @pointer_iv_uniform(i32* %a, i32 %x, i64 %n) {
|
||||
entry:
|
||||
br label %for.body
|
||||
|
||||
for.body:
|
||||
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
|
||||
%p = phi i32* [ %tmp03, %for.body ], [ %a, %entry ]
|
||||
store i32 %x, i32* %p, align 8
|
||||
%tmp03 = getelementptr inbounds i32, i32* %p, i32 1
|
||||
%i.next = add nuw nsw i64 %i, 1
|
||||
%cond = icmp slt i64 %i.next, %n
|
||||
br i1 %cond, label %for.body, label %for.end
|
||||
|
||||
for.end:
|
||||
ret void
|
||||
}
|
||||
|
||||
; INTER-LABEL: pointer_iv_non_uniform_0
|
||||
;
|
||||
; Check that a pointer induction variable with a non-uniform user is not
|
||||
; recognized as uniform and is not uniform after vectorization. The pointer
|
||||
; induction variable is used by getelementptr instructions that are non-uniform
|
||||
; due to scalarization of the stores.
|
||||
;
|
||||
; INTER-NOT: LV: Found uniform instruction: %p = phi i32* [ %tmp03, %for.body ], [ %a, %entry ]
|
||||
; INTER: vector.body
|
||||
; INTER: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
|
||||
; INTER: %[[I0:.+]] = shl i64 %index, 2
|
||||
; INTER: %next.gep = getelementptr i32, i32* %a, i64 %[[I0]]
|
||||
; INTER: %[[S1:.+]] = shl i64 %index, 2
|
||||
; INTER: %[[I1:.+]] = or i64 %[[S1]], 4
|
||||
; INTER: %next.gep2 = getelementptr i32, i32* %a, i64 %[[I1]]
|
||||
; INTER: %[[S2:.+]] = shl i64 %index, 2
|
||||
; INTER: %[[I2:.+]] = or i64 %[[S2]], 8
|
||||
; INTER: %next.gep3 = getelementptr i32, i32* %a, i64 %[[I2]]
|
||||
; INTER: %[[S3:.+]] = shl i64 %index, 2
|
||||
; INTER: %[[I3:.+]] = or i64 %[[S3]], 12
|
||||
; INTER: %next.gep4 = getelementptr i32, i32* %a, i64 %[[I3]]
|
||||
; INTER: br i1 {{.*}}, label %middle.block, label %vector.body
|
||||
;
|
||||
define void @pointer_iv_non_uniform_0(i32* %a, i64 %n) {
|
||||
entry:
|
||||
br label %for.body
|
||||
|
||||
for.body:
|
||||
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
|
||||
%p = phi i32* [ %tmp03, %for.body ], [ %a, %entry ]
|
||||
%tmp00 = load i32, i32* %p, align 8
|
||||
%tmp01 = getelementptr inbounds i32, i32* %p, i32 1
|
||||
%tmp02 = load i32, i32* %tmp01, align 8
|
||||
%tmp03 = getelementptr inbounds i32, i32* %p, i32 4
|
||||
%tmp04 = load i32, i32* %tmp03, align 8
|
||||
%tmp05 = getelementptr inbounds i32, i32* %p, i32 5
|
||||
%tmp06 = load i32, i32* %tmp05, align 8
|
||||
%tmp07 = sub i32 %tmp04, %tmp00
|
||||
%tmp08 = sub i32 %tmp02, %tmp02
|
||||
%tmp09 = getelementptr inbounds i32, i32* %p, i32 2
|
||||
store i32 %tmp07, i32* %tmp09, align 8
|
||||
%tmp10 = getelementptr inbounds i32, i32* %p, i32 3
|
||||
store i32 %tmp08, i32* %tmp10, align 8
|
||||
%i.next = add nuw nsw i64 %i, 1
|
||||
%cond = icmp slt i64 %i.next, %n
|
||||
br i1 %cond, label %for.body, label %for.end
|
||||
|
||||
for.end:
|
||||
ret void
|
||||
}
|
||||
|
||||
; CHECK-LABEL: pointer_iv_non_uniform_1
|
||||
;
|
||||
; Check that a pointer induction variable with a non-uniform user is not
|
||||
; recognized as uniform and is not uniform after vectorization. The pointer
|
||||
; induction variable is used by a store that will be scalarized.
|
||||
;
|
||||
; CHECK-NOT: LV: Found uniform instruction: %p = phi x86_fp80* [%tmp1, %for.body], [%a, %entry]
|
||||
; CHECK: vector.body
|
||||
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
|
||||
; CHECK: %next.gep = getelementptr x86_fp80, x86_fp80* %a, i64 %index
|
||||
; CHECK: %[[I1:.+]] = or i64 %index, 1
|
||||
; CHECK: %next.gep2 = getelementptr x86_fp80, x86_fp80* %a, i64 %[[I1]]
|
||||
; CHECK: %[[I2:.+]] = or i64 %index, 2
|
||||
; CHECK: %next.gep3 = getelementptr x86_fp80, x86_fp80* %a, i64 %[[I2]]
|
||||
; CHECK: %[[I3:.+]] = or i64 %index, 3
|
||||
; CHECK: %next.gep4 = getelementptr x86_fp80, x86_fp80* %a, i64 %[[I3]]
|
||||
; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
|
||||
;
|
||||
define void @pointer_iv_non_uniform_1(x86_fp80* %a, i64 %n) {
|
||||
entry:
|
||||
br label %for.body
|
||||
|
||||
for.body:
|
||||
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
|
||||
%p = phi x86_fp80* [%tmp1, %for.body], [%a, %entry]
|
||||
%tmp0 = sitofp i32 1 to x86_fp80
|
||||
store x86_fp80 %tmp0, x86_fp80* %p, align 16
|
||||
%tmp1 = getelementptr inbounds x86_fp80, x86_fp80* %p, i32 1
|
||||
%i.next = add i64 %i, 1
|
||||
%cond = icmp slt i64 %i.next, %n
|
||||
br i1 %cond, label %for.body, label %for.end
|
||||
|
||||
for.end:
|
||||
ret void
|
||||
}
|
||||
|
||||
; CHECK-LABEL: pointer_iv_mixed
|
||||
;
|
||||
; Check multiple pointer induction variables where only one is recognized as
|
||||
; uniform and remains uniform after vectorization. The other pointer induction
|
||||
; variable is not recognized as uniform and is not uniform after vectorization
|
||||
; because it is stored to memory.
|
||||
;
|
||||
; CHECK-NOT: LV: Found uniform instruction: %p = phi i32* [ %tmp3, %for.body ], [ %a, %entry ]
|
||||
; CHECK: LV: Found uniform instruction: %q = phi i32** [ %tmp4, %for.body ], [ %b, %entry ]
|
||||
; CHECK: vector.body
|
||||
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
|
||||
; CHECK: %next.gep = getelementptr i32, i32* %a, i64 %index
|
||||
; CHECK: %[[I1:.+]] = or i64 %index, 1
|
||||
; CHECK: %next.gep10 = getelementptr i32, i32* %a, i64 %[[I1]]
|
||||
; CHECK: %[[I2:.+]] = or i64 %index, 2
|
||||
; CHECK: %next.gep11 = getelementptr i32, i32* %a, i64 %[[I2]]
|
||||
; CHECK: %[[I3:.+]] = or i64 %index, 3
|
||||
; CHECK: %next.gep12 = getelementptr i32, i32* %a, i64 %[[I3]]
|
||||
; CHECK: %[[V0:.+]] = insertelement <4 x i32*> undef, i32* %next.gep, i32 0
|
||||
; CHECK: %[[V1:.+]] = insertelement <4 x i32*> %[[V0]], i32* %next.gep10, i32 1
|
||||
; CHECK: %[[V2:.+]] = insertelement <4 x i32*> %[[V1]], i32* %next.gep11, i32 2
|
||||
; CHECK: %[[V3:.+]] = insertelement <4 x i32*> %[[V2]], i32* %next.gep12, i32 3
|
||||
; CHECK-NOT: getelementptr
|
||||
; CHECK: %next.gep13 = getelementptr i32*, i32** %b, i64 %index
|
||||
; CHECK-NOT: getelementptr
|
||||
; CHECK: %[[B0:.+]] = bitcast i32** %next.gep13 to <4 x i32*>*
|
||||
; CHECK: store <4 x i32*> %[[V3]], <4 x i32*>* %[[B0]], align 8
|
||||
; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
|
||||
;
|
||||
define i32 @pointer_iv_mixed(i32* %a, i32** %b, i64 %n) {
|
||||
entry:
|
||||
br label %for.body
|
||||
|
||||
for.body:
|
||||
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
|
||||
%p = phi i32* [ %tmp3, %for.body ], [ %a, %entry ]
|
||||
%q = phi i32** [ %tmp4, %for.body ], [ %b, %entry ]
|
||||
%tmp0 = phi i32 [ %tmp2, %for.body ], [ 0, %entry ]
|
||||
%tmp1 = load i32, i32* %p, align 8
|
||||
%tmp2 = add i32 %tmp1, %tmp0
|
||||
store i32* %p, i32** %q, align 8
|
||||
%tmp3 = getelementptr inbounds i32, i32* %p, i32 1
|
||||
%tmp4 = getelementptr inbounds i32*, i32** %q, i32 1
|
||||
%i.next = add nuw nsw i64 %i, 1
|
||||
%cond = icmp slt i64 %i.next, %n
|
||||
br i1 %cond, label %for.body, label %for.end
|
||||
|
||||
for.end:
|
||||
%tmp5 = phi i32 [ %tmp2, %for.body ]
|
||||
ret i32 %tmp5
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue