ARM Cost model: Use the size of vector registers and widest vectorizable instruction to determine the max vectorization factor.

llvm-svn: 172010
This commit is contained in:
Nadav Rotem 2013-01-09 22:29:00 +00:00
parent dd7d8a0f35
commit b1791a75cd
9 changed files with 153 additions and 5 deletions

View File

@ -148,6 +148,9 @@ public:
/// set to false, it returns the number of scalar registers.
virtual unsigned getNumberOfRegisters(bool Vector) const;
/// \return The width of the largest scalar or vector register type.
virtual unsigned getRegisterBitWidth(bool Vector) const;
/// \return The maximum unroll factor that the vectorizer should try to
/// perform for this target. This number depends on the level of parallelism
/// and the number of execution units in the CPU.

View File

@ -92,6 +92,10 @@ unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
return PrevTTI->getNumberOfRegisters(Vector);
}
unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
return PrevTTI->getRegisterBitWidth(Vector);
}
unsigned TargetTransformInfo::getMaximumUnrollFactor() const {
return PrevTTI->getMaximumUnrollFactor();
}
@ -220,6 +224,10 @@ struct NoTTI : ImmutablePass, TargetTransformInfo {
return 8;
}
unsigned getRegisterBitWidth(bool Vector) const {
return 32;
}
unsigned getMaximumUnrollFactor() const {
return 1;
}

View File

@ -84,6 +84,7 @@ public:
virtual unsigned getNumberOfRegisters(bool Vector) const;
virtual unsigned getMaximumUnrollFactor() const;
virtual unsigned getRegisterBitWidth(bool Vector) const;
virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const;
virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
int Index, Type *SubTp) const;
@ -183,6 +184,10 @@ unsigned BasicTTI::getNumberOfRegisters(bool Vector) const {
return 1;
}
unsigned BasicTTI::getRegisterBitWidth(bool Vector) const {
return 32;
}
unsigned BasicTTI::getMaximumUnrollFactor() const {
return 1;
}

View File

@ -94,6 +94,16 @@ public:
return 16;
}
unsigned getRegisterBitWidth(bool Vector) const {
if (Vector) {
if (ST->hasNEON())
return 128;
return 0;
}
return 32;
}
unsigned getMaximumUnrollFactor() const {
// These are out of order CPUs:
if (ST->isCortexA15() || ST->isSwift())

View File

@ -83,6 +83,7 @@ public:
/// @{
virtual unsigned getNumberOfRegisters(bool Vector) const;
virtual unsigned getRegisterBitWidth(bool Vector) const;
virtual unsigned getMaximumUnrollFactor() const;
virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const;
virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
@ -165,11 +166,27 @@ X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
}
unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
if (Vector && !ST->hasSSE1())
return 0;
if (ST->is64Bit())
return 16;
return 8;
}
unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
if (Vector) {
if (ST->hasAVX()) return 256;
if (ST->hasSSE1()) return 128;
return 0;
}
if (ST->is64Bit())
return 64;
return 32;
}
unsigned X86TTI::getMaximumUnrollFactor() const {
if (ST->isAtom())
return 1;

View File

@ -113,9 +113,6 @@ static const unsigned MaxLoopSizeThreshold = 32;
/// number of pointers. Notice that the check is quadratic!
static const unsigned RuntimeMemoryCheckThreshold = 4;
/// This is the highest vector width that we try to generate.
static const unsigned MaxVectorSize = 8;
namespace {
// Forward declarations.
@ -523,6 +520,10 @@ public:
/// possible.
unsigned selectVectorizationFactor(bool OptForSize, unsigned UserVF);
/// \returns The size (in bits) of the widest type in the code that
/// needs to be vectorized. We ignore values that remain scalar such as
/// 64 bit loop indices.
unsigned getWidestType();
/// \return The most profitable unroll factor.
/// If UserUF is non-zero then this method finds the best unroll-factor
@ -2621,6 +2622,20 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
unsigned WidestType = getWidestType();
unsigned WidestRegister = TTI.getRegisterBitWidth(true);
unsigned MaxVectorSize = WidestRegister / WidestType;
DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n");
if (MaxVectorSize == 0) {
DEBUG(dbgs() << "LV: The target has no vector registers.\n");
return 1;
}
assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
" into one vector.");
unsigned VF = MaxVectorSize;
// If we optimize the program for size, avoid creating the tail loop.
@ -2672,6 +2687,36 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
return Width;
}
unsigned LoopVectorizationCostModel::getWidestType() {
unsigned MaxWidth = 8;
// For each block.
for (Loop::block_iterator bb = TheLoop->block_begin(),
be = TheLoop->block_end(); bb != be; ++bb) {
BasicBlock *BB = *bb;
// For each instruction in the loop.
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
if (Legal->isUniformAfterVectorization(it))
continue;
Type *T = it->getType();
if (StoreInst *ST = dyn_cast<StoreInst>(it))
T = ST->getValueOperand()->getType();
// PHINodes and pointers are difficult to analyze, but we catch all other
// uses of the types in other instructions.
if (isa<PHINode>(it) || T->isPointerTy() || T->isVoidTy())
continue;
MaxWidth = std::max(MaxWidth, T->getScalarSizeInBits());
}
}
return MaxWidth;
}
unsigned
LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
unsigned UserUF) {

View File

@ -0,0 +1,60 @@
; RUN: opt < %s -loop-vectorize -mtriple=thumbv7-apple-ios3.0.0 -mcpu=swift -S -dce | FileCheck %s
target datalayout = "e-p:32:32:32-i1:8:32-i8:8:32-i16:16:32-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:32:64-v128:32:128-a0:0:32-n32-S32"
target triple = "thumbv7-apple-ios3.0.0"
@b = common global [2048 x i32] zeroinitializer, align 16
@c = common global [2048 x i32] zeroinitializer, align 16
@a = common global [2048 x i32] zeroinitializer, align 16
; Select VF = 8;
;CHECK: @example1
;CHECK: load <4 x i32>
;CHECK: add nsw <4 x i32>
;CHECK: store <4 x i32>
;CHECK: ret void
define void @example1() nounwind uwtable ssp {
br label %1
; <label>:1 ; preds = %1, %0
%indvars.iv = phi i64 [ 0, %0 ], [ %indvars.iv.next, %1 ]
%2 = getelementptr inbounds [2048 x i32]* @b, i64 0, i64 %indvars.iv
%3 = load i32* %2, align 4
%4 = getelementptr inbounds [2048 x i32]* @c, i64 0, i64 %indvars.iv
%5 = load i32* %4, align 4
%6 = add nsw i32 %5, %3
%7 = getelementptr inbounds [2048 x i32]* @a, i64 0, i64 %indvars.iv
store i32 %6, i32* %7, align 4
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 256
br i1 %exitcond, label %8, label %1
; <label>:8 ; preds = %1
ret void
}
;CHECK: @example10b
;CHECK: load <2 x i16>
;CHECK: sext <2 x i16>
;CHECK: store <2 x i32>
;CHECK: ret void
define void @example10b(i16* noalias nocapture %sa, i16* noalias nocapture %sb, i16* noalias nocapture %sc, i32* noalias nocapture %ia, i32* noalias nocapture %ib, i32* noalias nocapture %ic) nounwind uwtable ssp {
br label %1
; <label>:1 ; preds = %1, %0
%indvars.iv = phi i64 [ 0, %0 ], [ %indvars.iv.next, %1 ]
%2 = getelementptr inbounds i16* %sb, i64 %indvars.iv
%3 = load i16* %2, align 2
%4 = sext i16 %3 to i32
%5 = getelementptr inbounds i32* %ia, i64 %indvars.iv
store i32 %4, i32* %5, align 4
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1024
br i1 %exitcond, label %6, label %1
; <label>:6 ; preds = %1
ret void
}

View File

@ -27,7 +27,7 @@ define i32 @read_mod_write_single_ptr(float* nocapture %a, i32 %n) nounwind uwta
;CHECK: @read_mod_i64
;CHECK: load <8 x i64>
;CHECK: load <4 x i64>
;CHECK: ret i32
define i32 @read_mod_i64(i64* nocapture %a, i32 %n) nounwind uwtable ssp {
%1 = icmp sgt i32 %n, 0

View File

@ -4,7 +4,7 @@ target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3
target triple = "x86_64-apple-macosx10.8.0"
;CHECK: @conversion_cost1
;CHECK: store <8 x i8>
;CHECK: store <32 x i8>
;CHECK: ret
define i32 @conversion_cost1(i32 %n, i8* nocapture %A, float* nocapture %B) nounwind uwtable ssp {
%1 = icmp sgt i32 %n, 3