Do not fold reload into an instruction with multiple uses. It issues one extra load.

llvm-svn: 44467
This commit is contained in:
Evan Cheng 2007-11-30 21:23:43 +00:00
parent 3b754452eb
commit b10dc27b20
3 changed files with 170 additions and 77 deletions

View File

@ -274,8 +274,9 @@ namespace llvm {
/// MI. If it is successul, MI is updated with the newly created MI and /// MI. If it is successul, MI is updated with the newly created MI and
/// returns true. /// returns true.
bool tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm, bool tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm,
MachineInstr *DefMI, unsigned index, unsigned i, MachineInstr *DefMI, unsigned InstrIdx,
bool isSS, int slot, unsigned reg); unsigned OpIdx, unsigned NumUses,
bool isSS, int Slot, unsigned Reg);
/// anyKillInMBBAfterIdx - Returns true if there is a kill of the specified /// anyKillInMBBAfterIdx - Returns true if there is a kill of the specified
/// VNInfo that's after the specified index but is within the basic block. /// VNInfo that's after the specified index but is within the basic block.

View File

@ -642,13 +642,22 @@ bool LiveIntervals::isReMaterializable(const LiveInterval &li,
/// MI. If it is successul, MI is updated with the newly created MI and /// MI. If it is successul, MI is updated with the newly created MI and
/// returns true. /// returns true.
bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI, bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
VirtRegMap &vrm, VirtRegMap &vrm, MachineInstr *DefMI,
MachineInstr *DefMI, unsigned InstrIdx, unsigned OpIdx,
unsigned index, unsigned i, unsigned NumUses,
bool isSS, int slot, unsigned reg) { bool isSS, int Slot, unsigned Reg) {
// FIXME: fold subreg use
if (MI->getOperand(OpIdx).getSubReg())
return false;
// FIXME: It may be possible to fold load when there are multiple uses.
// e.g. On x86, TEST32rr r, r -> CMP32rm [mem], 0
if (NumUses > 1)
return false;
MachineInstr *fmi = isSS MachineInstr *fmi = isSS
? mri_->foldMemoryOperand(MI, i, slot) ? mri_->foldMemoryOperand(MI, OpIdx, Slot)
: mri_->foldMemoryOperand(MI, i, DefMI); : mri_->foldMemoryOperand(MI, OpIdx, DefMI);
if (fmi) { if (fmi) {
// Attempt to fold the memory reference into the instruction. If // Attempt to fold the memory reference into the instruction. If
// we can do this, we don't need to insert spill code. // we can do this, we don't need to insert spill code.
@ -657,15 +666,13 @@ bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
else else
LiveVariables::transferKillDeadInfo(MI, fmi, mri_); LiveVariables::transferKillDeadInfo(MI, fmi, mri_);
MachineBasicBlock &MBB = *MI->getParent(); MachineBasicBlock &MBB = *MI->getParent();
if (isSS) { if (isSS && !mf_->getFrameInfo()->isFixedObjectIndex(Slot))
if (!mf_->getFrameInfo()->isFixedObjectIndex(slot)) vrm.virtFolded(Reg, MI, OpIdx, fmi);
vrm.virtFolded(reg, MI, i, fmi);
}
vrm.transferSpillPts(MI, fmi); vrm.transferSpillPts(MI, fmi);
vrm.transferRestorePts(MI, fmi); vrm.transferRestorePts(MI, fmi);
mi2iMap_.erase(MI); mi2iMap_.erase(MI);
i2miMap_[index/InstrSlots::NUM] = fmi; i2miMap_[InstrIdx /InstrSlots::NUM] = fmi;
mi2iMap_[fmi] = index; mi2iMap_[fmi] = InstrIdx;
MI = MBB.insert(MBB.erase(MI), fmi); MI = MBB.insert(MBB.erase(MI), fmi);
++numFolds; ++numFolds;
return true; return true;
@ -714,8 +721,6 @@ rewriteInstructionForSpills(const LiveInterval &li, bool TrySplit,
unsigned RegI = Reg; unsigned RegI = Reg;
if (Reg == 0 || MRegisterInfo::isPhysicalRegister(Reg)) if (Reg == 0 || MRegisterInfo::isPhysicalRegister(Reg))
continue; continue;
unsigned SubIdx = mop.getSubReg();
bool isSubReg = SubIdx != 0;
if (Reg != li.reg) if (Reg != li.reg)
continue; continue;
@ -726,6 +731,8 @@ rewriteInstructionForSpills(const LiveInterval &li, bool TrySplit,
// If this is the rematerializable definition MI itself and // If this is the rematerializable definition MI itself and
// all of its uses are rematerialized, simply delete it. // all of its uses are rematerialized, simply delete it.
if (MI == ReMatOrigDefMI && CanDelete) { if (MI == ReMatOrigDefMI && CanDelete) {
DOUT << "\t\t\t\tErasing re-materlizable def: ";
DOUT << MI << '\n';
RemoveMachineInstrFromMaps(MI); RemoveMachineInstrFromMaps(MI);
vrm.RemoveMachineInstrFromMaps(MI); vrm.RemoveMachineInstrFromMaps(MI);
MI->eraseFromParent(); MI->eraseFromParent();
@ -747,23 +754,6 @@ rewriteInstructionForSpills(const LiveInterval &li, bool TrySplit,
if (TryFold) if (TryFold)
TryFold = !TrySplit && NewVReg == 0; TryFold = !TrySplit && NewVReg == 0;
// FIXME: fold subreg use
if (!isSubReg && TryFold &&
tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index, i, FoldSS, FoldSlot,
Reg))
// Folding the load/store can completely change the instruction in
// unpredictable ways, rescan it from the beginning.
goto RestartInstruction;
// Create a new virtual register for the spill interval.
bool CreatedNewVReg = false;
if (NewVReg == 0) {
NewVReg = RegMap->createVirtualRegister(rc);
vrm.grow();
CreatedNewVReg = true;
}
mop.setReg(NewVReg);
// Scan all of the operands of this instruction rewriting operands // Scan all of the operands of this instruction rewriting operands
// to use NewVReg instead of li.reg as appropriate. We do this for // to use NewVReg instead of li.reg as appropriate. We do this for
// two reasons: // two reasons:
@ -778,6 +768,8 @@ rewriteInstructionForSpills(const LiveInterval &li, bool TrySplit,
HasUse = mop.isUse(); HasUse = mop.isUse();
HasDef = mop.isDef(); HasDef = mop.isDef();
unsigned NumUses = HasUse;
std::vector<unsigned> UpdateOps;
for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) { for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
if (!MI->getOperand(j).isRegister()) if (!MI->getOperand(j).isRegister())
continue; continue;
@ -785,12 +777,37 @@ rewriteInstructionForSpills(const LiveInterval &li, bool TrySplit,
if (RegJ == 0 || MRegisterInfo::isPhysicalRegister(RegJ)) if (RegJ == 0 || MRegisterInfo::isPhysicalRegister(RegJ))
continue; continue;
if (RegJ == RegI) { if (RegJ == RegI) {
MI->getOperand(j).setReg(NewVReg); UpdateOps.push_back(j);
if (MI->getOperand(j).isUse())
++NumUses;
HasUse |= MI->getOperand(j).isUse(); HasUse |= MI->getOperand(j).isUse();
HasDef |= MI->getOperand(j).isDef(); HasDef |= MI->getOperand(j).isDef();
} }
} }
if (TryFold &&
tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index, i,
NumUses, FoldSS, FoldSlot, Reg)) {
// Folding the load/store can completely change the instruction in
// unpredictable ways, rescan it from the beginning.
HasUse = false;
HasDef = false;
goto RestartInstruction;
}
// Create a new virtual register for the spill interval.
bool CreatedNewVReg = false;
if (NewVReg == 0) {
NewVReg = RegMap->createVirtualRegister(rc);
vrm.grow();
CreatedNewVReg = true;
}
mop.setReg(NewVReg);
// Reuse NewVReg for other reads.
for (unsigned j = 0, e = UpdateOps.size(); j != e; ++j)
MI->getOperand(UpdateOps[j]).setReg(NewVReg);
if (CreatedNewVReg) { if (CreatedNewVReg) {
if (DefIsReMat) { if (DefIsReMat) {
vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI/*, CanDelete*/); vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI/*, CanDelete*/);
@ -1197,46 +1214,44 @@ addIntervalsForSpills(const LiveInterval &li,
for (unsigned i = 0, e = spills.size(); i != e; ++i) { for (unsigned i = 0, e = spills.size(); i != e; ++i) {
int index = spills[i].index; int index = spills[i].index;
unsigned VReg = spills[i].vreg; unsigned VReg = spills[i].vreg;
bool DoFold = spills[i].canFold;
bool isReMat = vrm.isReMaterialized(VReg); bool isReMat = vrm.isReMaterialized(VReg);
MachineInstr *MI = getInstructionFromIndex(index); MachineInstr *MI = getInstructionFromIndex(index);
int OpIdx = -1; int OpIdx = -1;
bool FoldedLoad = false; unsigned NumUses = 0;
if (DoFold) { if (spills[i].canFold) {
for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
MachineOperand &MO = MI->getOperand(j); MachineOperand &MO = MI->getOperand(j);
if (!MO.isRegister() || MO.getReg() != VReg) if (!MO.isRegister() || MO.getReg() != VReg)
continue; continue;
if (MO.isUse()) { if (MO.isDef()) {
// Can't fold if it's two-address code and the use isn't the OpIdx = (int)j;
// first and only use. continue;
// If there are more than one uses, a load is still needed.
if (!isReMat && !FoldedLoad &&
alsoFoldARestore(Id, index,VReg,RestoreMBBs,RestoreIdxes)) {
FoldedLoad = true;
continue;
} else {
OpIdx = -1;
break;
}
} }
OpIdx = (int)j; // Can't fold if it's two-address code and the use isn't the
// first and only use.
if (isReMat ||
(NumUses == 0 && !alsoFoldARestore(Id, index, VReg, RestoreMBBs,
RestoreIdxes))) {
OpIdx = -1;
break;
}
++NumUses;
} }
} }
// Fold the store into the def if possible. // Fold the store into the def if possible.
if (OpIdx == -1) bool Folded = false;
DoFold = false; if (OpIdx != -1) {
if (DoFold) { if (tryFoldMemoryOperand(MI, vrm, NULL, index, OpIdx, NumUses,
if (tryFoldMemoryOperand(MI, vrm, NULL, index,OpIdx,true,Slot,VReg)) { true, Slot, VReg)) {
if (FoldedLoad) if (NumUses)
// Folded a two-address instruction, do not issue a load. // Folded a two-address instruction, do not issue a load.
eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes); eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes);
} else Folded = true;
DoFold = false; }
} }
// Else tell the spiller to issue a store for us. // Else tell the spiller to issue a store for us.
if (!DoFold) if (!Folded)
vrm.addSpillPoint(VReg, MI); vrm.addSpillPoint(VReg, MI);
} }
Id = SpillMBBs.find_next(Id); Id = SpillMBBs.find_next(Id);
@ -1251,32 +1266,30 @@ addIntervalsForSpills(const LiveInterval &li,
if (index == -1) if (index == -1)
continue; continue;
unsigned VReg = restores[i].vreg; unsigned VReg = restores[i].vreg;
bool DoFold = restores[i].canFold;
MachineInstr *MI = getInstructionFromIndex(index); MachineInstr *MI = getInstructionFromIndex(index);
unsigned NumUses = 0;
int OpIdx = -1; int OpIdx = -1;
if (DoFold) { if (restores[i].canFold) {
for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
MachineOperand &MO = MI->getOperand(j); MachineOperand &MO = MI->getOperand(j);
if (!MO.isRegister() || MO.getReg() != VReg) if (!MO.isRegister() || MO.getReg() != VReg)
continue; continue;
if (MO.isDef()) { if (MO.isDef()) {
// Can't fold if it's two-address code. // Can't fold if it's two-address code and it hasn't already
// been folded.
OpIdx = -1; OpIdx = -1;
break; break;
} }
if (OpIdx != -1) { if (NumUses == 0)
// Multiple uses, do not fold! // Use the first use index.
OpIdx = -1; OpIdx = (int)j;
break; ++NumUses;
}
OpIdx = (int)j;
} }
} }
// Fold the load into the use if possible. // Fold the load into the use if possible.
if (OpIdx == -1) bool Folded = false;
DoFold = false; if (OpIdx != -1) {
if (DoFold) {
if (vrm.isReMaterialized(VReg)) { if (vrm.isReMaterialized(VReg)) {
MachineInstr *ReMatDefMI = vrm.getReMaterializedMI(VReg); MachineInstr *ReMatDefMI = vrm.getReMaterializedMI(VReg);
int LdSlot = 0; int LdSlot = 0;
@ -1284,17 +1297,15 @@ addIntervalsForSpills(const LiveInterval &li,
// If the rematerializable def is a load, also try to fold it. // If the rematerializable def is a load, also try to fold it.
if (isLoadSS || if (isLoadSS ||
(ReMatDefMI->getInstrDescriptor()->Flags & M_LOAD_FLAG)) (ReMatDefMI->getInstrDescriptor()->Flags & M_LOAD_FLAG))
DoFold = tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index, OpIdx, Folded = tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index, OpIdx,
isLoadSS, LdSlot, VReg); NumUses, isLoadSS, LdSlot, VReg);
else
DoFold = false;
} else } else
DoFold = tryFoldMemoryOperand(MI, vrm, NULL, index, OpIdx, Folded = tryFoldMemoryOperand(MI, vrm, NULL, index, OpIdx, NumUses,
true, Slot, VReg); true, Slot, VReg);
} }
// If folding is not possible / failed, then tell the spiller to issue a // If folding is not possible / failed, then tell the spiller to issue a
// load / rematerialization for us. // load / rematerialization for us.
if (!DoFold) if (!Folded)
vrm.addRestorePoint(VReg, MI); vrm.addRestorePoint(VReg, MI);
} }
Id = RestoreMBBs.find_next(Id); Id = RestoreMBBs.find_next(Id);

View File

@ -0,0 +1,81 @@
; RUN: llvm-as < %s | llc -march=x86 -mattr=+sse2 -stats |& \
; RUN: grep {1 .*folded into instructions}
declare fastcc void @rdft(i32, i32, double*, i32*, double*)
define fastcc void @mp_sqrt(i32 %n, i32 %radix, i32* %in, i32* %out, i32* %tmp1, i32* %tmp2, i32 %nfft, double* %tmp1fft, double* %tmp2fft, i32* %ip, double* %w) {
entry:
br label %bb.i5
bb.i5: ; preds = %bb.i5, %entry
%nfft_init.0.i = phi i32 [ 1, %entry ], [ %tmp7.i3, %bb.i5 ] ; <i32> [#uses=1]
%tmp7.i3 = shl i32 %nfft_init.0.i, 1 ; <i32> [#uses=2]
br i1 false, label %bb.i5, label %mp_unexp_mp2d.exit.i
mp_unexp_mp2d.exit.i: ; preds = %bb.i5
br i1 false, label %cond_next.i, label %cond_true.i
cond_true.i: ; preds = %mp_unexp_mp2d.exit.i
ret void
cond_next.i: ; preds = %mp_unexp_mp2d.exit.i
%tmp22.i = sdiv i32 0, 2 ; <i32> [#uses=2]
br i1 false, label %cond_true29.i, label %cond_next36.i
cond_true29.i: ; preds = %cond_next.i
ret void
cond_next36.i: ; preds = %cond_next.i
store i32 %tmp22.i, i32* null, align 4
%tmp8.i14.i = select i1 false, i32 1, i32 0 ; <i32> [#uses=1]
br label %bb.i28.i
bb.i28.i: ; preds = %bb.i28.i, %cond_next36.i
%j.0.reg2mem.0.i16.i = phi i32 [ 0, %cond_next36.i ], [ %indvar.next39.i, %bb.i28.i ] ; <i32> [#uses=2]
%din_addr.1.reg2mem.0.i17.i = phi double [ 0.000000e+00, %cond_next36.i ], [ %tmp16.i25.i, %bb.i28.i ] ; <double> [#uses=1]
%tmp1.i18.i = fptosi double %din_addr.1.reg2mem.0.i17.i to i32 ; <i32> [#uses=2]
%tmp4.i19.i = icmp slt i32 %tmp1.i18.i, %radix ; <i1> [#uses=1]
%x.0.i21.i = select i1 %tmp4.i19.i, i32 %tmp1.i18.i, i32 0 ; <i32> [#uses=1]
%tmp41.sum.i = add i32 %j.0.reg2mem.0.i16.i, 2 ; <i32> [#uses=0]
%tmp1213.i23.i = sitofp i32 %x.0.i21.i to double ; <double> [#uses=1]
%tmp15.i24.i = sub double 0.000000e+00, %tmp1213.i23.i ; <double> [#uses=1]
%tmp16.i25.i = mul double 0.000000e+00, %tmp15.i24.i ; <double> [#uses=1]
%indvar.next39.i = add i32 %j.0.reg2mem.0.i16.i, 1 ; <i32> [#uses=2]
%exitcond40.i = icmp eq i32 %indvar.next39.i, %tmp8.i14.i ; <i1> [#uses=1]
br i1 %exitcond40.i, label %mp_unexp_d2mp.exit29.i, label %bb.i28.i
mp_unexp_d2mp.exit29.i: ; preds = %bb.i28.i
%tmp46.i = sub i32 0, %tmp22.i ; <i32> [#uses=1]
store i32 %tmp46.i, i32* null, align 4
br i1 false, label %bb.i.i, label %mp_sqrt_init.exit
bb.i.i: ; preds = %bb.i.i, %mp_unexp_d2mp.exit29.i
br label %bb.i.i
mp_sqrt_init.exit: ; preds = %mp_unexp_d2mp.exit29.i
tail call fastcc void @mp_mul_csqu( i32 0, double* %tmp1fft )
tail call fastcc void @rdft( i32 0, i32 -1, double* null, i32* %ip, double* %w )
tail call fastcc void @mp_mul_d2i( i32 0, i32 %radix, i32 0, double* %tmp1fft, i32* %tmp2 )
br i1 false, label %cond_false.i, label %cond_true36.i
cond_true36.i: ; preds = %mp_sqrt_init.exit
ret void
cond_false.i: ; preds = %mp_sqrt_init.exit
tail call fastcc void @mp_round( i32 0, i32 %radix, i32 0, i32* %out )
tail call fastcc void @mp_add( i32 0, i32 %radix, i32* %tmp1, i32* %tmp2, i32* %tmp1 )
tail call fastcc void @mp_sub( i32 0, i32 %radix, i32* %in, i32* %tmp2, i32* %tmp2 )
tail call fastcc void @mp_round( i32 0, i32 %radix, i32 0, i32* %tmp1 )
tail call fastcc void @mp_mul_d2i( i32 0, i32 %radix, i32 %tmp7.i3, double* %tmp2fft, i32* %tmp2 )
ret void
}
declare fastcc void @mp_add(i32, i32, i32*, i32*, i32*)
declare fastcc void @mp_sub(i32, i32, i32*, i32*, i32*)
declare fastcc void @mp_round(i32, i32, i32, i32*)
declare fastcc void @mp_mul_csqu(i32, double*)
declare fastcc void @mp_mul_d2i(i32, i32, i32, double*, i32*)