forked from OSchip/llvm-project
builtins: emulate _Complex for cl
cl does not support C99 completely as of VS2015. Emulate _Complex to allow building with MSVC. Patch by Tee Hao Wei! llvm-svn: 249514
This commit is contained in:
parent
71c47e5a86
commit
b0b7c8a8dd
|
@ -17,7 +17,7 @@
|
||||||
|
|
||||||
/* Returns: the quotient of (a + ib) / (c + id) */
|
/* Returns: the quotient of (a + ib) / (c + id) */
|
||||||
|
|
||||||
COMPILER_RT_ABI double _Complex
|
COMPILER_RT_ABI Dcomplex
|
||||||
__divdc3(double __a, double __b, double __c, double __d)
|
__divdc3(double __a, double __b, double __c, double __d)
|
||||||
{
|
{
|
||||||
int __ilogbw = 0;
|
int __ilogbw = 0;
|
||||||
|
@ -29,31 +29,31 @@ __divdc3(double __a, double __b, double __c, double __d)
|
||||||
__d = crt_scalbn(__d, -__ilogbw);
|
__d = crt_scalbn(__d, -__ilogbw);
|
||||||
}
|
}
|
||||||
double __denom = __c * __c + __d * __d;
|
double __denom = __c * __c + __d * __d;
|
||||||
double _Complex z;
|
Dcomplex z;
|
||||||
__real__ z = crt_scalbn((__a * __c + __b * __d) / __denom, -__ilogbw);
|
COMPLEX_REAL(z) = crt_scalbn((__a * __c + __b * __d) / __denom, -__ilogbw);
|
||||||
__imag__ z = crt_scalbn((__b * __c - __a * __d) / __denom, -__ilogbw);
|
COMPLEX_IMAGINARY(z) = crt_scalbn((__b * __c - __a * __d) / __denom, -__ilogbw);
|
||||||
if (crt_isnan(__real__ z) && crt_isnan(__imag__ z))
|
if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z)))
|
||||||
{
|
{
|
||||||
if ((__denom == 0.0) && (!crt_isnan(__a) || !crt_isnan(__b)))
|
if ((__denom == 0.0) && (!crt_isnan(__a) || !crt_isnan(__b)))
|
||||||
{
|
{
|
||||||
__real__ z = crt_copysign(CRT_INFINITY, __c) * __a;
|
COMPLEX_REAL(z) = crt_copysign(CRT_INFINITY, __c) * __a;
|
||||||
__imag__ z = crt_copysign(CRT_INFINITY, __c) * __b;
|
COMPLEX_IMAGINARY(z) = crt_copysign(CRT_INFINITY, __c) * __b;
|
||||||
}
|
}
|
||||||
else if ((crt_isinf(__a) || crt_isinf(__b)) &&
|
else if ((crt_isinf(__a) || crt_isinf(__b)) &&
|
||||||
crt_isfinite(__c) && crt_isfinite(__d))
|
crt_isfinite(__c) && crt_isfinite(__d))
|
||||||
{
|
{
|
||||||
__a = crt_copysign(crt_isinf(__a) ? 1.0 : 0.0, __a);
|
__a = crt_copysign(crt_isinf(__a) ? 1.0 : 0.0, __a);
|
||||||
__b = crt_copysign(crt_isinf(__b) ? 1.0 : 0.0, __b);
|
__b = crt_copysign(crt_isinf(__b) ? 1.0 : 0.0, __b);
|
||||||
__real__ z = CRT_INFINITY * (__a * __c + __b * __d);
|
COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d);
|
||||||
__imag__ z = CRT_INFINITY * (__b * __c - __a * __d);
|
COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d);
|
||||||
}
|
}
|
||||||
else if (crt_isinf(__logbw) && __logbw > 0.0 &&
|
else if (crt_isinf(__logbw) && __logbw > 0.0 &&
|
||||||
crt_isfinite(__a) && crt_isfinite(__b))
|
crt_isfinite(__a) && crt_isfinite(__b))
|
||||||
{
|
{
|
||||||
__c = crt_copysign(crt_isinf(__c) ? 1.0 : 0.0, __c);
|
__c = crt_copysign(crt_isinf(__c) ? 1.0 : 0.0, __c);
|
||||||
__d = crt_copysign(crt_isinf(__d) ? 1.0 : 0.0, __d);
|
__d = crt_copysign(crt_isinf(__d) ? 1.0 : 0.0, __d);
|
||||||
__real__ z = 0.0 * (__a * __c + __b * __d);
|
COMPLEX_REAL(z) = 0.0 * (__a * __c + __b * __d);
|
||||||
__imag__ z = 0.0 * (__b * __c - __a * __d);
|
COMPLEX_IMAGINARY(z) = 0.0 * (__b * __c - __a * __d);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return z;
|
return z;
|
||||||
|
|
|
@ -17,7 +17,7 @@
|
||||||
|
|
||||||
/* Returns: the quotient of (a + ib) / (c + id) */
|
/* Returns: the quotient of (a + ib) / (c + id) */
|
||||||
|
|
||||||
COMPILER_RT_ABI float _Complex
|
COMPILER_RT_ABI Fcomplex
|
||||||
__divsc3(float __a, float __b, float __c, float __d)
|
__divsc3(float __a, float __b, float __c, float __d)
|
||||||
{
|
{
|
||||||
int __ilogbw = 0;
|
int __ilogbw = 0;
|
||||||
|
@ -29,31 +29,31 @@ __divsc3(float __a, float __b, float __c, float __d)
|
||||||
__d = crt_scalbnf(__d, -__ilogbw);
|
__d = crt_scalbnf(__d, -__ilogbw);
|
||||||
}
|
}
|
||||||
float __denom = __c * __c + __d * __d;
|
float __denom = __c * __c + __d * __d;
|
||||||
float _Complex z;
|
Fcomplex z;
|
||||||
__real__ z = crt_scalbnf((__a * __c + __b * __d) / __denom, -__ilogbw);
|
COMPLEX_REAL(z) = crt_scalbnf((__a * __c + __b * __d) / __denom, -__ilogbw);
|
||||||
__imag__ z = crt_scalbnf((__b * __c - __a * __d) / __denom, -__ilogbw);
|
COMPLEX_IMAGINARY(z) = crt_scalbnf((__b * __c - __a * __d) / __denom, -__ilogbw);
|
||||||
if (crt_isnan(__real__ z) && crt_isnan(__imag__ z))
|
if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z)))
|
||||||
{
|
{
|
||||||
if ((__denom == 0) && (!crt_isnan(__a) || !crt_isnan(__b)))
|
if ((__denom == 0) && (!crt_isnan(__a) || !crt_isnan(__b)))
|
||||||
{
|
{
|
||||||
__real__ z = crt_copysignf(CRT_INFINITY, __c) * __a;
|
COMPLEX_REAL(z) = crt_copysignf(CRT_INFINITY, __c) * __a;
|
||||||
__imag__ z = crt_copysignf(CRT_INFINITY, __c) * __b;
|
COMPLEX_IMAGINARY(z) = crt_copysignf(CRT_INFINITY, __c) * __b;
|
||||||
}
|
}
|
||||||
else if ((crt_isinf(__a) || crt_isinf(__b)) &&
|
else if ((crt_isinf(__a) || crt_isinf(__b)) &&
|
||||||
crt_isfinite(__c) && crt_isfinite(__d))
|
crt_isfinite(__c) && crt_isfinite(__d))
|
||||||
{
|
{
|
||||||
__a = crt_copysignf(crt_isinf(__a) ? 1 : 0, __a);
|
__a = crt_copysignf(crt_isinf(__a) ? 1 : 0, __a);
|
||||||
__b = crt_copysignf(crt_isinf(__b) ? 1 : 0, __b);
|
__b = crt_copysignf(crt_isinf(__b) ? 1 : 0, __b);
|
||||||
__real__ z = CRT_INFINITY * (__a * __c + __b * __d);
|
COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d);
|
||||||
__imag__ z = CRT_INFINITY * (__b * __c - __a * __d);
|
COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d);
|
||||||
}
|
}
|
||||||
else if (crt_isinf(__logbw) && __logbw > 0 &&
|
else if (crt_isinf(__logbw) && __logbw > 0 &&
|
||||||
crt_isfinite(__a) && crt_isfinite(__b))
|
crt_isfinite(__a) && crt_isfinite(__b))
|
||||||
{
|
{
|
||||||
__c = crt_copysignf(crt_isinf(__c) ? 1 : 0, __c);
|
__c = crt_copysignf(crt_isinf(__c) ? 1 : 0, __c);
|
||||||
__d = crt_copysignf(crt_isinf(__d) ? 1 : 0, __d);
|
__d = crt_copysignf(crt_isinf(__d) ? 1 : 0, __d);
|
||||||
__real__ z = 0 * (__a * __c + __b * __d);
|
COMPLEX_REAL(z) = 0 * (__a * __c + __b * __d);
|
||||||
__imag__ z = 0 * (__b * __c - __a * __d);
|
COMPLEX_IMAGINARY(z) = 0 * (__b * __c - __a * __d);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return z;
|
return z;
|
||||||
|
|
|
@ -18,7 +18,7 @@
|
||||||
|
|
||||||
/* Returns: the quotient of (a + ib) / (c + id) */
|
/* Returns: the quotient of (a + ib) / (c + id) */
|
||||||
|
|
||||||
COMPILER_RT_ABI long double _Complex
|
COMPILER_RT_ABI Lcomplex
|
||||||
__divxc3(long double __a, long double __b, long double __c, long double __d)
|
__divxc3(long double __a, long double __b, long double __c, long double __d)
|
||||||
{
|
{
|
||||||
int __ilogbw = 0;
|
int __ilogbw = 0;
|
||||||
|
@ -30,31 +30,31 @@ __divxc3(long double __a, long double __b, long double __c, long double __d)
|
||||||
__d = crt_scalbnl(__d, -__ilogbw);
|
__d = crt_scalbnl(__d, -__ilogbw);
|
||||||
}
|
}
|
||||||
long double __denom = __c * __c + __d * __d;
|
long double __denom = __c * __c + __d * __d;
|
||||||
long double _Complex z;
|
Lcomplex z;
|
||||||
__real__ z = crt_scalbnl((__a * __c + __b * __d) / __denom, -__ilogbw);
|
COMPLEX_REAL(z) = crt_scalbnl((__a * __c + __b * __d) / __denom, -__ilogbw);
|
||||||
__imag__ z = crt_scalbnl((__b * __c - __a * __d) / __denom, -__ilogbw);
|
COMPLEX_IMAGINARY(z) = crt_scalbnl((__b * __c - __a * __d) / __denom, -__ilogbw);
|
||||||
if (crt_isnan(__real__ z) && crt_isnan(__imag__ z))
|
if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z)))
|
||||||
{
|
{
|
||||||
if ((__denom == 0) && (!crt_isnan(__a) || !crt_isnan(__b)))
|
if ((__denom == 0) && (!crt_isnan(__a) || !crt_isnan(__b)))
|
||||||
{
|
{
|
||||||
__real__ z = crt_copysignl(CRT_INFINITY, __c) * __a;
|
COMPLEX_REAL(z) = crt_copysignl(CRT_INFINITY, __c) * __a;
|
||||||
__imag__ z = crt_copysignl(CRT_INFINITY, __c) * __b;
|
COMPLEX_IMAGINARY(z) = crt_copysignl(CRT_INFINITY, __c) * __b;
|
||||||
}
|
}
|
||||||
else if ((crt_isinf(__a) || crt_isinf(__b)) &&
|
else if ((crt_isinf(__a) || crt_isinf(__b)) &&
|
||||||
crt_isfinite(__c) && crt_isfinite(__d))
|
crt_isfinite(__c) && crt_isfinite(__d))
|
||||||
{
|
{
|
||||||
__a = crt_copysignl(crt_isinf(__a) ? 1 : 0, __a);
|
__a = crt_copysignl(crt_isinf(__a) ? 1 : 0, __a);
|
||||||
__b = crt_copysignl(crt_isinf(__b) ? 1 : 0, __b);
|
__b = crt_copysignl(crt_isinf(__b) ? 1 : 0, __b);
|
||||||
__real__ z = CRT_INFINITY * (__a * __c + __b * __d);
|
COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d);
|
||||||
__imag__ z = CRT_INFINITY * (__b * __c - __a * __d);
|
COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d);
|
||||||
}
|
}
|
||||||
else if (crt_isinf(__logbw) && __logbw > 0 &&
|
else if (crt_isinf(__logbw) && __logbw > 0 &&
|
||||||
crt_isfinite(__a) && crt_isfinite(__b))
|
crt_isfinite(__a) && crt_isfinite(__b))
|
||||||
{
|
{
|
||||||
__c = crt_copysignl(crt_isinf(__c) ? 1 : 0, __c);
|
__c = crt_copysignl(crt_isinf(__c) ? 1 : 0, __c);
|
||||||
__d = crt_copysignl(crt_isinf(__d) ? 1 : 0, __d);
|
__d = crt_copysignl(crt_isinf(__d) ? 1 : 0, __d);
|
||||||
__real__ z = 0 * (__a * __c + __b * __d);
|
COMPLEX_REAL(z) = 0 * (__a * __c + __b * __d);
|
||||||
__imag__ z = 0 * (__b * __c - __a * __d);
|
COMPLEX_IMAGINARY(z) = 0 * (__b * __c - __a * __d);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return z;
|
return z;
|
||||||
|
|
|
@ -140,5 +140,22 @@ typedef union
|
||||||
long double f;
|
long double f;
|
||||||
} long_double_bits;
|
} long_double_bits;
|
||||||
|
|
||||||
|
#if __STDC_VERSION__ >= 199901L
|
||||||
|
typedef float _Complex Fcomplex;
|
||||||
|
typedef double _Complex Dcomplex;
|
||||||
|
typedef long double _Complex Lcomplex;
|
||||||
|
|
||||||
|
#define COMPLEX_REAL(x) __real__(x)
|
||||||
|
#define COMPLEX_IMAGINARY(x) __imag__(x)
|
||||||
|
#else
|
||||||
|
typedef struct { float real, imaginary; } Fcomplex;
|
||||||
|
|
||||||
|
typedef struct { double real, imaginary; } Dcomplex;
|
||||||
|
|
||||||
|
typedef struct { long double real, imaginary; } Lcomplex;
|
||||||
|
|
||||||
|
#define COMPLEX_REAL(x) (x).real
|
||||||
|
#define COMPLEX_IMAGINARY(x) (x).imaginary
|
||||||
|
#endif
|
||||||
#endif /* INT_TYPES_H */
|
#endif /* INT_TYPES_H */
|
||||||
|
|
||||||
|
|
|
@ -17,17 +17,17 @@
|
||||||
|
|
||||||
/* Returns: the product of a + ib and c + id */
|
/* Returns: the product of a + ib and c + id */
|
||||||
|
|
||||||
COMPILER_RT_ABI double _Complex
|
COMPILER_RT_ABI Dcomplex
|
||||||
__muldc3(double __a, double __b, double __c, double __d)
|
__muldc3(double __a, double __b, double __c, double __d)
|
||||||
{
|
{
|
||||||
double __ac = __a * __c;
|
double __ac = __a * __c;
|
||||||
double __bd = __b * __d;
|
double __bd = __b * __d;
|
||||||
double __ad = __a * __d;
|
double __ad = __a * __d;
|
||||||
double __bc = __b * __c;
|
double __bc = __b * __c;
|
||||||
double _Complex z;
|
Dcomplex z;
|
||||||
__real__ z = __ac - __bd;
|
COMPLEX_REAL(z) = __ac - __bd;
|
||||||
__imag__ z = __ad + __bc;
|
COMPLEX_IMAGINARY(z) = __ad + __bc;
|
||||||
if (crt_isnan(__real__ z) && crt_isnan(__imag__ z))
|
if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z)))
|
||||||
{
|
{
|
||||||
int __recalc = 0;
|
int __recalc = 0;
|
||||||
if (crt_isinf(__a) || crt_isinf(__b))
|
if (crt_isinf(__a) || crt_isinf(__b))
|
||||||
|
@ -65,8 +65,8 @@ __muldc3(double __a, double __b, double __c, double __d)
|
||||||
}
|
}
|
||||||
if (__recalc)
|
if (__recalc)
|
||||||
{
|
{
|
||||||
__real__ z = CRT_INFINITY * (__a * __c - __b * __d);
|
COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c - __b * __d);
|
||||||
__imag__ z = CRT_INFINITY * (__a * __d + __b * __c);
|
COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__a * __d + __b * __c);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return z;
|
return z;
|
||||||
|
|
|
@ -17,17 +17,17 @@
|
||||||
|
|
||||||
/* Returns: the product of a + ib and c + id */
|
/* Returns: the product of a + ib and c + id */
|
||||||
|
|
||||||
COMPILER_RT_ABI float _Complex
|
COMPILER_RT_ABI Fcomplex
|
||||||
__mulsc3(float __a, float __b, float __c, float __d)
|
__mulsc3(float __a, float __b, float __c, float __d)
|
||||||
{
|
{
|
||||||
float __ac = __a * __c;
|
float __ac = __a * __c;
|
||||||
float __bd = __b * __d;
|
float __bd = __b * __d;
|
||||||
float __ad = __a * __d;
|
float __ad = __a * __d;
|
||||||
float __bc = __b * __c;
|
float __bc = __b * __c;
|
||||||
float _Complex z;
|
Fcomplex z;
|
||||||
__real__ z = __ac - __bd;
|
COMPLEX_REAL(z) = __ac - __bd;
|
||||||
__imag__ z = __ad + __bc;
|
COMPLEX_IMAGINARY(z) = __ad + __bc;
|
||||||
if (crt_isnan(__real__ z) && crt_isnan(__imag__ z))
|
if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z)))
|
||||||
{
|
{
|
||||||
int __recalc = 0;
|
int __recalc = 0;
|
||||||
if (crt_isinf(__a) || crt_isinf(__b))
|
if (crt_isinf(__a) || crt_isinf(__b))
|
||||||
|
@ -65,8 +65,8 @@ __mulsc3(float __a, float __b, float __c, float __d)
|
||||||
}
|
}
|
||||||
if (__recalc)
|
if (__recalc)
|
||||||
{
|
{
|
||||||
__real__ z = CRT_INFINITY * (__a * __c - __b * __d);
|
COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c - __b * __d);
|
||||||
__imag__ z = CRT_INFINITY * (__a * __d + __b * __c);
|
COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__a * __d + __b * __c);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return z;
|
return z;
|
||||||
|
|
|
@ -19,17 +19,17 @@
|
||||||
|
|
||||||
/* Returns: the product of a + ib and c + id */
|
/* Returns: the product of a + ib and c + id */
|
||||||
|
|
||||||
COMPILER_RT_ABI long double _Complex
|
COMPILER_RT_ABI Lcomplex
|
||||||
__mulxc3(long double __a, long double __b, long double __c, long double __d)
|
__mulxc3(long double __a, long double __b, long double __c, long double __d)
|
||||||
{
|
{
|
||||||
long double __ac = __a * __c;
|
long double __ac = __a * __c;
|
||||||
long double __bd = __b * __d;
|
long double __bd = __b * __d;
|
||||||
long double __ad = __a * __d;
|
long double __ad = __a * __d;
|
||||||
long double __bc = __b * __c;
|
long double __bc = __b * __c;
|
||||||
long double _Complex z;
|
Lcomplex z;
|
||||||
__real__ z = __ac - __bd;
|
COMPLEX_REAL(z) = __ac - __bd;
|
||||||
__imag__ z = __ad + __bc;
|
COMPLEX_IMAGINARY(z) = __ad + __bc;
|
||||||
if (crt_isnan(__real__ z) && crt_isnan(__imag__ z))
|
if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z)))
|
||||||
{
|
{
|
||||||
int __recalc = 0;
|
int __recalc = 0;
|
||||||
if (crt_isinf(__a) || crt_isinf(__b))
|
if (crt_isinf(__a) || crt_isinf(__b))
|
||||||
|
@ -67,8 +67,8 @@ __mulxc3(long double __a, long double __b, long double __c, long double __d)
|
||||||
}
|
}
|
||||||
if (__recalc)
|
if (__recalc)
|
||||||
{
|
{
|
||||||
__real__ z = CRT_INFINITY * (__a * __c - __b * __d);
|
COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c - __b * __d);
|
||||||
__imag__ z = CRT_INFINITY * (__a * __d + __b * __c);
|
COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__a * __d + __b * __c);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return z;
|
return z;
|
||||||
|
|
Loading…
Reference in New Issue