Reapply: [SVE] Fix bug in simplification of scalable vector instructions

This reverts commit a05441038a, reapplying
commit 31574d38ac
This commit is contained in:
Christopher Tetreault 2020-02-03 12:46:42 -08:00
parent 9986b88e64
commit b03f3fbd6a
8 changed files with 144 additions and 42 deletions

View File

@ -1060,13 +1060,13 @@ public:
Ptr->getType()->getPointerAddressSpace());
// Vector GEP
if (Ptr->getType()->isVectorTy()) {
unsigned NumElem = Ptr->getType()->getVectorNumElements();
return VectorType::get(PtrTy, NumElem);
ElementCount EltCount = Ptr->getType()->getVectorElementCount();
return VectorType::get(PtrTy, EltCount);
}
for (Value *Index : IdxList)
if (Index->getType()->isVectorTy()) {
unsigned NumElem = Index->getType()->getVectorNumElements();
return VectorType::get(PtrTy, NumElem);
ElementCount EltCount = Index->getType()->getVectorElementCount();
return VectorType::get(PtrTy, EltCount);
}
// Scalar GEP
return PtrTy;

View File

@ -4074,9 +4074,9 @@ static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
Type *GEPTy = PointerType::get(LastType, AS);
if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
GEPTy = VectorType::get(GEPTy, VT->getNumElements());
GEPTy = VectorType::get(GEPTy, VT->getElementCount());
else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
GEPTy = VectorType::get(GEPTy, VT->getNumElements());
GEPTy = VectorType::get(GEPTy, VT->getElementCount());
if (isa<UndefValue>(Ops[0]))
return UndefValue::get(GEPTy);
@ -4445,52 +4445,66 @@ static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
return UndefValue::get(RetTy);
Type *InVecTy = Op0->getType();
unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
unsigned InVecNumElts = InVecTy->getVectorNumElements();
ElementCount MaskEltCount = Mask->getType()->getVectorElementCount();
ElementCount InVecEltCount = InVecTy->getVectorElementCount();
assert(MaskEltCount.Scalable == InVecEltCount.Scalable &&
"vscale mismatch between input vector and mask");
bool Scalable = MaskEltCount.Scalable;
SmallVector<int, 32> Indices;
ShuffleVectorInst::getShuffleMask(Mask, Indices);
assert(MaskNumElts == Indices.size() &&
"Size of Indices not same as number of mask elements?");
// Canonicalization: If mask does not select elements from an input vector,
// replace that input vector with undef.
bool MaskSelects0 = false, MaskSelects1 = false;
for (unsigned i = 0; i != MaskNumElts; ++i) {
if (Indices[i] == -1)
continue;
if ((unsigned)Indices[i] < InVecNumElts)
MaskSelects0 = true;
else
MaskSelects1 = true;
if (!Scalable) {
ShuffleVectorInst::getShuffleMask(Mask, Indices);
assert(MaskEltCount.Min == Indices.size() &&
"Size of Indices not same as number of mask elements?");
}
if (!Scalable) {
// Canonicalization: If mask does not select elements from an input vector,
// replace that input vector with undef.
bool MaskSelects0 = false, MaskSelects1 = false;
for (unsigned i = 0; i != MaskEltCount.Min; ++i) {
if (Indices[i] == -1)
continue;
if ((unsigned)Indices[i] < InVecEltCount.Min)
MaskSelects0 = true;
else
MaskSelects1 = true;
}
if (!MaskSelects0)
Op0 = UndefValue::get(InVecTy);
if (!MaskSelects1)
Op1 = UndefValue::get(InVecTy);
}
if (!MaskSelects0)
Op0 = UndefValue::get(InVecTy);
if (!MaskSelects1)
Op1 = UndefValue::get(InVecTy);
auto *Op0Const = dyn_cast<Constant>(Op0);
auto *Op1Const = dyn_cast<Constant>(Op1);
// If all operands are constant, constant fold the shuffle.
if (Op0Const && Op1Const)
// If all operands are constant, constant fold the shuffle. This
// transformation depends on the value of the mask which is not known at
// compile time for scalable vectors
if (!Scalable && Op0Const && Op1Const)
return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
// Canonicalization: if only one input vector is constant, it shall be the
// second one.
if (Op0Const && !Op1Const) {
// second one. This transformation depends on the value of the mask which
// is not known at compile time for scalable vectors
if (!Scalable && Op0Const && !Op1Const) {
std::swap(Op0, Op1);
ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
ShuffleVectorInst::commuteShuffleMask(Indices, InVecEltCount.Min);
}
// A splat of an inserted scalar constant becomes a vector constant:
// shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
// NOTE: We may have commuted above, so analyze the updated Indices, not the
// original mask constant.
// NOTE: This transformation depends on the value of the mask which is not
// known at compile time for scalable vectors
Constant *C;
ConstantInt *IndexC;
if (match(Op0, m_InsertElement(m_Value(), m_Constant(C),
m_ConstantInt(IndexC)))) {
if (!Scalable && match(Op0, m_InsertElement(m_Value(), m_Constant(C),
m_ConstantInt(IndexC)))) {
// Match a splat shuffle mask of the insert index allowing undef elements.
int InsertIndex = IndexC->getZExtValue();
if (all_of(Indices, [InsertIndex](int MaskElt) {
@ -4499,8 +4513,8 @@ static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
// Shuffle mask undefs become undefined constant result elements.
SmallVector<Constant *, 16> VecC(MaskNumElts, C);
for (unsigned i = 0; i != MaskNumElts; ++i)
SmallVector<Constant *, 16> VecC(MaskEltCount.Min, C);
for (unsigned i = 0; i != MaskEltCount.Min; ++i)
if (Indices[i] == -1)
VecC[i] = UndefValue::get(C->getType());
return ConstantVector::get(VecC);
@ -4514,6 +4528,11 @@ static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
OpShuf->getMask()->getSplatValue())
return Op0;
// All remaining transformation depend on the value of the mask, which is
// not known at compile time for scalable vectors.
if (Scalable)
return nullptr;
// Don't fold a shuffle with undef mask elements. This may get folded in a
// better way using demanded bits or other analysis.
// TODO: Should we allow this?
@ -4525,7 +4544,7 @@ static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
// shuffle. This handles simple identity shuffles as well as chains of
// shuffles that may widen/narrow and/or move elements across lanes and back.
Value *RootVec = nullptr;
for (unsigned i = 0; i != MaskNumElts; ++i) {
for (unsigned i = 0; i != MaskEltCount.Min; ++i) {
// Note that recursion is limited for each vector element, so if any element
// exceeds the limit, this will fail to simplify.
RootVec =

View File

@ -166,6 +166,11 @@ static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
const APInt &DemandedElts,
APInt &DemandedLHS, APInt &DemandedRHS) {
// The length of scalable vectors is unknown at compile time, thus we
// cannot check their values
if (Shuf->getMask()->getType()->getVectorElementCount().Scalable)
return false;
int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements();
int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements();
DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);

View File

@ -7224,8 +7224,8 @@ int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
bool AteExtraComma = false;
// GEP returns a vector of pointers if at least one of parameters is a vector.
// All vector parameters should have the same vector width.
unsigned GEPWidth = BaseType->isVectorTy() ?
BaseType->getVectorNumElements() : 0;
ElementCount GEPWidth = BaseType->isVectorTy() ?
BaseType->getVectorElementCount() : ElementCount(0, false);
while (EatIfPresent(lltok::comma)) {
if (Lex.getKind() == lltok::MetadataVar) {
@ -7237,8 +7237,8 @@ int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
return Error(EltLoc, "getelementptr index must be an integer");
if (Val->getType()->isVectorTy()) {
unsigned ValNumEl = Val->getType()->getVectorNumElements();
if (GEPWidth && GEPWidth != ValNumEl)
ElementCount ValNumEl = Val->getType()->getVectorElementCount();
if (GEPWidth != ElementCount(0, false) && GEPWidth != ValNumEl)
return Error(EltLoc,
"getelementptr vector index has a wrong number of elements");
GEPWidth = ValNumEl;

View File

@ -863,12 +863,12 @@ Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
Constant *V2,
Constant *Mask) {
unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
ElementCount MaskEltCount = Mask->getType()->getVectorElementCount();
Type *EltTy = V1->getType()->getVectorElementType();
// Undefined shuffle mask -> undefined value.
if (isa<UndefValue>(Mask))
return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
return UndefValue::get(VectorType::get(EltTy, MaskEltCount));
// Don't break the bitcode reader hack.
if (isa<ConstantExpr>(Mask)) return nullptr;
@ -879,6 +879,7 @@ Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
if (ValTy->isScalable())
return nullptr;
unsigned MaskNumElts = MaskEltCount.Min;
unsigned SrcNumElts = V1->getType()->getVectorNumElements();
// Loop over the shuffle mask, evaluating each element.

View File

@ -1887,6 +1887,8 @@ bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
assert(!Mask->getType()->getVectorElementCount().Scalable &&
"Length of scalable vectors unknown at compile time");
if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
return CDS->getElementAsInteger(i);
Constant *C = Mask->getAggregateElement(i);
@ -1897,6 +1899,8 @@ int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
SmallVectorImpl<int> &Result) {
assert(!Mask->getType()->getVectorElementCount().Scalable &&
"Length of scalable vectors unknown at compile time");
unsigned NumElts = Mask->getType()->getVectorNumElements();
if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {

View File

@ -0,0 +1,32 @@
; RUN: opt -early-cse -S < %s | FileCheck %s
target datalayout = "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"
target triple = "aarch64"
; CHECK-LABEL: define <4 x i32*> @fixed_length_version_first() {
; CHECK-NEXT: ret <4 x i32*> undef
define <4 x i32*> @fixed_length_version_first() {
%ptr = getelementptr i32, <4 x i32*> undef, <4 x i64> undef
ret <4 x i32*> %ptr
}
; CHECK-LABEL: define <4 x <4 x i32>*> @fixed_length_version_second() {
; CHECK-NEXT: ret <4 x <4 x i32>*> undef
define <4 x <4 x i32>*> @fixed_length_version_second() {
%ptr = getelementptr <4 x i32>, <4 x i32>* undef, <4 x i64> undef
ret <4 x <4 x i32>*> %ptr
}
; CHECK-LABEL: define <vscale x 4 x i32*> @vscale_version_first() {
; CHECK-NEXT: ret <vscale x 4 x i32*> undef
define <vscale x 4 x i32*> @vscale_version_first() {
%ptr = getelementptr i32, <vscale x 4 x i32*> undef, <vscale x 4 x i64> undef
ret <vscale x 4 x i32*> %ptr
}
; CHECK-LABEL: define <vscale x 4 x <vscale x 4 x i32>*> @vscale_version_second() {
; CHECK-NEXT: ret <vscale x 4 x <vscale x 4 x i32>*> undef
define <vscale x 4 x <vscale x 4 x i32>*> @vscale_version_second() {
%ptr = getelementptr <vscale x 4 x i32>, <vscale x 4 x i32>* undef, <vscale x 4 x i64> undef
ret <vscale x 4 x <vscale x 4 x i32>*> %ptr
}

View File

@ -0,0 +1,41 @@
; RUN: opt -early-cse -S < %s | FileCheck %s
target datalayout = "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"
target triple = "aarch64"
; This test checks that SimplifyInstruction does not blow up in the face of
; a scalable shufflevector. vscale is a constant value known only at runtime.
; Therefore, it is not possible to know the concrete value of, or the length
; of the mask at compile time. Simplifications that depend on the value
; of the mask cannot be performed.
; Given the fact that the value of the mask is unknown at compile time for
; scalable vectors, very few simplifications will be done. Here, we want to
; see that the instruction can be passed to SimplifyInstruction and not crash
; the compiler. It happens to be the case that this will be the result.
; CHECK-LABEL: define <vscale x 8 x i1> @vscale_version()
; CHECK-NEXT: %splatter = insertelement <vscale x 8 x i1> undef, i1 true, i32 0
; CHECK-NEXT: %foo = shufflevector <vscale x 8 x i1> %splatter, <vscale x 8 x i1> undef, <vscale x 8 x i32> zeroinitializer
; CHECK-NEXT: ret <vscale x 8 x i1> %foo
define <vscale x 8 x i1> @vscale_version() {
%splatter = insertelement <vscale x 8 x i1> undef, i1 true, i32 0
%foo = shufflevector <vscale x 8 x i1> %splatter,
<vscale x 8 x i1> undef,
<vscale x 8 x i32> zeroinitializer
ret <vscale x 8 x i1> %foo
}
; The non-scalable version should be optimized as normal.
; CHECK-LABEL: define <8 x i1> @fixed_length_version() {
; CHECK-NEXT: ret <8 x i1> <i1 true, i1 true, i1 true, i1 true, i1 true, i1 true, i1 true, i1 true>
define <8 x i1> @fixed_length_version() {
%splatter = insertelement <8 x i1> undef, i1 true, i32 0
%foo = shufflevector <8 x i1> %splatter,
<8 x i1> undef,
<8 x i32> zeroinitializer
ret <8 x i1> %foo
}