[mlir][Linalg] Refactor comprehensive bufferize for external uses - NFC

This revision exposes some minimal funcitonality to allow comprehensive
bufferization to interop with external projects.

Differential Revision: https://reviews.llvm.org/D110875
This commit is contained in:
Nicolas Vasilache 2021-09-30 19:51:45 +00:00
parent 2443320d68
commit b016bd1230
3 changed files with 326 additions and 266 deletions

View File

@ -0,0 +1,239 @@
//===- ComprehensiveBufferize.h - Linalg bufferization pass -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_DIALECT_LINALG_TRANSFORMS_COMPREHENSIVE_BUFFERIZE_H
#define MLIR_DIALECT_LINALG_TRANSFORMS_COMPREHENSIVE_BUFFERIZE_H
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/Value.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/SetOperations.h"
namespace mlir {
class DominanceInfo;
class FuncOp;
class GlobalCreator;
namespace linalg {
/// The BufferizationAliasInfo class maintains a list of buffer aliases and
/// equivalence classes to support bufferization.
/// ExtractSliceOps have special behavior, they act as a level of indirection
/// for bufferization. They don't create reads or writes themselves and analysis
/// needs to look through their uses.
/// ExtractSliceOp + InsertSliceOp have special joint behavior: they may
/// bufferize to the same buffer (i.e. subview), which is what introduces the
/// need for bufferization classes.
/// Some of these functionalities could be refactored in a Bufferizer class that
/// uses BufferizationAliasInfo.
class BufferizationAliasInfo {
public:
/// Specify fine-grain relationship between buffers to enable more analysis.
enum class BufferRelation {
None,
// TODO: ResultContainsOperand,
// TODO: OperandContainsResult,
Equivalent
};
explicit BufferizationAliasInfo(Operation *rootOp);
/// Add a new entry for `v` in the `aliasInfo` and `equivalentInfo`. In the
/// beginning the alias and equivalence sets only contain `v` itself.
void createAliasInfoEntry(Value v);
/// Insert an info entry for `newValue` and merge its alias set with that of
/// `alias`.
void insertNewBufferAlias(Value newValue, Value alias);
/// Insert an info entry for `newValue` and merge its alias set with that of
/// `alias`. Additionally, merge their equivalence classes.
void insertNewBufferEquivalence(Value newValue, Value alias);
/// Return true if the buffer to which `operand` would bufferize aliases a
/// buffer that is known to not be writeable. This implies that the matching
/// OpResult cannot be bufferized inplace.
bool aliasesNonWriteableBuffer(OpOperand &operand) const;
/// Return true if the buffer to which `operand` would bufferize is equivalent
/// to some buffer write.
bool aliasesInPlaceWrite(Value v) const;
/// Set the inPlace bufferization spec to true.
/// Merge result's and operand's aliasing sets and iterate to a fixed point.
void bufferizeInPlace(OpResult result, OpOperand &operand,
BufferRelation bufferRelation = BufferRelation::None);
/// Set the inPlace bufferization spec to false.
void bufferizeOutOfPlace(OpResult result);
/// Return true if it is possible to find an inplace write W among `usesWrite`
/// and a read R among `usesRead`, such that W and R interfere.
/// Such a (W, R) pair is an interference to the inplace bufferization of
/// opResult when:
/// 1. R is not known properly dominate W (i.e. the effects of the write may
/// be visible from R).
/// 2. one cannot find an intermediate clobbering write `C` to W, such that
/// C interleaved between W and R (i.e. W -> C -> R where -> denotes
/// dominance).
bool wouldCreateReadAfterWriteInterference(
Operation *opToBufferize, DenseSet<OpOperand *> &usesRead,
DenseSet<OpOperand *> &usesWrite, const DominanceInfo &domInfo) const;
/// Assume that result bufferizes in-place with one of the operation's
/// operands. Return true if it is possible to find an inplace write W (resp.
/// a read R) among the uses of `aliasInfo[result]`, and a read R (resp. an
/// inplace write W) among the uses of
/// `aliasInfo[getAliasingOpOperand(result)]`, such that W and R interfere.
/// Interference detection is needed to determine which cases may bufferize
/// inplace without interferences. Such cases comprise:
///
/// ```
/// %0 = op_to_bufferize(%1)
/// read(%1)
///
/// %0 = op_to_bufferize(%1)
/// write(%0)
/// read(%1)
///
/// %0 = op_to_bufferize(%1)
/// write(%1)
/// read(%0)
/// ```
bool
wouldCreateReadAfterWriteInterference(OpResult result,
const DominanceInfo &domInfo) const;
/// Return true if `v1` and `v2` bufferize to equivalent buffers.
bool areEquivalentBufferizedValues(Value v1, Value v2) const {
return equivalentInfo.getLeaderValue(v1) ==
equivalentInfo.getLeaderValue(v2);
}
/// Return true if the source of an `insertSliceOp` bufferizes to an
/// equivalent ExtractSliceOp.
bool isSourceEquivalentToAMatchingInplaceExtractSliceOp(
tensor::InsertSliceOp insertSliceOp) const;
/// Apply `fun` to all the members of the equivalence class of `v`.
void applyOnEquivalenceClass(Value v, function_ref<void(Value)> fun) const;
/// Print to `os`.
void printAliases(raw_ostream &os) const;
void printEquivalences(raw_ostream &os) const;
/// Print to `errs()`.
void dumpAliases() const;
void dumpEquivalences() const;
private:
/// llvm::EquivalenceClasses wants comparable elements because it uses
/// std::set as the underlying impl.
/// ValueWrapper wraps Value and uses pointer comparison on the defining op.
/// This is a poor man's comparison but it's not like UnionFind needs ordering
/// anyway ..
struct ValueWrapper {
ValueWrapper(Value val) : v(val) {}
operator Value() const { return v; }
bool operator<(const ValueWrapper &wrap) const {
return v.getImpl() < wrap.v.getImpl();
}
bool operator==(const ValueWrapper &wrap) const { return v == wrap.v; }
Value v;
};
using EquivalenceClassRangeType = llvm::iterator_range<
llvm::EquivalenceClasses<ValueWrapper>::member_iterator>;
/// Check that aliasInfo for `v` exists and return a reference to it.
EquivalenceClassRangeType getAliases(Value v) const;
/// Return true if the (ExtractSliceOp, InsertSliceOp) pair match (i.e.
/// equivalent operand / result and same offset/sizes/strides specification).
///
/// This is one particular type of relationship between ops on tensors that
/// reduce to an equivalence on buffers. This should be generalized and
/// exposed as interfaces on the proper types.
bool areEquivalentExtractSliceOps(tensor::ExtractSliceOp st,
tensor::InsertSliceOp sti) const;
/// Return true if there is a `candidateOp` that would write to memory after
/// bufferization and such that:
/// 1. The written buffer is equivalent to either `aliasingRead` or
/// `aliasingWrite` under the inPlace bufferization decisions taken
/// so far.
/// 2. `aliasingWrite` properly dominates `candidateOp`.
/// 3. `candidateOp` properly dominates `aliasingReadOp`.
// TODO: richer clobbering analysis with container-containee relationship
// instead of equivalence.
bool existsInterleavedValueClobber(OpOperand &aliasingRead,
OpOperand &aliasingWrite,
const DominanceInfo &domInfo) const;
/// Return true if there is a write that:
/// 1. Properly dominates aliasingReadOp.
/// 2. Is properly dominated by aliasingWriteOp.
/// 3. Clobbers the write that would be interfering with the read.
///
/// Case discussion:
/// ================
/// Case 1: opOperand is produced by opToBufferize,
/// Case 2: opResult is produced by opToBufferize,
/// Common case:
/// - aliasingReadOp is a read to an alias of opOperand.
/// - aliasingWriteOp is an inplace write to an alias of opResult.
/// - aliasingWriteOp dominates aliasingReadOp.
///
/// ```
/// // Either case 1:
/// %opOperand = opToBufferize(%opResult)
/// aliasingWriteOp(%aliasingWrite = alias(%opResult)) // inplace
/// aliasingReadOp( %aliasingRead = alias(%opOperand))
/// ```
///
/// ```
/// // Or case 2:
/// %opResult = opToBufferize(%opOperand)
/// aliasingWriteOp(%aliasingWrite = alias(%opResult)) // inplace
/// aliasingReadOp( %aliasingRead = alias(%opOperand))
/// ```
///
/// Capture possible cases where `aliasingWriteOp(alias(%opResult))` has no
/// visible effect on `aliasingReadOp(alias(%opOperand))`.
bool isClobberedWriteBeforeRead(Operation *opToBufferize,
OpOperand &aliasingRead,
OpOperand &aliasingWrite,
const DominanceInfo &domInfo) const;
/// Auxiliary structure to store all the values a given value aliases with.
/// These are the conservative cases that can further decompose into
/// "equivalent" buffer relationships.
llvm::EquivalenceClasses<ValueWrapper> aliasInfo;
/// Auxiliary structure to store all the equivalent buffer classes.
llvm::EquivalenceClasses<ValueWrapper> equivalentInfo;
};
/// Analyze the `ops` to determine which OpResults are inplaceable:
LogicalResult inPlaceAnalysis(SmallVector<Operation *> &ops,
BufferizationAliasInfo &aliasInfo,
const DominanceInfo &domInfo);
/// Bufferize one particular op.
/// `bufferizedFunctionTypes` (resp. `globalCreator`) are expected to be
/// non-null if `op` is a CallOpInterface (resp. GlobalCreator).
LogicalResult
bufferizeOp(Operation *op, BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo,
DenseMap<FuncOp, FunctionType> *bufferizedFunctionTypes = nullptr,
GlobalCreator *globalCreator = nullptr);
} // namespace linalg
} // namespace mlir
#endif // define MLIR_DIALECT_LINALG_TRANSFORMS_COMPREHENSIVE_BUFFERIZE_H

View File

@ -105,6 +105,8 @@
// expected layouts after transformations. Combinations of memref.cast +
// canonicalization are responsible for clean ups.
#include "mlir/Dialect/Linalg/Transforms/ComprehensiveBufferize.h"
#include "PassDetail.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/Passes.h"
@ -123,9 +125,7 @@
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
@ -219,7 +219,7 @@ static Value lookup(const BlockAndValueMapping &bvm, Value key) {
} else {
parentOp = key.getDefiningOp()->getParentOfType<FuncOp>();
}
LDBG("In func:\n" << *parentOp << "NO VALUE FOR KEY: " << key << '\n');
LDBG("In func:\n" << *parentOp << "\nNO VALUE FOR KEY: " << key << '\n');
(void)parentOp;
return Value();
}
@ -690,205 +690,6 @@ bufferizesToMemoryWrite(OpOperand &opOperand,
// Bufferization-specific alias analysis.
//===----------------------------------------------------------------------===//
namespace {
/// The BufferizationAliasInfo class maintains a list of buffer aliases and
/// equivalence classes to support bufferization.
/// ExtractSliceOps have special behavior, they act as a level of indirection
/// for bufferization. They don't create reads or writes themselves and analysis
/// needs to look through their uses.
/// ExtractSliceOp + InsertSliceOp have special joint behavior: they may
/// bufferize to the same buffer (i.e. subview), which is what introduces the
/// need for bufferization classes.
/// Some of these functionalities could be refactored in a Bufferizer class that
/// uses BufferizationAliasInfo.
class BufferizationAliasInfo {
public:
/// Specify fine-grain relationship between buffers to enable more analysis.
enum class BufferRelation {
None,
// TODO: ResultContainsOperand,
// TODO: OperandContainsResult,
Equivalent
};
explicit BufferizationAliasInfo(Operation *rootOp);
/// Add a new entry for `v` in the `aliasInfo` and `equivalentInfo`. In the
/// beginning the alias and equivalence sets only contain `v` itself.
void createAliasInfoEntry(Value v);
/// Insert an info entry for `newValue` and merge its alias set with that of
/// `alias`.
void insertNewBufferAlias(Value newValue, Value alias);
/// Insert an info entry for `newValue` and merge its alias set with that of
/// `alias`. Additionally, merge their equivalence classes.
void insertNewBufferEquivalence(Value newValue, Value alias);
/// Return true if the buffer to which `operand` would bufferize aliases a
/// buffer that is known to not be writeable. This implies that the matching
/// OpResult cannot be bufferized inplace.
bool aliasesNonWriteableBuffer(OpOperand &operand) const;
/// Return true if the buffer to which `operand` would bufferize is equivalent
/// to some buffer write.
bool aliasesInPlaceWrite(Value v) const;
/// Set the inPlace bufferization spec to true.
/// Merge result's and operand's aliasing sets and iterate to a fixed point.
void bufferizeInPlace(OpResult result, OpOperand &operand,
BufferRelation bufferRelation = BufferRelation::None);
/// Set the inPlace bufferization spec to false.
void bufferizeOutOfPlace(OpResult result);
/// Return true if it is possible to find an inplace write W among `usesWrite`
/// and a read R among `usesRead`, such that W and R interfere.
/// Such a (W, R) pair is an interference to the inplace bufferization of
/// opResult when:
/// 1. R is not known properly dominate W (i.e. the effects of the write may
/// be visible from R).
/// 2. one cannot find an intermediate clobbering write `C` to W, such that
/// C interleaved between W and R (i.e. W -> C -> R where -> denotes
/// dominance).
bool wouldCreateReadAfterWriteInterference(
Operation *opToBufferize, DenseSet<OpOperand *> &usesRead,
DenseSet<OpOperand *> &usesWrite, const DominanceInfo &domInfo) const;
/// Assume that result bufferizes in-place with one of the operation's
/// operands. Return true if it is possible to find an inplace write W (resp.
/// a read R) among the uses of `aliasInfo[result]`, and a read R (resp. an
/// inplace write W) among the uses of
/// `aliasInfo[getAliasingOpOperand(result)]`, such that W and R interfere.
/// Interference detection is needed to determine which cases may bufferize
/// inplace without interferences. Such cases comprise:
///
/// ```
/// %0 = op_to_bufferize(%1)
/// read(%1)
///
/// %0 = op_to_bufferize(%1)
/// write(%0)
/// read(%1)
///
/// %0 = op_to_bufferize(%1)
/// write(%1)
/// read(%0)
/// ```
bool
wouldCreateReadAfterWriteInterference(OpResult result,
const DominanceInfo &domInfo) const;
/// Return true if `v1` and `v2` bufferize to equivalent buffers.
bool areEquivalentBufferizedValues(Value v1, Value v2) const {
return equivalentInfo.getLeaderValue(v1) ==
equivalentInfo.getLeaderValue(v2);
}
/// Return true if the source of an `insertSliceOp` bufferizes to an
/// equivalent ExtractSliceOp.
bool isSourceEquivalentToAMatchingInplaceExtractSliceOp(
InsertSliceOp insertSliceOp) const;
/// Apply `fun` to all the members of the equivalence class of `v`.
void applyOnEquivalenceClass(Value v, function_ref<void(Value)> fun) const;
/// Print to `os`.
void printAliases(raw_ostream &os) const;
void printEquivalences(raw_ostream &os) const;
/// Print to `errs()`.
void dumpAliases() const { printAliases(llvm::errs()); }
void dumpEquivalences() const { printEquivalences(llvm::errs()); }
private:
/// llvm::EquivalenceClasses wants comparable elements because it uses
/// std::set as the underlying impl.
/// ValueWrapper wraps Value and uses pointer comparison on the defining op.
/// This is a poor man's comparison but it's not like UnionFind needs ordering
/// anyway ..
struct ValueWrapper {
ValueWrapper(Value val) : v(val) {}
operator Value() const { return v; }
bool operator<(const ValueWrapper &wrap) const {
return v.getImpl() < wrap.v.getImpl();
}
bool operator==(const ValueWrapper &wrap) const { return v == wrap.v; }
Value v;
};
using EquivalenceClassRangeType = llvm::iterator_range<
llvm::EquivalenceClasses<ValueWrapper>::member_iterator>;
/// Check that aliasInfo for `v` exists and return a reference to it.
EquivalenceClassRangeType getAliases(Value v) const;
/// Return true if the (ExtractSliceOp, InsertSliceOp) pair match (i.e.
/// equivalent operand / result and same offset/sizes/strides specification).
///
/// This is one particular type of relationship between ops on tensors that
/// reduce to an equivalence on buffers. This should be generalized and
/// exposed as interfaces on the proper types.
bool areEquivalentExtractSliceOps(ExtractSliceOp st, InsertSliceOp sti) const;
/// Return true if there is a `candidateOp` that would write to memory after
/// bufferization and such that:
/// 1. The written buffer is equivalent to either `aliasingRead` or
/// `aliasingWrite` under the inPlace bufferization decisions taken
/// so far.
/// 2. `aliasingWrite` properly dominates `candidateOp`.
/// 3. `candidateOp` properly dominates `aliasingReadOp`.
// TODO: richer clobbering analysis with container-containee relationship
// instead of equivalence.
bool existsInterleavedValueClobber(OpOperand &aliasingRead,
OpOperand &aliasingWrite,
const DominanceInfo &domInfo) const;
/// Return true if there is a write that:
/// 1. Properly dominates aliasingReadOp.
/// 2. Is properly dominated by aliasingWriteOp.
/// 3. Clobbers the write that would be interfering with the read.
///
/// Case discussion:
/// ================
/// Case 1: opOperand is produced by opToBufferize,
/// Case 2: opResult is produced by opToBufferize,
/// Common case:
/// - aliasingReadOp is a read to an alias of opOperand.
/// - aliasingWriteOp is an inplace write to an alias of opResult.
/// - aliasingWriteOp dominates aliasingReadOp.
///
/// ```
/// // Either case 1:
/// %opOperand = opToBufferize(%opResult)
/// aliasingWriteOp(%aliasingWrite = alias(%opResult)) // inplace
/// aliasingReadOp( %aliasingRead = alias(%opOperand))
/// ```
///
/// ```
/// // Or case 2:
/// %opResult = opToBufferize(%opOperand)
/// aliasingWriteOp(%aliasingWrite = alias(%opResult)) // inplace
/// aliasingReadOp( %aliasingRead = alias(%opOperand))
/// ```
///
/// Capture possible cases where `aliasingWriteOp(alias(%opResult))` has no
/// visible effect on `aliasingReadOp(alias(%opOperand))`.
bool isClobberedWriteBeforeRead(Operation *opToBufferize,
OpOperand &aliasingRead,
OpOperand &aliasingWrite,
const DominanceInfo &domInfo) const;
/// Auxiliary structure to store all the values a given value aliases with.
/// These are the conservative cases that can further decompose into
/// "equivalent" buffer relationships.
llvm::EquivalenceClasses<ValueWrapper> aliasInfo;
/// Auxiliary structure to store all the equivalent buffer classes.
llvm::EquivalenceClasses<ValueWrapper> equivalentInfo;
};
} // namespace
BufferizationAliasInfo::BufferizationAliasInfo(Operation *rootOp) {
rootOp->walk([&](Operation *op) {
for (Value v : op->getResults())
@ -1232,6 +1033,12 @@ BufferizationAliasInfo::getAliases(Value v) const {
aliasInfo.member_begin(it), aliasInfo.member_end());
}
void BufferizationAliasInfo::dumpAliases() const { printAliases(llvm::errs()); }
void BufferizationAliasInfo::dumpEquivalences() const {
printEquivalences(llvm::errs());
}
/// This is one particular type of relationship between ops on tensors that
/// reduce to an equivalence on buffers. This should be generalized and exposed
/// as interfaces on the proper types.
@ -2453,30 +2260,15 @@ bufferizableInPlaceAnalysis(OpOperand &operand, OpResult result,
return success();
}
/// Analyze the `funcOp` body to determine which OpResults are inplaceable:
/// Analyze the `ops` to determine which OpResults are inplaceable:
/// 1. First, analyze InsertSliceOp greedily: we almost never want to
/// bufferize the tensor "inserted into" to become out-of-place.
/// 2. Walk the other ops in reverse. This is a good starter heuristic.
/// ExtractSliceOps are interleaved with other ops in traversal order.
///
static LogicalResult
inPlaceAnalysisFuncOpBody(FuncOp funcOp, BufferizationAliasInfo &aliasInfo,
LogicalResult mlir::linalg::inPlaceAnalysis(SmallVector<Operation *> &ops,
BufferizationAliasInfo &aliasInfo,
const DominanceInfo &domInfo) {
LLVM_DEBUG(llvm::dbgs() << "\n\n");
LDBG("Begin InPlaceAnalysisFuncOpInternals:\n" << funcOp << '\n');
assert(funcOp && funcOp->getNumRegions() > 0 && !funcOp.body().empty() &&
"expected a funcOp definition with a body");
// Collect ops so we can build our own reverse traversal.
SmallVector<Operation *> ops;
funcOp.walk([&](Operation *op) {
// No tensors => no buffers.
if (none_of(op->getOperandTypes(), isaTensor) &&
none_of(op->getResultTypes(), isaTensor))
return;
ops.push_back(op);
});
// Walk ops in reverse for better interference analysis.
for (Operation *op : reverse(ops)) {
for (OpOperand &opOperand : op->getOpOperands()) {
@ -2498,63 +2290,68 @@ inPlaceAnalysisFuncOpBody(FuncOp funcOp, BufferizationAliasInfo &aliasInfo,
continue;
}
}
return success();
}
/// Analyze the `funcOp` body to determine which OpResults are inplaceable.
static LogicalResult
inPlaceAnalysisFuncOpBody(FuncOp funcOp, BufferizationAliasInfo &aliasInfo,
const DominanceInfo &domInfo) {
LLVM_DEBUG(llvm::dbgs() << "\n\n");
LDBG("Begin InPlaceAnalysisFuncOpInternals:\n" << funcOp << '\n');
assert(funcOp && funcOp->getNumRegions() > 0 && !funcOp.body().empty() &&
"expected a funcOp definition with a body");
// Collect ops so we can build our own reverse traversal.
SmallVector<Operation *> ops;
funcOp.walk([&](Operation *op) {
// No tensors => no buffers.
if (none_of(op->getOperandTypes(), isaTensor) &&
none_of(op->getResultTypes(), isaTensor))
return;
ops.push_back(op);
});
LogicalResult res = inPlaceAnalysis(ops, aliasInfo, domInfo);
LDBG("End InPlaceAnalysisFuncOpInternals:\n" << funcOp << '\n');
return success();
return res;
}
//===----------------------------------------------------------------------===//
// Bufferization entry-point for functions.
//===----------------------------------------------------------------------===//
static LogicalResult bufferizeFuncOpInternals(
FuncOp funcOp, BlockAndValueMapping &bvm, BufferizationAliasInfo &aliasInfo,
DenseMap<FuncOp, FunctionType> &bufferizedFunctionTypes,
GlobalCreator &globalCreator) {
LLVM_DEBUG(llvm::dbgs() << "\n\n");
LDBG("Begin BufferizeFuncOpInternals:\n" << funcOp << '\n');
OpBuilder b(funcOp->getContext());
/// Start by bufferizing `funcOp` arguments.
if (failed(bufferize(b, funcOp, bvm, aliasInfo)))
return failure();
// Walk in PreOrder to ensure ops with regions are handled before their body.
// Since walk has to be PreOrder, we need to erase ops that require it
// separately: this is the case for CallOp
// clang-format off
SmallVector<Operation *> toErase;
WalkResult result = funcOp.walk<WalkOrder::PreOrder>([&](Operation *op)
-> WalkResult {
WalkResult result =
TypeSwitch<Operation *, LogicalResult>(op)
LogicalResult mlir::linalg::bufferizeOp(
Operation *op, BlockAndValueMapping &bvm, BufferizationAliasInfo &aliasInfo,
DenseMap<FuncOp, FunctionType> *bufferizedFunctionTypes,
GlobalCreator *globalCreator) {
OpBuilder b(op->getContext());
return TypeSwitch<Operation *, LogicalResult>(op)
// Skip BufferCast and TensorLoad ops.
.Case<memref::BufferCastOp,
memref::TensorLoadOp>([&](auto) { return success(); })
.Case<tensor::CastOp,
tensor::DimOp,
ExtractSliceOp,
scf::ForOp,
InitTensorOp,
InsertSliceOp,
tensor::ExtractOp,
LinalgOp,
ReturnOp,
TiledLoopOp,
VectorTransferOpInterface,
linalg::YieldOp,
.Case<memref::BufferCastOp, memref::TensorLoadOp>(
[&](auto) { return success(); })
.Case<tensor::CastOp, tensor::DimOp, ExtractSliceOp, scf::ForOp,
InitTensorOp, InsertSliceOp, tensor::ExtractOp, LinalgOp, ReturnOp,
TiledLoopOp, VectorTransferOpInterface, linalg::YieldOp,
scf::YieldOp>([&](auto op) {
LDBG("Begin bufferize:\n" << op << '\n');
return bufferize(b, op, bvm, aliasInfo);
})
.Case([&](CallOpInterface op) {
LDBG("Begin bufferize:\n" << op << '\n');
return bufferize(b, op, bvm, aliasInfo, bufferizedFunctionTypes);
if (!bufferizedFunctionTypes)
llvm_unreachable(
"null bufferizedFunctionTypes when bufferizing CallOpInterface");
return bufferize(b, op, bvm, aliasInfo, *bufferizedFunctionTypes);
})
.Case([&](ConstantOp op) {
if (!isaTensor(op.getResult().getType()))
return success();
LDBG("Begin bufferize:\n" << op << '\n');
return bufferize(b, op, bvm, aliasInfo, globalCreator);
if (!globalCreator)
llvm_unreachable("null globalCreator when bufferizing ConstantOp");
return bufferize(b, op, bvm, aliasInfo, *globalCreator);
})
.Default([&](Operation *op) -> LogicalResult {
auto isaTensor = [](Type t) { return t.isa<TensorType>(); };
@ -2563,22 +2360,45 @@ static LogicalResult bufferizeFuncOpInternals(
return op->emitError() << "unsupported op with tensors";
return success();
});
}
static LogicalResult bufferizeFuncOpInternals(
FuncOp funcOp, BlockAndValueMapping &bvm, BufferizationAliasInfo &aliasInfo,
DenseMap<FuncOp, FunctionType> &bufferizedFunctionTypes,
GlobalCreator &globalCreator) {
LLVM_DEBUG(llvm::dbgs() << "\n\n");
LDBG("Begin BufferizeFuncOpInternals:\n" << funcOp << '\n');
OpBuilder b(funcOp->getContext());
/// Start by bufferizing `funcOp` arguments.
if (failed(bufferize(b, funcOp, bvm, aliasInfo)))
return failure();
// Walk in PreOrder to ensure ops with regions are handled before their body.
// Since walk has to be PreOrder, we need to erase ops that require it
// separately: this is the case for CallOp
SmallVector<Operation *> toErase;
if (funcOp
.walk<WalkOrder::PreOrder>([&](Operation *op) -> WalkResult {
if (failed(bufferizeOp(op, bvm, aliasInfo, &bufferizedFunctionTypes,
&globalCreator)))
return failure();
// Register post-walk erasure, if necessary.
if (isa<CallOpInterface>(op))
if (llvm::any_of(op->getOperandTypes(), isaTensor) ||
llvm::any_of(op->getResultTypes(), isaTensor))
toErase.push_back(op);
return success();
})
.wasInterrupted())
return failure();
return result;
});
// clang-format on
LDBG("End BufferizeFuncOpInternals:\n" << funcOp << '\n');
for (Operation *op : toErase)
op->erase();
return failure(result.wasInterrupted());
return success();
}
//===----------------------------------------------------------------------===//

View File

@ -6153,6 +6153,7 @@ cc_library(
"include/mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h",
"include/mlir/Dialect/Linalg/Passes.h",
"include/mlir/Dialect/Linalg/Transforms/CodegenStrategy.h",
"include/mlir/Dialect/Linalg/Transforms/ComprehensiveBufferize.h",
"include/mlir/Dialect/Linalg/Transforms/HoistPadding.h",
"include/mlir/Dialect/Linalg/Transforms/Hoisting.h",
"include/mlir/Dialect/Linalg/Transforms/Transforms.h",