Temporarily Revert [X86] Not track size of the boudaryalign fragment during the layout

Summary: This reverts commit 2ac19feb15.
This commit causes some test cases to run fail when branch is aligned.
This commit is contained in:
Shengchen Kan 2020-03-03 11:10:54 +08:00
parent ff9bc0c091
commit af57b139a0
5 changed files with 80 additions and 59 deletions

View File

@ -195,6 +195,7 @@ private:
bool relaxFragment(MCAsmLayout &Layout, MCFragment &F);
bool relaxInstruction(MCAsmLayout &Layout, MCRelaxableFragment &IF);
bool relaxLEB(MCAsmLayout &Layout, MCLEBFragment &IF);
bool relaxBoundaryAlign(MCAsmLayout &Layout, MCBoundaryAlignFragment &BF);
bool relaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF);
bool relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
MCDwarfCallFrameFragment &DF);

View File

@ -528,6 +528,9 @@ class MCBoundaryAlignFragment : public MCFragment {
bool Fused : 1;
/// Flag to indicate whether NOPs should be emitted.
bool EmitNops : 1;
/// The size of the fragment. The size is lazily set during relaxation, and
/// is not meaningful before that.
uint64_t Size = 0;
public:
MCBoundaryAlignFragment(Align AlignBoundary = Align(1), bool Fused = false,
@ -535,6 +538,9 @@ public:
: MCFragment(FT_BoundaryAlign, false, Sec), AlignBoundary(AlignBoundary),
Fused(Fused), EmitNops(EmitNops) {}
uint64_t getSize() const { return Size; }
void setSize(uint64_t Value) { Size = Value; }
Align getAlignment() const { return AlignBoundary; }
void setAlignment(Align Value) { AlignBoundary = Value; }

View File

@ -285,43 +285,6 @@ bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
return IsResolved;
}
/// Check if the branch crosses the boundary.
///
/// \param StartAddr start address of the fused/unfused branch.
/// \param Size size of the fused/unfused branch.
/// \param BoundaryAlignment alignment requirement of the branch.
/// \returns true if the branch cross the boundary.
static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
Align BoundaryAlignment) {
uint64_t EndAddr = StartAddr + Size;
return (StartAddr >> Log2(BoundaryAlignment)) !=
((EndAddr - 1) >> Log2(BoundaryAlignment));
}
/// Check if the branch is against the boundary.
///
/// \param StartAddr start address of the fused/unfused branch.
/// \param Size size of the fused/unfused branch.
/// \param BoundaryAlignment alignment requirement of the branch.
/// \returns true if the branch is against the boundary.
static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
Align BoundaryAlignment) {
uint64_t EndAddr = StartAddr + Size;
return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
}
/// Check if the branch needs padding.
///
/// \param StartAddr start address of the fused/unfused branch.
/// \param Size size of the fused/unfused branch.
/// \param BoundaryAlignment alignment requirement of the branch.
/// \returns true if the branch needs padding.
static bool needPadding(uint64_t StartAddr, uint64_t Size,
Align BoundaryAlignment) {
return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
}
uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
const MCFragment &F) const {
assert(getBackendPtr() && "Requires assembler backend");
@ -351,26 +314,8 @@ uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
case MCFragment::FT_LEB:
return cast<MCLEBFragment>(F).getContents().size();
case MCFragment::FT_BoundaryAlign: {
const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F);
// MCBoundaryAlignFragment that doesn't emit NOP should have 0 size.
if (!BF.canEmitNops())
return 0;
uint64_t AlignedOffset = Layout.getFragmentOffset(&BF);
uint64_t AlignedSize = 0;
const MCFragment *F = BF.getNextNode();
// If the branch is unfused, it is emitted into one fragment, otherwise it
// is emitted into two fragments at most, the next
// MCBoundaryAlignFragment(if exists) also marks the end of the branch.
for (int I = 0, N = BF.isFused() ? 2 : 1;
I != N && !isa<MCBoundaryAlignFragment>(F); ++I, F = F->getNextNode())
AlignedSize += computeFragmentSize(Layout, *F);
Align BoundaryAlignment = BF.getAlignment();
return needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
? offsetToAlignment(AlignedOffset, BoundaryAlignment)
: 0U;
}
case MCFragment::FT_BoundaryAlign:
return cast<MCBoundaryAlignFragment>(F).getSize();
case MCFragment::FT_SymbolId:
return 4;
@ -1012,6 +957,72 @@ bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
return OldSize != LF.getContents().size();
}
/// Check if the branch crosses the boundary.
///
/// \param StartAddr start address of the fused/unfused branch.
/// \param Size size of the fused/unfused branch.
/// \param BoundaryAlignment alignment requirement of the branch.
/// \returns true if the branch cross the boundary.
static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
Align BoundaryAlignment) {
uint64_t EndAddr = StartAddr + Size;
return (StartAddr >> Log2(BoundaryAlignment)) !=
((EndAddr - 1) >> Log2(BoundaryAlignment));
}
/// Check if the branch is against the boundary.
///
/// \param StartAddr start address of the fused/unfused branch.
/// \param Size size of the fused/unfused branch.
/// \param BoundaryAlignment alignment requirement of the branch.
/// \returns true if the branch is against the boundary.
static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
Align BoundaryAlignment) {
uint64_t EndAddr = StartAddr + Size;
return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
}
/// Check if the branch needs padding.
///
/// \param StartAddr start address of the fused/unfused branch.
/// \param Size size of the fused/unfused branch.
/// \param BoundaryAlignment alignment requirement of the branch.
/// \returns true if the branch needs padding.
static bool needPadding(uint64_t StartAddr, uint64_t Size,
Align BoundaryAlignment) {
return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
}
bool MCAssembler::relaxBoundaryAlign(MCAsmLayout &Layout,
MCBoundaryAlignFragment &BF) {
// The MCBoundaryAlignFragment that doesn't emit NOP should not be relaxed.
if (!BF.canEmitNops())
return false;
uint64_t AlignedOffset = Layout.getFragmentOffset(BF.getNextNode());
uint64_t AlignedSize = 0;
const MCFragment *F = BF.getNextNode();
// If the branch is unfused, it is emitted into one fragment, otherwise it is
// emitted into two fragments at most, the next MCBoundaryAlignFragment(if
// exists) also marks the end of the branch.
for (auto i = 0, N = BF.isFused() ? 2 : 1;
i != N && !isa<MCBoundaryAlignFragment>(F); ++i, F = F->getNextNode()) {
AlignedSize += computeFragmentSize(Layout, *F);
}
uint64_t OldSize = BF.getSize();
AlignedOffset -= OldSize;
Align BoundaryAlignment = BF.getAlignment();
uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
? offsetToAlignment(AlignedOffset, BoundaryAlignment)
: 0U;
if (NewSize == OldSize)
return false;
BF.setSize(NewSize);
Layout.invalidateFragmentsFrom(&BF);
return true;
}
bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
MCDwarfLineAddrFragment &DF) {
MCContext &Context = Layout.getAssembler().getContext();
@ -1112,6 +1123,8 @@ bool MCAssembler::relaxFragment(MCAsmLayout &Layout, MCFragment &F) {
cast<MCDwarfCallFrameFragment>(F));
case MCFragment::FT_LEB:
return relaxLEB(Layout, cast<MCLEBFragment>(F));
case MCFragment::FT_BoundaryAlign:
return relaxBoundaryAlign(Layout, cast<MCBoundaryAlignFragment>(F));
case MCFragment::FT_CVInlineLines:
return relaxCVInlineLineTable(Layout, cast<MCCVInlineLineTableFragment>(F));
case MCFragment::FT_CVDefRange:

View File

@ -431,7 +431,8 @@ LLVM_DUMP_METHOD void MCFragment::dump() const {
else
OS << " unfused branch)";
OS << "\n ";
OS << " BoundarySize:" << BF->getAlignment().value();
OS << " BoundarySize:" << BF->getAlignment().value()
<< " Size:" << BF->getSize();
break;
}
case MCFragment::FT_SymbolId: {

View File

@ -466,7 +466,7 @@ void X86AsmBackend::alignBranchesEnd(MCObjectStreamer &OS, const MCInst &Inst) {
if (!needAlign(OS))
return;
// If the branch is emitted into a MCRelaxableFragment, we can determine the
// size of the branch easily in during the process of layout. When the
// size of the branch easily in MCAssembler::relaxBoundaryAlign. When the
// branch is fused, the fused branch(macro fusion pair) must be emitted into
// two fragments. Or when the branch is unfused, the branch must be emitted
// into one fragment. The MCRelaxableFragment naturally marks the end of the