forked from OSchip/llvm-project
[mlir][taco] Add a utility to create an MLIR sparse tensor from a file.
Move the functions that retrieve the supporting C library, compile an MLIR module and build a JIT execution engine to mlir_pytaco_utils. Add a function to create an MLIR sparse tensor from a file and return a pointer to the MLIR sparse tensor as well as the shape of the sparse tensor. Add unit tests. Reviewed By: aartbik Differential Revision: https://reviews.llvm.org/D118496
This commit is contained in:
parent
46add4901f
commit
ae7ee655a9
|
@ -30,8 +30,6 @@ import os
|
|||
import threading
|
||||
|
||||
# Import MLIR related modules.
|
||||
from mlir import all_passes_registration # Register MLIR compiler passes.
|
||||
from mlir import execution_engine
|
||||
from mlir import ir
|
||||
from mlir import runtime
|
||||
from mlir.dialects import arith
|
||||
|
@ -40,7 +38,6 @@ from mlir.dialects import linalg
|
|||
from mlir.dialects import std
|
||||
from mlir.dialects import sparse_tensor
|
||||
from mlir.dialects.linalg.opdsl import lang
|
||||
from mlir.passmanager import PassManager
|
||||
|
||||
from . import mlir_pytaco_utils as utils
|
||||
|
||||
|
@ -51,13 +48,6 @@ _TACO_TENSOR_PREFIX = "A"
|
|||
# Bitwidths for pointers and indices.
|
||||
_POINTER_BIT_WIDTH = 0
|
||||
_INDEX_BIT_WIDTH = 0
|
||||
# The name for the environment variable that provides the full path for the
|
||||
# supporting library.
|
||||
_SUPPORTLIB_ENV_VAR = "SUPPORTLIB"
|
||||
# The default supporting library if the environment variable is not provided.
|
||||
_DEFAULT_SUPPORTLIB = "libmlir_c_runner_utils.so"
|
||||
# The JIT compiler optimization level.
|
||||
_OPT_LEVEL = 2
|
||||
# The entry point to the JIT compiled program.
|
||||
_ENTRY_NAME = "main"
|
||||
|
||||
|
@ -134,33 +124,6 @@ def _mlir_type_from_taco_type(dtype: DType) -> ir.Type:
|
|||
return dtype_to_irtype[dtype.kind]
|
||||
|
||||
|
||||
def _compile_mlir(module: ir.Module) -> ir.Module:
|
||||
"""Compiles an MLIR module and returns the compiled module."""
|
||||
# TODO: Replace this with a pipeline implemented for
|
||||
# https://github.com/llvm/llvm-project/issues/51751.
|
||||
pipeline = (
|
||||
f"sparsification,"
|
||||
f"sparse-tensor-conversion,"
|
||||
f"builtin.func(linalg-bufferize,convert-linalg-to-loops,convert-vector-to-scf),"
|
||||
f"convert-scf-to-std,"
|
||||
f"func-bufferize,"
|
||||
f"arith-bufferize,"
|
||||
f"builtin.func(tensor-bufferize,std-bufferize,finalizing-bufferize),"
|
||||
f"convert-vector-to-llvm{{reassociate-fp-reductions=1 enable-index-optimizations=1}},"
|
||||
f"lower-affine,"
|
||||
f"convert-memref-to-llvm,"
|
||||
f"convert-std-to-llvm,"
|
||||
f"reconcile-unrealized-casts")
|
||||
PassManager.parse(pipeline).run(module)
|
||||
return module
|
||||
|
||||
|
||||
@functools.lru_cache()
|
||||
def _get_support_lib_name() -> str:
|
||||
"""Returns the string for the supporting C shared library."""
|
||||
return os.getenv(_SUPPORTLIB_ENV_VAR, _DEFAULT_SUPPORTLIB)
|
||||
|
||||
|
||||
def _ctype_pointer_from_array(array: np.ndarray) -> ctypes.pointer:
|
||||
"""Returns the ctype pointer for the given numpy array."""
|
||||
return ctypes.pointer(
|
||||
|
@ -900,8 +863,7 @@ class Tensor:
|
|||
shape = np.array(self._shape, np.int64)
|
||||
indices = np.array(self._coords, np.int64)
|
||||
values = np.array(self._values, self._dtype.value)
|
||||
ptr = utils.coo_tensor_to_sparse_tensor(_get_support_lib_name(), shape,
|
||||
values, indices)
|
||||
ptr = utils.coo_tensor_to_sparse_tensor(shape, values, indices)
|
||||
return ctypes.pointer(ctypes.cast(ptr, ctypes.c_void_p))
|
||||
|
||||
def get_coordinates_and_values(
|
||||
|
@ -1316,18 +1278,12 @@ class IndexExpr(abc.ABC):
|
|||
input_accesses = []
|
||||
self._visit(_gather_input_accesses_index_vars, (input_accesses,))
|
||||
|
||||
support_lib = _get_support_lib_name()
|
||||
# Build and compile the module to produce the execution engine.
|
||||
with ir.Context(), ir.Location.unknown():
|
||||
module = ir.Module.create()
|
||||
self._emit_assignment(module, dst, dst_indices, expr_to_info,
|
||||
input_accesses)
|
||||
compiled_module = _compile_mlir(module)
|
||||
|
||||
# We currently rely on an environment to pass in the full path of a
|
||||
# supporting library for the execution engine.
|
||||
engine = execution_engine.ExecutionEngine(
|
||||
compiled_module, opt_level=_OPT_LEVEL, shared_libs=[support_lib])
|
||||
engine = utils.compile_and_build_engine(module)
|
||||
|
||||
# Gather the pointers for the input buffers.
|
||||
input_pointers = [a.tensor.ctype_pointer() for a in input_accesses]
|
||||
|
@ -1351,7 +1307,6 @@ class IndexExpr(abc.ABC):
|
|||
|
||||
# Check and return the sparse tensor output.
|
||||
rank, nse, shape, values, indices = utils.sparse_tensor_to_coo_tensor(
|
||||
support_lib,
|
||||
ctypes.cast(arg_pointers[-1][0], ctypes.c_void_p),
|
||||
np.float64,
|
||||
)
|
||||
|
|
|
@ -4,21 +4,47 @@
|
|||
|
||||
# This file contains the utilities to process sparse tensor outputs.
|
||||
|
||||
from typing import Tuple
|
||||
from typing import Sequence, Tuple
|
||||
import ctypes
|
||||
import functools
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
# Import MLIR related modules.
|
||||
from mlir import all_passes_registration # Register MLIR compiler passes.
|
||||
from mlir import execution_engine
|
||||
from mlir import ir
|
||||
from mlir import runtime
|
||||
from mlir.dialects import sparse_tensor
|
||||
from mlir.passmanager import PassManager
|
||||
|
||||
# The name for the environment variable that provides the full path for the
|
||||
# supporting library.
|
||||
_SUPPORTLIB_ENV_VAR = "SUPPORTLIB"
|
||||
# The default supporting library if the environment variable is not provided.
|
||||
_DEFAULT_SUPPORTLIB = "libmlir_c_runner_utils.so"
|
||||
|
||||
# The JIT compiler optimization level.
|
||||
_OPT_LEVEL = 2
|
||||
# The entry point to the JIT compiled program.
|
||||
_ENTRY_NAME = "main"
|
||||
|
||||
|
||||
@functools.lru_cache()
|
||||
def _get_c_shared_lib(lib_name: str) -> ctypes.CDLL:
|
||||
"""Loads and returns the requested C shared library.
|
||||
def _get_support_lib_name() -> str:
|
||||
"""Gets the string name for the supporting C shared library."""
|
||||
return os.getenv(_SUPPORTLIB_ENV_VAR, _DEFAULT_SUPPORTLIB)
|
||||
|
||||
Args:
|
||||
lib_name: A string representing the C shared library.
|
||||
|
||||
@functools.lru_cache()
|
||||
def _get_c_shared_lib() -> ctypes.CDLL:
|
||||
"""Loads the supporting C shared library with the needed routines.
|
||||
|
||||
The name of the supporting C shared library is either provided by an
|
||||
an environment variable or a default value.
|
||||
|
||||
Returns:
|
||||
The C shared library.
|
||||
The supporting C shared library.
|
||||
|
||||
Raises:
|
||||
OSError: If there is any problem in loading the shared library.
|
||||
|
@ -26,7 +52,7 @@ def _get_c_shared_lib(lib_name: str) -> ctypes.CDLL:
|
|||
"""
|
||||
# This raises OSError exception if there is any problem in loading the shared
|
||||
# library.
|
||||
c_lib = ctypes.CDLL(lib_name)
|
||||
c_lib = ctypes.CDLL(_get_support_lib_name())
|
||||
|
||||
try:
|
||||
c_lib.convertToMLIRSparseTensor.restype = ctypes.c_void_p
|
||||
|
@ -44,14 +70,12 @@ def _get_c_shared_lib(lib_name: str) -> ctypes.CDLL:
|
|||
|
||||
|
||||
def sparse_tensor_to_coo_tensor(
|
||||
lib_name: str,
|
||||
sparse_tensor: ctypes.c_void_p,
|
||||
dtype: np.dtype,
|
||||
) -> Tuple[int, int, np.ndarray, np.ndarray, np.ndarray]:
|
||||
"""Converts an MLIR sparse tensor to a COO-flavored format tensor.
|
||||
|
||||
Args:
|
||||
lib_name: A string for the supporting C shared library.
|
||||
sparse_tensor: A ctypes.c_void_p to the MLIR sparse tensor descriptor.
|
||||
dtype: The numpy data type for the tensor elements.
|
||||
|
||||
|
@ -69,7 +93,7 @@ def sparse_tensor_to_coo_tensor(
|
|||
OSError: If there is any problem in loading the shared library.
|
||||
ValueError: If the shared library doesn't contain the needed routines.
|
||||
"""
|
||||
c_lib = _get_c_shared_lib(lib_name)
|
||||
c_lib = _get_c_shared_lib()
|
||||
|
||||
rank = ctypes.c_ulonglong(0)
|
||||
nse = ctypes.c_ulonglong(0)
|
||||
|
@ -84,16 +108,14 @@ def sparse_tensor_to_coo_tensor(
|
|||
shape = np.ctypeslib.as_array(shape, shape=[rank.value])
|
||||
values = np.ctypeslib.as_array(values, shape=[nse.value])
|
||||
indices = np.ctypeslib.as_array(indices, shape=[nse.value, rank.value])
|
||||
return rank, nse, shape, values, indices
|
||||
return rank.value, nse.value, shape, values, indices
|
||||
|
||||
|
||||
def coo_tensor_to_sparse_tensor(lib_name: str, np_shape: np.ndarray,
|
||||
np_values: np.ndarray,
|
||||
def coo_tensor_to_sparse_tensor(np_shape: np.ndarray, np_values: np.ndarray,
|
||||
np_indices: np.ndarray) -> int:
|
||||
"""Converts a COO-flavored format sparse tensor to an MLIR sparse tensor.
|
||||
|
||||
Args:
|
||||
lib_name: A string for the supporting C shared library.
|
||||
np_shape: A 1D numpy array of integers, for the shape of the tensor.
|
||||
np_values: A 1D numpy array, for the non-zero values in the tensor.
|
||||
np_indices: A 2D numpy array of integers, representing the indices for the
|
||||
|
@ -115,7 +137,136 @@ def coo_tensor_to_sparse_tensor(lib_name: str, np_shape: np.ndarray,
|
|||
ctypes.POINTER(np.ctypeslib.as_ctypes_type(np_values.dtype)))
|
||||
indices = np_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_ulonglong))
|
||||
|
||||
c_lib = _get_c_shared_lib(lib_name)
|
||||
c_lib = _get_c_shared_lib()
|
||||
ptr = c_lib.convertToMLIRSparseTensor(rank, nse, shape, values, indices)
|
||||
assert ptr is not None, "Problem with calling convertToMLIRSparseTensor"
|
||||
return ptr
|
||||
|
||||
|
||||
def compile_and_build_engine(
|
||||
module: ir.Module) -> execution_engine.ExecutionEngine:
|
||||
"""Compiles an MLIR module and builds a JIT execution engine.
|
||||
|
||||
Args:
|
||||
module: The MLIR module.
|
||||
|
||||
Returns:
|
||||
A JIT execution engine for the MLIR module.
|
||||
|
||||
"""
|
||||
pipeline = (
|
||||
f"sparsification,"
|
||||
f"sparse-tensor-conversion,"
|
||||
f"builtin.func(linalg-bufferize,convert-linalg-to-loops,convert-vector-to-scf),"
|
||||
f"convert-scf-to-std,"
|
||||
f"func-bufferize,"
|
||||
f"arith-bufferize,"
|
||||
f"builtin.func(tensor-bufferize,std-bufferize,finalizing-bufferize),"
|
||||
f"convert-vector-to-llvm{{reassociate-fp-reductions=1 enable-index-optimizations=1}},"
|
||||
f"lower-affine,"
|
||||
f"convert-memref-to-llvm,"
|
||||
f"convert-std-to-llvm,"
|
||||
f"reconcile-unrealized-casts")
|
||||
PassManager.parse(pipeline).run(module)
|
||||
return execution_engine.ExecutionEngine(
|
||||
module, opt_level=_OPT_LEVEL, shared_libs=[_get_support_lib_name()])
|
||||
|
||||
|
||||
class _SparseTensorDescriptor(ctypes.Structure):
|
||||
"""A C structure for an MLIR sparse tensor."""
|
||||
_fields_ = [
|
||||
# A pointer for the MLIR sparse tensor storage.
|
||||
("storage", ctypes.POINTER(ctypes.c_ulonglong)),
|
||||
# An MLIR MemRef descriptor for the shape of the sparse tensor.
|
||||
("shape", runtime.make_nd_memref_descriptor(1, ctypes.c_ulonglong)),
|
||||
]
|
||||
|
||||
|
||||
def _output_one_dim(dim: int, rank: int, shape: str) -> str:
|
||||
"""Produces the MLIR text code to output the size for the given dimension."""
|
||||
return f"""
|
||||
%c{dim} = arith.constant {dim} : index
|
||||
%d{dim} = tensor.dim %t, %c{dim} : tensor<{shape}xf64, #enc>
|
||||
memref.store %d{dim}, %b[%c{dim}] : memref<{rank}xindex>
|
||||
"""
|
||||
|
||||
|
||||
# TODO: With better support from MLIR, we may improve the current implementation
|
||||
# by doing the following:
|
||||
# (1) Use Python code to generate the kernel instead of doing MLIR text code
|
||||
# stitching.
|
||||
# (2) Use scf.for instead of an unrolled loop to write out the dimension sizes
|
||||
# when tensor.dim supports non-constant dimension value.
|
||||
def _get_create_sparse_tensor_kernel(
|
||||
sparsity_codes: Sequence[sparse_tensor.DimLevelType]) -> str:
|
||||
"""Creates an MLIR text kernel to contruct a sparse tensor from a file.
|
||||
|
||||
The kernel returns a _SparseTensorDescriptor structure.
|
||||
"""
|
||||
rank = len(sparsity_codes)
|
||||
|
||||
# Use ? to represent a dimension in the dynamic shape string representation.
|
||||
shape = "x".join(map(lambda d: "?", range(rank)))
|
||||
|
||||
# Convert the encoded sparsity values to a string representation.
|
||||
sparsity = ", ".join(
|
||||
map(lambda s: '"compressed"' if s.value else '"dense"', sparsity_codes))
|
||||
|
||||
# Get the MLIR text code to write the dimension sizes to the output buffer.
|
||||
output_dims = "\n".join(
|
||||
map(lambda d: _output_one_dim(d, rank, shape), range(rank)))
|
||||
|
||||
# Return the MLIR text kernel.
|
||||
return f"""
|
||||
!Ptr = type !llvm.ptr<i8>
|
||||
#enc = #sparse_tensor.encoding<{{
|
||||
dimLevelType = [ {sparsity} ]
|
||||
}}>
|
||||
func @{_ENTRY_NAME}(%filename: !Ptr) -> (tensor<{shape}xf64, #enc>, memref<{rank}xindex>)
|
||||
attributes {{ llvm.emit_c_interface }} {{
|
||||
%t = sparse_tensor.new %filename : !Ptr to tensor<{shape}xf64, #enc>
|
||||
%b = memref.alloc() : memref<{rank}xindex>
|
||||
{output_dims}
|
||||
return %t, %b : tensor<{shape}xf64, #enc>, memref<{rank}xindex>
|
||||
}}"""
|
||||
|
||||
|
||||
def create_sparse_tensor(
|
||||
filename: str, sparsity: Sequence[sparse_tensor.DimLevelType]
|
||||
) -> Tuple[ctypes.c_void_p, np.ndarray]:
|
||||
"""Creates an MLIR sparse tensor from the input file.
|
||||
|
||||
Args:
|
||||
filename: A string for the name of the file that contains the tensor data in
|
||||
a COO-flavored format.
|
||||
sparsity: A sequence of DimLevelType values, one for each dimension of the
|
||||
tensor.
|
||||
|
||||
Returns:
|
||||
A Tuple containing the following values:
|
||||
storage: A ctypes.c_void_p for the MLIR sparse tensor storage.
|
||||
shape: A 1D numpy array of integers, for the shape of the tensor.
|
||||
|
||||
Raises:
|
||||
OSError: If there is any problem in loading the supporting C shared library.
|
||||
ValueError: If the shared library doesn't contain the needed routine.
|
||||
"""
|
||||
with ir.Context() as ctx, ir.Location.unknown():
|
||||
module = _get_create_sparse_tensor_kernel(sparsity)
|
||||
module = ir.Module.parse(module)
|
||||
engine = compile_and_build_engine(module)
|
||||
|
||||
# A sparse tensor descriptor to receive the kernel result.
|
||||
c_tensor_desc = _SparseTensorDescriptor()
|
||||
# Convert the filename to a byte stream.
|
||||
c_filename = ctypes.c_char_p(bytes(filename, "utf-8"))
|
||||
|
||||
arg_pointers = [
|
||||
ctypes.byref(ctypes.pointer(c_tensor_desc)),
|
||||
ctypes.byref(c_filename)
|
||||
]
|
||||
|
||||
# Invoke the execution engine to run the module and return the result.
|
||||
engine.invoke(_ENTRY_NAME, *arg_pointers)
|
||||
shape = runtime.ranked_memref_to_numpy(ctypes.pointer(c_tensor_desc.shape))
|
||||
return c_tensor_desc.storage, shape
|
||||
|
|
|
@ -0,0 +1,121 @@
|
|||
# RUN: SUPPORTLIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s
|
||||
|
||||
from typing import Sequence
|
||||
import dataclasses
|
||||
import numpy as np
|
||||
import os
|
||||
import sys
|
||||
import tempfile
|
||||
|
||||
from mlir.dialects import sparse_tensor
|
||||
|
||||
_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append(_SCRIPT_PATH)
|
||||
from tools import mlir_pytaco
|
||||
from tools import mlir_pytaco_utils as pytaco_utils
|
||||
|
||||
# Define the aliases to shorten the code.
|
||||
_COMPRESSED = mlir_pytaco.ModeFormat.COMPRESSED
|
||||
_DENSE = mlir_pytaco.ModeFormat.DENSE
|
||||
|
||||
|
||||
def _to_string(s: Sequence[int]) -> str:
|
||||
"""Converts a sequence of integer to a space separated value string."""
|
||||
return " ".join(map(lambda e: str(e), s))
|
||||
|
||||
|
||||
def _add_one(s: Sequence[int]) -> Sequence[int]:
|
||||
"""Adds one to each element in the sequence of integer."""
|
||||
return [i + 1 for i in s]
|
||||
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class _SparseTensorCOO:
|
||||
"""Values for a COO-flavored format sparse tensor.
|
||||
|
||||
Attributes:
|
||||
rank: An integer rank for the tensor.
|
||||
nse: An integer for the number of non-zero values.
|
||||
shape: A sequence of integer for the dimension size.
|
||||
values: A sequence of float for the non-zero values of the tensor.
|
||||
indices: A sequence of coordinate, each coordinate is a sequence of integer.
|
||||
"""
|
||||
rank: int
|
||||
nse: int
|
||||
shape: Sequence[int]
|
||||
values: Sequence[float]
|
||||
indices: Sequence[Sequence[int]]
|
||||
|
||||
|
||||
def _coo_values_to_tns_format(t: _SparseTensorCOO) -> str:
|
||||
"""Converts a sparse tensor COO-flavored values to TNS text format."""
|
||||
# The coo_value_str contains one line for each (coordinate value) pair.
|
||||
# Indices are 1-based in TNS text format but 0-based in MLIR.
|
||||
coo_value_str = "\n".join(
|
||||
map(lambda i: _to_string(_add_one(t.indices[i])) + " " + str(t.values[i]),
|
||||
range(t.nse)))
|
||||
|
||||
# Returns the TNS text format representation for the tensor.
|
||||
return f"""{t.rank} {t.nse}
|
||||
{_to_string(t.shape)}
|
||||
{coo_value_str}
|
||||
"""
|
||||
|
||||
|
||||
def _implement_read_tns_test(
|
||||
t: _SparseTensorCOO,
|
||||
sparsity_codes: Sequence[sparse_tensor.DimLevelType]) -> int:
|
||||
tns_data = _coo_values_to_tns_format(t)
|
||||
|
||||
# Write sparse tensor data to a file.
|
||||
with tempfile.TemporaryDirectory() as test_dir:
|
||||
file_name = os.path.join(test_dir, "data.tns")
|
||||
with open(file_name, "w") as file:
|
||||
file.write(tns_data)
|
||||
|
||||
# Read the data from the file and construct an MLIR sparse tensor.
|
||||
sparse_tensor, o_shape = pytaco_utils.create_sparse_tensor(
|
||||
file_name, sparsity_codes)
|
||||
|
||||
passed = 0
|
||||
|
||||
# Verify the output shape for the tensor.
|
||||
if np.allclose(o_shape, t.shape):
|
||||
passed += 1
|
||||
|
||||
# Use the output MLIR sparse tensor pointer to retrieve the COO-flavored
|
||||
# values and verify the values.
|
||||
o_rank, o_nse, o_shape, o_values, o_indices = (
|
||||
pytaco_utils.sparse_tensor_to_coo_tensor(sparse_tensor, np.float64))
|
||||
if o_rank == t.rank and o_nse == t.nse and np.allclose(
|
||||
o_shape, t.shape) and np.allclose(o_values, t.values) and np.allclose(
|
||||
o_indices, t.indices):
|
||||
passed += 1
|
||||
|
||||
return passed
|
||||
|
||||
|
||||
# A 2D sparse tensor data in COO-flavored format.
|
||||
_rank = 2
|
||||
_nse = 3
|
||||
_shape = [4, 5]
|
||||
_values = [3.0, 2.0, 4.0]
|
||||
_indices = [[0, 4], [1, 0], [3, 1]]
|
||||
|
||||
_t = _SparseTensorCOO(_rank, _nse, _shape, _values, _indices)
|
||||
_s = [_COMPRESSED, _COMPRESSED]
|
||||
# CHECK: PASSED 2D: 2
|
||||
print("PASSED 2D: ", _implement_read_tns_test(_t, _s))
|
||||
|
||||
|
||||
# A 3D sparse tensor data in COO-flavored format.
|
||||
_rank = 3
|
||||
_nse = 3
|
||||
_shape = [2, 5, 4]
|
||||
_values = [3.0, 2.0, 4.0]
|
||||
_indices = [[0, 4, 3], [1, 3, 0], [1, 3, 1]]
|
||||
|
||||
_t = _SparseTensorCOO(_rank, _nse, _shape, _values, _indices)
|
||||
_s = [_DENSE, _COMPRESSED, _COMPRESSED]
|
||||
# CHECK: PASSED 3D: 2
|
||||
print("PASSED 3D: ", _implement_read_tns_test(_t, _s))
|
Loading…
Reference in New Issue