[LoopVectorizer] NFC: Remove unnecessary asserts that VF cannot be scalable.

This patch removes a number of asserts that VF is not scalable, even though
the code where this assert lives does nothing that prevents VF being scalable.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D91060
This commit is contained in:
Sander de Smalen 2020-12-08 14:19:52 +00:00
parent 4519ff4b6f
commit adc37145de
1 changed files with 5 additions and 11 deletions

View File

@ -367,7 +367,6 @@ static Type *getMemInstValueType(Value *I) {
/// type is irregular if its allocated size doesn't equal the store size of an
/// element of the corresponding vector type at the given vectorization factor.
static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) {
assert(!VF.isScalable() && "scalable vectors not yet supported.");
// Determine if an array of VF elements of type Ty is "bitcast compatible"
// with a <VF x Ty> vector.
if (VF.isVector()) {
@ -1387,9 +1386,7 @@ public:
/// width \p VF. Return CM_Unknown if this instruction did not pass
/// through the cost modeling.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) {
assert(!VF.isScalable() && "scalable vectors not yet supported.");
assert(VF.isVector() && "Expected VF >=2");
assert(VF.isVector() && "Expected VF to be a vector VF");
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
@ -3902,8 +3899,10 @@ void InnerLoopVectorizer::fixVectorizedLoop() {
// profile is not inherently precise anyway. Note also possible bypass of
// vector code caused by legality checks is ignored, assigning all the weight
// to the vector loop, optimistically.
assert(!VF.isScalable() &&
"cannot use scalable ElementCount to determine unroll factor");
//
// For scalable vectorization we can't know at compile time how many iterations
// of the loop are handled in one vector iteration, so instead assume a pessimistic
// vscale of '1'.
setProfileInfoAfterUnrolling(
LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
@ -4709,7 +4708,6 @@ static bool mayDivideByZero(Instruction &I) {
void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
VPUser &User,
VPTransformState &State) {
assert(!VF.isScalable() && "scalable vectors not yet supported.");
switch (I.getOpcode()) {
case Instruction::Call:
case Instruction::Br:
@ -4797,7 +4795,6 @@ void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
setDebugLocFromInst(Builder, CI);
/// Vectorize casts.
assert(!VF.isScalable() && "VF is assumed to be non scalable.");
Type *DestTy =
(VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
@ -5099,7 +5096,6 @@ void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I,
ElementCount VF) {
assert(!VF.isScalable() && "scalable vectors not yet supported.");
if (!blockNeedsPredication(I->getParent()))
return false;
switch(I->getOpcode()) {
@ -6420,7 +6416,6 @@ int LoopVectorizationCostModel::computePredInstDiscount(
LoopVectorizationCostModel::VectorizationCostTy
LoopVectorizationCostModel::expectedCost(ElementCount VF) {
assert(!VF.isScalable() && "scalable vectors not yet supported.");
VectorizationCostTy Cost;
// For each block.
@ -7935,7 +7930,6 @@ VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
"Must be called with either a load or store");
auto willWiden = [&](ElementCount VF) -> bool {
assert(!VF.isScalable() && "unexpected scalable ElementCount");
if (VF.isScalar())
return false;
LoopVectorizationCostModel::InstWidening Decision =