forked from OSchip/llvm-project
Initial support for anti-dependence breaking. Currently this code does not
introduce any new spilling; it just uses unused registers. Refactor the SUnit topological sort code out of the RRList scheduler and make use of it to help with the post-pass scheduler. llvm-svn: 59999
This commit is contained in:
parent
524c284aef
commit
ad2134d45d
|
@ -17,6 +17,7 @@
|
|||
|
||||
#include "llvm/CodeGen/MachineBasicBlock.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/BitVector.h"
|
||||
#include "llvm/ADT/GraphTraits.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
|
||||
|
@ -148,7 +149,9 @@ namespace llvm {
|
|||
unsigned PhyReg = 0, int Cost = 1, bool isAntiDep = false) {
|
||||
for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
|
||||
if (Preds[i].Dep == N &&
|
||||
Preds[i].isCtrl == isCtrl && Preds[i].isArtificial == isArtificial)
|
||||
Preds[i].isCtrl == isCtrl &&
|
||||
Preds[i].isArtificial == isArtificial &&
|
||||
Preds[i].isAntiDep == isAntiDep)
|
||||
return false;
|
||||
Preds.push_back(SDep(N, PhyReg, Cost, isCtrl, isArtificial, isAntiDep));
|
||||
N->Succs.push_back(SDep(this, PhyReg, Cost, isCtrl,
|
||||
|
@ -167,7 +170,10 @@ namespace llvm {
|
|||
bool removePred(SUnit *N, bool isCtrl, bool isArtificial, bool isAntiDep) {
|
||||
for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
|
||||
I != E; ++I)
|
||||
if (I->Dep == N && I->isCtrl == isCtrl && I->isArtificial == isArtificial) {
|
||||
if (I->Dep == N &&
|
||||
I->isCtrl == isCtrl &&
|
||||
I->isArtificial == isArtificial &&
|
||||
I->isAntiDep == isAntiDep) {
|
||||
bool FoundSucc = false;
|
||||
for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
|
||||
EE = N->Succs.end(); II != EE; ++II)
|
||||
|
@ -404,6 +410,73 @@ namespace llvm {
|
|||
return G->SUnits.end();
|
||||
}
|
||||
};
|
||||
|
||||
/// ScheduleDAGTopologicalSort is a class that computes a topological
|
||||
/// ordering for SUnits and provides methods for dynamically updating
|
||||
/// the ordering as new edges are added.
|
||||
///
|
||||
/// This allows a very fast implementation of IsReachable, for example.
|
||||
///
|
||||
class ScheduleDAGTopologicalSort {
|
||||
/// SUnits - A reference to the ScheduleDAG's SUnits.
|
||||
std::vector<SUnit> &SUnits;
|
||||
|
||||
/// Index2Node - Maps topological index to the node number.
|
||||
std::vector<int> Index2Node;
|
||||
/// Node2Index - Maps the node number to its topological index.
|
||||
std::vector<int> Node2Index;
|
||||
/// Visited - a set of nodes visited during a DFS traversal.
|
||||
BitVector Visited;
|
||||
|
||||
/// DFS - make a DFS traversal and mark all nodes affected by the
|
||||
/// edge insertion. These nodes will later get new topological indexes
|
||||
/// by means of the Shift method.
|
||||
void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
|
||||
|
||||
/// Shift - reassign topological indexes for the nodes in the DAG
|
||||
/// to preserve the topological ordering.
|
||||
void Shift(BitVector& Visited, int LowerBound, int UpperBound);
|
||||
|
||||
/// Allocate - assign the topological index to the node n.
|
||||
void Allocate(int n, int index);
|
||||
|
||||
public:
|
||||
explicit ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits);
|
||||
|
||||
/// InitDAGTopologicalSorting - create the initial topological
|
||||
/// ordering from the DAG to be scheduled.
|
||||
void InitDAGTopologicalSorting();
|
||||
|
||||
/// IsReachable - Checks if SU is reachable from TargetSU.
|
||||
bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
|
||||
|
||||
/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
|
||||
/// will create a cycle.
|
||||
bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
|
||||
|
||||
/// AddPred - Updates the topological ordering to accomodate an edge
|
||||
/// to be added from SUnit X to SUnit Y.
|
||||
void AddPred(SUnit *Y, SUnit *X);
|
||||
|
||||
/// RemovePred - Updates the topological ordering to accomodate an
|
||||
/// an edge to be removed from the specified node N from the predecessors
|
||||
/// of the current node M.
|
||||
void RemovePred(SUnit *M, SUnit *N);
|
||||
|
||||
typedef std::vector<int>::iterator iterator;
|
||||
typedef std::vector<int>::const_iterator const_iterator;
|
||||
iterator begin() { return Index2Node.begin(); }
|
||||
const_iterator begin() const { return Index2Node.begin(); }
|
||||
iterator end() { return Index2Node.end(); }
|
||||
const_iterator end() const { return Index2Node.end(); }
|
||||
|
||||
typedef std::vector<int>::reverse_iterator reverse_iterator;
|
||||
typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
|
||||
reverse_iterator rbegin() { return Index2Node.rbegin(); }
|
||||
const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
|
||||
reverse_iterator rend() { return Index2Node.rend(); }
|
||||
const_reverse_iterator rend() const { return Index2Node.rend(); }
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -24,24 +24,32 @@
|
|||
#include "llvm/CodeGen/LatencyPriorityQueue.h"
|
||||
#include "llvm/CodeGen/SchedulerRegistry.h"
|
||||
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||||
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
#include "llvm/Target/TargetRegisterInfo.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/ADT/DenseSet.h"
|
||||
#include <map>
|
||||
#include <climits>
|
||||
using namespace llvm;
|
||||
|
||||
STATISTIC(NumStalls, "Number of pipeline stalls");
|
||||
|
||||
static cl::opt<bool>
|
||||
EnableAntiDepBreaking("break-anti-dependencies",
|
||||
cl::desc("Break scheduling anti-dependencies"),
|
||||
cl::init(false));
|
||||
|
||||
namespace {
|
||||
class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
|
||||
public:
|
||||
static char ID;
|
||||
PostRAScheduler() : MachineFunctionPass(&ID) {}
|
||||
private:
|
||||
MachineFunction *MF;
|
||||
const TargetMachine *TM;
|
||||
public:
|
||||
|
||||
const char *getPassName() const {
|
||||
return "Post RA top-down list latency scheduler (STUB)";
|
||||
return "Post RA top-down list latency scheduler";
|
||||
}
|
||||
|
||||
bool runOnMachineFunction(MachineFunction &Fn);
|
||||
|
@ -49,13 +57,6 @@ namespace {
|
|||
char PostRAScheduler::ID = 0;
|
||||
|
||||
class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
|
||||
public:
|
||||
SchedulePostRATDList(MachineBasicBlock *mbb, const TargetMachine &tm)
|
||||
: ScheduleDAGInstrs(mbb, tm) {}
|
||||
private:
|
||||
MachineFunction *MF;
|
||||
const TargetMachine *TM;
|
||||
|
||||
/// AvailableQueue - The priority queue to use for the available SUnits.
|
||||
///
|
||||
LatencyPriorityQueue AvailableQueue;
|
||||
|
@ -66,12 +67,12 @@ namespace {
|
|||
/// added to the AvailableQueue.
|
||||
std::vector<SUnit*> PendingQueue;
|
||||
|
||||
public:
|
||||
const char *getPassName() const {
|
||||
return "Post RA top-down list latency scheduler (STUB)";
|
||||
}
|
||||
/// Topo - A topological ordering for SUnits.
|
||||
ScheduleDAGTopologicalSort Topo;
|
||||
|
||||
bool runOnMachineFunction(MachineFunction &Fn);
|
||||
public:
|
||||
SchedulePostRATDList(MachineBasicBlock *mbb, const TargetMachine &tm)
|
||||
: ScheduleDAGInstrs(mbb, tm), Topo(SUnits) {}
|
||||
|
||||
void Schedule();
|
||||
|
||||
|
@ -79,19 +80,18 @@ namespace {
|
|||
void ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain);
|
||||
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
|
||||
void ListScheduleTopDown();
|
||||
bool BreakAntiDependencies();
|
||||
};
|
||||
}
|
||||
|
||||
bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
|
||||
DOUT << "PostRAScheduler\n";
|
||||
MF = &Fn;
|
||||
TM = &MF->getTarget();
|
||||
|
||||
// Loop over all of the basic blocks
|
||||
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
|
||||
MBB != MBBe; ++MBB) {
|
||||
|
||||
SchedulePostRATDList Scheduler(MBB, *TM);
|
||||
SchedulePostRATDList Scheduler(MBB, Fn.getTarget());
|
||||
|
||||
Scheduler.Run();
|
||||
|
||||
|
@ -108,13 +108,407 @@ void SchedulePostRATDList::Schedule() {
|
|||
// Build scheduling units.
|
||||
BuildSchedUnits();
|
||||
|
||||
if (EnableAntiDepBreaking) {
|
||||
if (BreakAntiDependencies()) {
|
||||
// We made changes. Update the dependency graph.
|
||||
// Theoretically we could update the graph in place:
|
||||
// When a live range is changed to use a different register, remove
|
||||
// the def's anti-dependence *and* output-dependence edges due to
|
||||
// that register, and add new anti-dependence and output-dependence
|
||||
// edges based on the next live range of the register.
|
||||
SUnits.clear();
|
||||
BuildSchedUnits();
|
||||
}
|
||||
}
|
||||
|
||||
AvailableQueue.initNodes(SUnits);
|
||||
|
||||
|
||||
ListScheduleTopDown();
|
||||
|
||||
AvailableQueue.releaseState();
|
||||
}
|
||||
|
||||
/// getInstrOperandRegClass - Return register class of the operand of an
|
||||
/// instruction of the specified TargetInstrDesc.
|
||||
static const TargetRegisterClass*
|
||||
getInstrOperandRegClass(const TargetRegisterInfo *TRI,
|
||||
const TargetInstrInfo *TII, const TargetInstrDesc &II,
|
||||
unsigned Op) {
|
||||
if (Op >= II.getNumOperands())
|
||||
return NULL;
|
||||
if (II.OpInfo[Op].isLookupPtrRegClass())
|
||||
return TII->getPointerRegClass();
|
||||
return TRI->getRegClass(II.OpInfo[Op].RegClass);
|
||||
}
|
||||
|
||||
/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
|
||||
/// of the ScheduleDAG and break them by renaming registers.
|
||||
///
|
||||
bool SchedulePostRATDList::BreakAntiDependencies() {
|
||||
// The code below assumes that there is at least one instruction,
|
||||
// so just duck out immediately if the block is empty.
|
||||
if (BB->empty()) return false;
|
||||
|
||||
Topo.InitDAGTopologicalSorting();
|
||||
|
||||
// Compute a critical path for the DAG.
|
||||
SUnit *Max = 0;
|
||||
std::vector<SDep *> CriticalPath(SUnits.size());
|
||||
for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
|
||||
E = Topo.end(); I != E; ++I) {
|
||||
SUnit *SU = &SUnits[*I];
|
||||
for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
|
||||
P != PE; ++P) {
|
||||
SUnit *PredSU = P->Dep;
|
||||
unsigned PredLatency = PredSU->CycleBound + PredSU->Latency;
|
||||
if (SU->CycleBound < PredLatency) {
|
||||
SU->CycleBound = PredLatency;
|
||||
CriticalPath[*I] = &*P;
|
||||
}
|
||||
}
|
||||
// Keep track of the node at the end of the critical path.
|
||||
if (!Max || SU->CycleBound + SU->Latency > Max->CycleBound + Max->Latency)
|
||||
Max = SU;
|
||||
}
|
||||
|
||||
DOUT << "Critical path has total latency "
|
||||
<< (Max ? Max->CycleBound + Max->Latency : 0) << "\n";
|
||||
|
||||
// Walk the critical path from the bottom up. Collect all anti-dependence
|
||||
// edges on the critical path. Skip anti-dependencies between SUnits that
|
||||
// are connected with other edges, since such units won't be able to be
|
||||
// scheduled past each other anyway.
|
||||
//
|
||||
// The heuristic is that edges on the critical path are more important to
|
||||
// break than other edges. And since there are a limited number of
|
||||
// registers, we don't want to waste them breaking edges that aren't
|
||||
// important.
|
||||
//
|
||||
// TODO: Instructions with multiple defs could have multiple
|
||||
// anti-dependencies. The current code here only knows how to break one
|
||||
// edge per instruction. Note that we'd have to be able to break all of
|
||||
// the anti-dependencies in an instruction in order to be effective.
|
||||
BitVector AllocatableSet = TRI->getAllocatableSet(*MF);
|
||||
DenseMap<MachineInstr *, unsigned> CriticalAntiDeps;
|
||||
for (SUnit *SU = Max; CriticalPath[SU->NodeNum];
|
||||
SU = CriticalPath[SU->NodeNum]->Dep) {
|
||||
SDep *Edge = CriticalPath[SU->NodeNum];
|
||||
SUnit *NextSU = Edge->Dep;
|
||||
unsigned AntiDepReg = Edge->Reg;
|
||||
// Don't break anti-dependencies on non-allocatable registers.
|
||||
if (!AllocatableSet.test(AntiDepReg))
|
||||
continue;
|
||||
// If the SUnit has other dependencies on the SUnit that it
|
||||
// anti-depends on, don't bother breaking the anti-dependency.
|
||||
// Also, if there are dependencies on other SUnits with the
|
||||
// same register as the anti-dependency, don't attempt to
|
||||
// break it.
|
||||
for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
|
||||
P != PE; ++P)
|
||||
if (P->Dep == NextSU ?
|
||||
(!P->isAntiDep || P->Reg != AntiDepReg) :
|
||||
(!P->isCtrl && !P->isAntiDep && P->Reg == AntiDepReg)) {
|
||||
AntiDepReg = 0;
|
||||
break;
|
||||
}
|
||||
if (AntiDepReg != 0)
|
||||
CriticalAntiDeps[SU->getInstr()] = AntiDepReg;
|
||||
}
|
||||
|
||||
// For live regs that are only used in one register class in a live range,
|
||||
// the register class. If the register is not live or is referenced in
|
||||
// multiple register classes, the corresponding value is null. If the
|
||||
// register is used in multiple register classes, the corresponding value
|
||||
// is -1 casted to a pointer.
|
||||
const TargetRegisterClass *
|
||||
Classes[TargetRegisterInfo::FirstVirtualRegister] = {};
|
||||
|
||||
// Map registers to all their references within a live range.
|
||||
std::multimap<unsigned, MachineOperand *> RegRefs;
|
||||
|
||||
// The index of the most recent kill (proceding bottom-up), or -1 if
|
||||
// the register is not live.
|
||||
unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
|
||||
std::fill(KillIndices, array_endof(KillIndices), -1);
|
||||
// The index of the most recent def (proceding bottom up), or -1 if
|
||||
// the register is live.
|
||||
unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
|
||||
std::fill(DefIndices, array_endof(DefIndices), BB->size());
|
||||
|
||||
// Determine the live-out physregs for this block.
|
||||
if (!BB->empty() && BB->back().getDesc().isReturn())
|
||||
// In a return block, examine the function live-out regs.
|
||||
for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
|
||||
E = MRI.liveout_end(); I != E; ++I) {
|
||||
unsigned Reg = *I;
|
||||
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
KillIndices[Reg] = BB->size();
|
||||
DefIndices[Reg] = -1;
|
||||
// Repeat, for all aliases.
|
||||
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
||||
unsigned AliasReg = *Alias;
|
||||
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
KillIndices[AliasReg] = BB->size();
|
||||
DefIndices[AliasReg] = -1;
|
||||
}
|
||||
}
|
||||
else
|
||||
// In a non-return block, examine the live-in regs of all successors.
|
||||
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
|
||||
SE = BB->succ_end(); SI != SE; ++SI)
|
||||
for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
|
||||
E = (*SI)->livein_end(); I != E; ++I) {
|
||||
unsigned Reg = *I;
|
||||
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
KillIndices[Reg] = BB->size();
|
||||
DefIndices[Reg] = -1;
|
||||
// Repeat, for all aliases.
|
||||
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
||||
unsigned AliasReg = *Alias;
|
||||
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
KillIndices[AliasReg] = BB->size();
|
||||
DefIndices[AliasReg] = -1;
|
||||
}
|
||||
}
|
||||
|
||||
// Consider callee-saved registers as live-out, since we're running after
|
||||
// prologue/epilogue insertion so there's no way to add additional
|
||||
// saved registers.
|
||||
//
|
||||
// TODO: If the callee saves and restores these, then we can potentially
|
||||
// use them between the save and the restore. To do that, we could scan
|
||||
// the exit blocks to see which of these registers are defined.
|
||||
for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
|
||||
unsigned Reg = *I;
|
||||
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
KillIndices[Reg] = BB->size();
|
||||
DefIndices[Reg] = -1;
|
||||
// Repeat, for all aliases.
|
||||
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
||||
unsigned AliasReg = *Alias;
|
||||
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
KillIndices[AliasReg] = BB->size();
|
||||
DefIndices[AliasReg] = -1;
|
||||
}
|
||||
}
|
||||
|
||||
// Consider this pattern:
|
||||
// A = ...
|
||||
// ... = A
|
||||
// A = ...
|
||||
// ... = A
|
||||
// A = ...
|
||||
// ... = A
|
||||
// A = ...
|
||||
// ... = A
|
||||
// There are three anti-dependencies here, and without special care,
|
||||
// we'd break all of them using the same register:
|
||||
// A = ...
|
||||
// ... = A
|
||||
// B = ...
|
||||
// ... = B
|
||||
// B = ...
|
||||
// ... = B
|
||||
// B = ...
|
||||
// ... = B
|
||||
// because at each anti-dependence, B is the first register that
|
||||
// isn't A which is free. This re-introduces anti-dependencies
|
||||
// at all but one of the original anti-dependencies that we were
|
||||
// trying to break. To avoid this, keep track of the most recent
|
||||
// register that each register was replaced with, avoid avoid
|
||||
// using it to repair an anti-dependence on the same register.
|
||||
// This lets us produce this:
|
||||
// A = ...
|
||||
// ... = A
|
||||
// B = ...
|
||||
// ... = B
|
||||
// C = ...
|
||||
// ... = C
|
||||
// B = ...
|
||||
// ... = B
|
||||
// This still has an anti-dependence on B, but at least it isn't on the
|
||||
// original critical path.
|
||||
//
|
||||
// TODO: If we tracked more than one register here, we could potentially
|
||||
// fix that remaining critical edge too. This is a little more involved,
|
||||
// because unlike the most recent register, less recent registers should
|
||||
// still be considered, though only if no other registers are available.
|
||||
unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
|
||||
|
||||
// A registers defined and not used in an instruction. This is used for
|
||||
// liveness tracking and is declared outside the loop only to avoid
|
||||
// having it be re-allocated on each iteration.
|
||||
DenseSet<unsigned> Defs;
|
||||
|
||||
// Attempt to break anti-dependence edges on the critical path. Walk the
|
||||
// instructions from the bottom up, tracking information about liveness
|
||||
// as we go to help determine which registers are available.
|
||||
bool Changed = false;
|
||||
unsigned Count = BB->size() - 1;
|
||||
for (MachineBasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend();
|
||||
I != E; ++I, --Count) {
|
||||
MachineInstr *MI = &*I;
|
||||
|
||||
// Check if this instruction has an anti-dependence that we're
|
||||
// interested in.
|
||||
DenseMap<MachineInstr *, unsigned>::iterator C = CriticalAntiDeps.find(MI);
|
||||
unsigned AntiDepReg = C != CriticalAntiDeps.end() ?
|
||||
C->second : 0;
|
||||
|
||||
// Scan the register operands for this instruction and update
|
||||
// Classes and RegRefs.
|
||||
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
||||
MachineOperand &MO = MI->getOperand(i);
|
||||
if (!MO.isReg()) continue;
|
||||
unsigned Reg = MO.getReg();
|
||||
if (Reg == 0) continue;
|
||||
const TargetRegisterClass *NewRC =
|
||||
getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
|
||||
|
||||
// If this instruction has a use of AntiDepReg, breaking it
|
||||
// is invalid.
|
||||
if (MO.isUse() && AntiDepReg == Reg)
|
||||
AntiDepReg = 0;
|
||||
|
||||
// For now, only allow the register to be changed if its register
|
||||
// class is consistent across all uses.
|
||||
if (!Classes[Reg] && NewRC)
|
||||
Classes[Reg] = NewRC;
|
||||
else if (!NewRC || Classes[Reg] != NewRC)
|
||||
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
|
||||
// Now check for aliases.
|
||||
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
||||
// If an alias of the reg is used during the live range, give up.
|
||||
// Note that this allows us to skip checking if AntiDepReg
|
||||
// overlaps with any of the aliases, among other things.
|
||||
unsigned AliasReg = *Alias;
|
||||
if (Classes[AliasReg]) {
|
||||
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
}
|
||||
}
|
||||
|
||||
// If we're still willing to consider this register, note the reference.
|
||||
if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
|
||||
RegRefs.insert(std::make_pair(Reg, &MO));
|
||||
}
|
||||
|
||||
// Determine AntiDepReg's register class, if it is live and is
|
||||
// consistently used within a single class.
|
||||
const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
|
||||
assert(AntiDepReg == 0 || RC != NULL &&
|
||||
"Register should be live if it's causing an anti-dependence!");
|
||||
if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
|
||||
AntiDepReg = 0;
|
||||
|
||||
// Look for a suitable register to use to break the anti-depenence.
|
||||
//
|
||||
// TODO: Instead of picking the first free register, consider which might
|
||||
// be the best.
|
||||
if (AntiDepReg != 0) {
|
||||
for (TargetRegisterClass::iterator R = RC->allocation_order_begin(*MF),
|
||||
RE = RC->allocation_order_end(*MF); R != RE; ++R) {
|
||||
unsigned NewReg = *R;
|
||||
// Don't replace a register with itself.
|
||||
if (NewReg == AntiDepReg) continue;
|
||||
// Don't replace a register with one that was recently used to repair
|
||||
// an anti-dependence with this AntiDepReg, because that would
|
||||
// re-introduce that anti-dependence.
|
||||
if (NewReg == LastNewReg[AntiDepReg]) continue;
|
||||
// If NewReg is dead and NewReg's most recent def is not before
|
||||
// AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
|
||||
assert(((KillIndices[AntiDepReg] == -1) != (DefIndices[AntiDepReg] == -1)) &&
|
||||
"Kill and Def maps aren't consistent for AntiDepReg!");
|
||||
assert(((KillIndices[NewReg] == -1) != (DefIndices[NewReg] == -1)) &&
|
||||
"Kill and Def maps aren't consistent for NewReg!");
|
||||
if (KillIndices[NewReg] == -1 &&
|
||||
KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
|
||||
DOUT << "Breaking anti-dependence edge on reg " << AntiDepReg
|
||||
<< " with reg " << NewReg << "!\n";
|
||||
|
||||
// Update the references to the old register to refer to the new
|
||||
// register.
|
||||
std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
|
||||
std::multimap<unsigned, MachineOperand *>::iterator>
|
||||
Range = RegRefs.equal_range(AntiDepReg);
|
||||
for (std::multimap<unsigned, MachineOperand *>::iterator
|
||||
Q = Range.first, QE = Range.second; Q != QE; ++Q)
|
||||
Q->second->setReg(NewReg);
|
||||
|
||||
// We just went back in time and modified history; the
|
||||
// liveness information for the anti-depenence reg is now
|
||||
// inconsistent. Set the state as if it were dead.
|
||||
Classes[NewReg] = Classes[AntiDepReg];
|
||||
DefIndices[NewReg] = DefIndices[AntiDepReg];
|
||||
KillIndices[NewReg] = KillIndices[AntiDepReg];
|
||||
|
||||
Classes[AntiDepReg] = 0;
|
||||
DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
|
||||
KillIndices[AntiDepReg] = -1;
|
||||
|
||||
RegRefs.erase(AntiDepReg);
|
||||
Changed = true;
|
||||
LastNewReg[AntiDepReg] = NewReg;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Update liveness.
|
||||
Defs.clear();
|
||||
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
||||
MachineOperand &MO = MI->getOperand(i);
|
||||
if (!MO.isReg()) continue;
|
||||
unsigned Reg = MO.getReg();
|
||||
if (Reg == 0) continue;
|
||||
if (MO.isDef())
|
||||
Defs.insert(Reg);
|
||||
else {
|
||||
// Treat a use in the same instruction as a def as an extension of
|
||||
// a live range.
|
||||
Defs.erase(Reg);
|
||||
// It wasn't previously live but now it is, this is a kill.
|
||||
if (KillIndices[Reg] == -1) {
|
||||
KillIndices[Reg] = Count;
|
||||
DefIndices[Reg] = -1;
|
||||
}
|
||||
// Repeat, for all aliases.
|
||||
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
||||
unsigned AliasReg = *Alias;
|
||||
Defs.erase(AliasReg);
|
||||
if (KillIndices[AliasReg] == -1) {
|
||||
KillIndices[AliasReg] = Count;
|
||||
DefIndices[AliasReg] = -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// Proceding upwards, registers that are defed but not used in this
|
||||
// instruction are now dead.
|
||||
for (DenseSet<unsigned>::iterator D = Defs.begin(), DE = Defs.end();
|
||||
D != DE; ++D) {
|
||||
unsigned Reg = *D;
|
||||
DefIndices[Reg] = Count;
|
||||
KillIndices[Reg] = -1;
|
||||
Classes[Reg] = 0;
|
||||
RegRefs.erase(Reg);
|
||||
// Repeat, for all subregs.
|
||||
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
|
||||
*Subreg; ++Subreg) {
|
||||
unsigned SubregReg = *Subreg;
|
||||
DefIndices[SubregReg] = Count;
|
||||
KillIndices[SubregReg] = -1;
|
||||
Classes[SubregReg] = 0;
|
||||
RegRefs.erase(SubregReg);
|
||||
}
|
||||
}
|
||||
}
|
||||
assert(Count == -1u && "Count mismatch!");
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Top-Down Scheduling
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
@ -202,8 +596,7 @@ void SchedulePostRATDList::ListScheduleTopDown() {
|
|||
}
|
||||
}
|
||||
|
||||
// If there are no instructions available, don't try to issue anything, and
|
||||
// don't advance the hazard recognizer.
|
||||
// If there are no instructions available, don't try to issue anything.
|
||||
if (AvailableQueue.empty()) {
|
||||
++CurCycle;
|
||||
continue;
|
||||
|
|
|
@ -263,3 +263,204 @@ void ScheduleDAG::VerifySchedule(bool isBottomUp) {
|
|||
"The number of nodes scheduled doesn't match the expected number!");
|
||||
}
|
||||
#endif
|
||||
|
||||
/// InitDAGTopologicalSorting - create the initial topological
|
||||
/// ordering from the DAG to be scheduled.
|
||||
///
|
||||
/// The idea of the algorithm is taken from
|
||||
/// "Online algorithms for managing the topological order of
|
||||
/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
|
||||
/// This is the MNR algorithm, which was first introduced by
|
||||
/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
|
||||
/// "Maintaining a topological order under edge insertions".
|
||||
///
|
||||
/// Short description of the algorithm:
|
||||
///
|
||||
/// Topological ordering, ord, of a DAG maps each node to a topological
|
||||
/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
|
||||
///
|
||||
/// This means that if there is a path from the node X to the node Z,
|
||||
/// then ord(X) < ord(Z).
|
||||
///
|
||||
/// This property can be used to check for reachability of nodes:
|
||||
/// if Z is reachable from X, then an insertion of the edge Z->X would
|
||||
/// create a cycle.
|
||||
///
|
||||
/// The algorithm first computes a topological ordering for the DAG by
|
||||
/// initializing the Index2Node and Node2Index arrays and then tries to keep
|
||||
/// the ordering up-to-date after edge insertions by reordering the DAG.
|
||||
///
|
||||
/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
|
||||
/// the nodes reachable from Y, and then shifts them using Shift to lie
|
||||
/// immediately after X in Index2Node.
|
||||
void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
|
||||
unsigned DAGSize = SUnits.size();
|
||||
std::vector<SUnit*> WorkList;
|
||||
WorkList.reserve(DAGSize);
|
||||
|
||||
Index2Node.resize(DAGSize);
|
||||
Node2Index.resize(DAGSize);
|
||||
|
||||
// Initialize the data structures.
|
||||
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
||||
SUnit *SU = &SUnits[i];
|
||||
int NodeNum = SU->NodeNum;
|
||||
unsigned Degree = SU->Succs.size();
|
||||
// Temporarily use the Node2Index array as scratch space for degree counts.
|
||||
Node2Index[NodeNum] = Degree;
|
||||
|
||||
// Is it a node without dependencies?
|
||||
if (Degree == 0) {
|
||||
assert(SU->Succs.empty() && "SUnit should have no successors");
|
||||
// Collect leaf nodes.
|
||||
WorkList.push_back(SU);
|
||||
}
|
||||
}
|
||||
|
||||
int Id = DAGSize;
|
||||
while (!WorkList.empty()) {
|
||||
SUnit *SU = WorkList.back();
|
||||
WorkList.pop_back();
|
||||
Allocate(SU->NodeNum, --Id);
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
SUnit *SU = I->Dep;
|
||||
if (!--Node2Index[SU->NodeNum])
|
||||
// If all dependencies of the node are processed already,
|
||||
// then the node can be computed now.
|
||||
WorkList.push_back(SU);
|
||||
}
|
||||
}
|
||||
|
||||
Visited.resize(DAGSize);
|
||||
|
||||
#ifndef NDEBUG
|
||||
// Check correctness of the ordering
|
||||
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
||||
SUnit *SU = &SUnits[i];
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] &&
|
||||
"Wrong topological sorting");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/// AddPred - Updates the topological ordering to accomodate an edge
|
||||
/// to be added from SUnit X to SUnit Y.
|
||||
void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
|
||||
int UpperBound, LowerBound;
|
||||
LowerBound = Node2Index[Y->NodeNum];
|
||||
UpperBound = Node2Index[X->NodeNum];
|
||||
bool HasLoop = false;
|
||||
// Is Ord(X) < Ord(Y) ?
|
||||
if (LowerBound < UpperBound) {
|
||||
// Update the topological order.
|
||||
Visited.reset();
|
||||
DFS(Y, UpperBound, HasLoop);
|
||||
assert(!HasLoop && "Inserted edge creates a loop!");
|
||||
// Recompute topological indexes.
|
||||
Shift(Visited, LowerBound, UpperBound);
|
||||
}
|
||||
}
|
||||
|
||||
/// RemovePred - Updates the topological ordering to accomodate an
|
||||
/// an edge to be removed from the specified node N from the predecessors
|
||||
/// of the current node M.
|
||||
void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
|
||||
// InitDAGTopologicalSorting();
|
||||
}
|
||||
|
||||
/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
|
||||
/// all nodes affected by the edge insertion. These nodes will later get new
|
||||
/// topological indexes by means of the Shift method.
|
||||
void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, bool& HasLoop) {
|
||||
std::vector<const SUnit*> WorkList;
|
||||
WorkList.reserve(SUnits.size());
|
||||
|
||||
WorkList.push_back(SU);
|
||||
while (!WorkList.empty()) {
|
||||
SU = WorkList.back();
|
||||
WorkList.pop_back();
|
||||
Visited.set(SU->NodeNum);
|
||||
for (int I = SU->Succs.size()-1; I >= 0; --I) {
|
||||
int s = SU->Succs[I].Dep->NodeNum;
|
||||
if (Node2Index[s] == UpperBound) {
|
||||
HasLoop = true;
|
||||
return;
|
||||
}
|
||||
// Visit successors if not already and in affected region.
|
||||
if (!Visited.test(s) && Node2Index[s] < UpperBound) {
|
||||
WorkList.push_back(SU->Succs[I].Dep);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Shift - Renumber the nodes so that the topological ordering is
|
||||
/// preserved.
|
||||
void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
|
||||
int UpperBound) {
|
||||
std::vector<int> L;
|
||||
int shift = 0;
|
||||
int i;
|
||||
|
||||
for (i = LowerBound; i <= UpperBound; ++i) {
|
||||
// w is node at topological index i.
|
||||
int w = Index2Node[i];
|
||||
if (Visited.test(w)) {
|
||||
// Unmark.
|
||||
Visited.reset(w);
|
||||
L.push_back(w);
|
||||
shift = shift + 1;
|
||||
} else {
|
||||
Allocate(w, i - shift);
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned j = 0; j < L.size(); ++j) {
|
||||
Allocate(L[j], i - shift);
|
||||
i = i + 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
|
||||
/// create a cycle.
|
||||
bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
|
||||
if (IsReachable(TargetSU, SU))
|
||||
return true;
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I)
|
||||
if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
/// IsReachable - Checks if SU is reachable from TargetSU.
|
||||
bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, const SUnit *TargetSU) {
|
||||
// If insertion of the edge SU->TargetSU would create a cycle
|
||||
// then there is a path from TargetSU to SU.
|
||||
int UpperBound, LowerBound;
|
||||
LowerBound = Node2Index[TargetSU->NodeNum];
|
||||
UpperBound = Node2Index[SU->NodeNum];
|
||||
bool HasLoop = false;
|
||||
// Is Ord(TargetSU) < Ord(SU) ?
|
||||
if (LowerBound < UpperBound) {
|
||||
Visited.reset();
|
||||
// There may be a path from TargetSU to SU. Check for it.
|
||||
DFS(TargetSU, UpperBound, HasLoop);
|
||||
}
|
||||
return HasLoop;
|
||||
}
|
||||
|
||||
/// Allocate - assign the topological index to the node n.
|
||||
void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
|
||||
Node2Index[n] = index;
|
||||
Index2Node[index] = n;
|
||||
}
|
||||
|
||||
ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
|
||||
std::vector<SUnit> &sunits)
|
||||
: SUnits(sunits) {}
|
||||
|
|
|
@ -69,12 +69,16 @@ private:
|
|||
std::vector<SUnit*> LiveRegDefs;
|
||||
std::vector<unsigned> LiveRegCycles;
|
||||
|
||||
/// Topo - A topological ordering for SUnits which permits fast IsReachable
|
||||
/// and similar queries.
|
||||
ScheduleDAGTopologicalSort Topo;
|
||||
|
||||
public:
|
||||
ScheduleDAGRRList(SelectionDAG *dag, MachineBasicBlock *bb,
|
||||
const TargetMachine &tm, bool isbottomup,
|
||||
SchedulingPriorityQueue *availqueue)
|
||||
: ScheduleDAGSDNodes(dag, bb, tm), isBottomUp(isbottomup),
|
||||
AvailableQueue(availqueue) {
|
||||
AvailableQueue(availqueue), Topo(SUnits) {
|
||||
}
|
||||
|
||||
~ScheduleDAGRRList() {
|
||||
|
@ -84,22 +88,32 @@ public:
|
|||
void Schedule();
|
||||
|
||||
/// IsReachable - Checks if SU is reachable from TargetSU.
|
||||
bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
|
||||
bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
|
||||
return Topo.IsReachable(SU, TargetSU);
|
||||
}
|
||||
|
||||
/// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
|
||||
/// create a cycle.
|
||||
bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
|
||||
bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
|
||||
return Topo.WillCreateCycle(SU, TargetSU);
|
||||
}
|
||||
|
||||
/// AddPred - This adds the specified node X as a predecessor of
|
||||
/// the current node Y if not already.
|
||||
/// This returns true if this is a new predecessor.
|
||||
/// Updates the topological ordering if required.
|
||||
bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isArtificial,
|
||||
unsigned PhyReg = 0, int Cost = 1);
|
||||
unsigned PhyReg = 0, int Cost = 1) {
|
||||
Topo.AddPred(Y, X);
|
||||
return Y->addPred(X, isCtrl, isArtificial, PhyReg, Cost);
|
||||
}
|
||||
|
||||
/// RemovePred - This removes the specified node N from the predecessors of
|
||||
/// the current node M. Updates the topological ordering if required.
|
||||
bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isArtificial);
|
||||
bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isArtificial) {
|
||||
Topo.RemovePred(M, N);
|
||||
return M->removePred(N, isCtrl, isArtificial, false);
|
||||
}
|
||||
|
||||
private:
|
||||
void ReleasePred(SUnit *SU, SUnit *PredSU, bool isChain);
|
||||
|
@ -123,49 +137,24 @@ private:
|
|||
/// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
|
||||
/// Updates the topological ordering if required.
|
||||
SUnit *CreateNewSUnit(SDNode *N) {
|
||||
unsigned NumSUnits = SUnits.size();
|
||||
SUnit *NewNode = NewSUnit(N);
|
||||
// Update the topological ordering.
|
||||
if (NewNode->NodeNum >= Node2Index.size())
|
||||
InitDAGTopologicalSorting();
|
||||
if (NewNode->NodeNum >= NumSUnits)
|
||||
Topo.InitDAGTopologicalSorting();
|
||||
return NewNode;
|
||||
}
|
||||
|
||||
/// CreateClone - Creates a new SUnit from an existing one.
|
||||
/// Updates the topological ordering if required.
|
||||
SUnit *CreateClone(SUnit *N) {
|
||||
unsigned NumSUnits = SUnits.size();
|
||||
SUnit *NewNode = Clone(N);
|
||||
// Update the topological ordering.
|
||||
if (NewNode->NodeNum >= Node2Index.size())
|
||||
InitDAGTopologicalSorting();
|
||||
if (NewNode->NodeNum >= NumSUnits)
|
||||
Topo.InitDAGTopologicalSorting();
|
||||
return NewNode;
|
||||
}
|
||||
|
||||
/// Functions for preserving the topological ordering
|
||||
/// even after dynamic insertions of new edges.
|
||||
/// This allows a very fast implementation of IsReachable.
|
||||
|
||||
/// InitDAGTopologicalSorting - create the initial topological
|
||||
/// ordering from the DAG to be scheduled.
|
||||
void InitDAGTopologicalSorting();
|
||||
|
||||
/// DFS - make a DFS traversal and mark all nodes affected by the
|
||||
/// edge insertion. These nodes will later get new topological indexes
|
||||
/// by means of the Shift method.
|
||||
void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
|
||||
|
||||
/// Shift - reassign topological indexes for the nodes in the DAG
|
||||
/// to preserve the topological ordering.
|
||||
void Shift(BitVector& Visited, int LowerBound, int UpperBound);
|
||||
|
||||
/// Allocate - assign the topological index to the node n.
|
||||
void Allocate(int n, int index);
|
||||
|
||||
/// Index2Node - Maps topological index to the node number.
|
||||
std::vector<int> Index2Node;
|
||||
/// Node2Index - Maps the node number to its topological index.
|
||||
std::vector<int> Node2Index;
|
||||
/// Visited - a set of nodes visited during a DFS traversal.
|
||||
BitVector Visited;
|
||||
};
|
||||
} // end anonymous namespace
|
||||
|
||||
|
@ -185,7 +174,7 @@ void ScheduleDAGRRList::Schedule() {
|
|||
SUnits[su].dumpAll(this));
|
||||
CalculateDepths();
|
||||
CalculateHeights();
|
||||
InitDAGTopologicalSorting();
|
||||
Topo.InitDAGTopologicalSorting();
|
||||
|
||||
AvailableQueue->initNodes(SUnits);
|
||||
|
||||
|
@ -374,207 +363,6 @@ void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
|
|||
AvailableQueue->push(SU);
|
||||
}
|
||||
|
||||
/// IsReachable - Checks if SU is reachable from TargetSU.
|
||||
bool ScheduleDAGRRList::IsReachable(const SUnit *SU, const SUnit *TargetSU) {
|
||||
// If insertion of the edge SU->TargetSU would create a cycle
|
||||
// then there is a path from TargetSU to SU.
|
||||
int UpperBound, LowerBound;
|
||||
LowerBound = Node2Index[TargetSU->NodeNum];
|
||||
UpperBound = Node2Index[SU->NodeNum];
|
||||
bool HasLoop = false;
|
||||
// Is Ord(TargetSU) < Ord(SU) ?
|
||||
if (LowerBound < UpperBound) {
|
||||
Visited.reset();
|
||||
// There may be a path from TargetSU to SU. Check for it.
|
||||
DFS(TargetSU, UpperBound, HasLoop);
|
||||
}
|
||||
return HasLoop;
|
||||
}
|
||||
|
||||
/// Allocate - assign the topological index to the node n.
|
||||
inline void ScheduleDAGRRList::Allocate(int n, int index) {
|
||||
Node2Index[n] = index;
|
||||
Index2Node[index] = n;
|
||||
}
|
||||
|
||||
/// InitDAGTopologicalSorting - create the initial topological
|
||||
/// ordering from the DAG to be scheduled.
|
||||
|
||||
/// The idea of the algorithm is taken from
|
||||
/// "Online algorithms for managing the topological order of
|
||||
/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
|
||||
/// This is the MNR algorithm, which was first introduced by
|
||||
/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
|
||||
/// "Maintaining a topological order under edge insertions".
|
||||
///
|
||||
/// Short description of the algorithm:
|
||||
///
|
||||
/// Topological ordering, ord, of a DAG maps each node to a topological
|
||||
/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
|
||||
///
|
||||
/// This means that if there is a path from the node X to the node Z,
|
||||
/// then ord(X) < ord(Z).
|
||||
///
|
||||
/// This property can be used to check for reachability of nodes:
|
||||
/// if Z is reachable from X, then an insertion of the edge Z->X would
|
||||
/// create a cycle.
|
||||
///
|
||||
/// The algorithm first computes a topological ordering for the DAG by
|
||||
/// initializing the Index2Node and Node2Index arrays and then tries to keep
|
||||
/// the ordering up-to-date after edge insertions by reordering the DAG.
|
||||
///
|
||||
/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
|
||||
/// the nodes reachable from Y, and then shifts them using Shift to lie
|
||||
/// immediately after X in Index2Node.
|
||||
void ScheduleDAGRRList::InitDAGTopologicalSorting() {
|
||||
unsigned DAGSize = SUnits.size();
|
||||
std::vector<SUnit*> WorkList;
|
||||
WorkList.reserve(DAGSize);
|
||||
|
||||
Index2Node.resize(DAGSize);
|
||||
Node2Index.resize(DAGSize);
|
||||
|
||||
// Initialize the data structures.
|
||||
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
||||
SUnit *SU = &SUnits[i];
|
||||
int NodeNum = SU->NodeNum;
|
||||
unsigned Degree = SU->Succs.size();
|
||||
// Temporarily use the Node2Index array as scratch space for degree counts.
|
||||
Node2Index[NodeNum] = Degree;
|
||||
|
||||
// Is it a node without dependencies?
|
||||
if (Degree == 0) {
|
||||
assert(SU->Succs.empty() && "SUnit should have no successors");
|
||||
// Collect leaf nodes.
|
||||
WorkList.push_back(SU);
|
||||
}
|
||||
}
|
||||
|
||||
int Id = DAGSize;
|
||||
while (!WorkList.empty()) {
|
||||
SUnit *SU = WorkList.back();
|
||||
WorkList.pop_back();
|
||||
Allocate(SU->NodeNum, --Id);
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
SUnit *SU = I->Dep;
|
||||
if (!--Node2Index[SU->NodeNum])
|
||||
// If all dependencies of the node are processed already,
|
||||
// then the node can be computed now.
|
||||
WorkList.push_back(SU);
|
||||
}
|
||||
}
|
||||
|
||||
Visited.resize(DAGSize);
|
||||
|
||||
#ifndef NDEBUG
|
||||
// Check correctness of the ordering
|
||||
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
||||
SUnit *SU = &SUnits[i];
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] &&
|
||||
"Wrong topological sorting");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/// AddPred - adds an edge from SUnit X to SUnit Y.
|
||||
/// Updates the topological ordering if required.
|
||||
bool ScheduleDAGRRList::AddPred(SUnit *Y, SUnit *X, bool isCtrl,
|
||||
bool isArtificial, unsigned PhyReg, int Cost) {
|
||||
int UpperBound, LowerBound;
|
||||
LowerBound = Node2Index[Y->NodeNum];
|
||||
UpperBound = Node2Index[X->NodeNum];
|
||||
bool HasLoop = false;
|
||||
// Is Ord(X) < Ord(Y) ?
|
||||
if (LowerBound < UpperBound) {
|
||||
// Update the topological order.
|
||||
Visited.reset();
|
||||
DFS(Y, UpperBound, HasLoop);
|
||||
assert(!HasLoop && "Inserted edge creates a loop!");
|
||||
// Recompute topological indexes.
|
||||
Shift(Visited, LowerBound, UpperBound);
|
||||
}
|
||||
// Now really insert the edge.
|
||||
return Y->addPred(X, isCtrl, isArtificial, PhyReg, Cost);
|
||||
}
|
||||
|
||||
/// RemovePred - This removes the specified node N from the predecessors of
|
||||
/// the current node M. Updates the topological ordering if required.
|
||||
bool ScheduleDAGRRList::RemovePred(SUnit *M, SUnit *N,
|
||||
bool isCtrl, bool isArtificial) {
|
||||
// InitDAGTopologicalSorting();
|
||||
return M->removePred(N, isCtrl, isArtificial, false);
|
||||
}
|
||||
|
||||
/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
|
||||
/// all nodes affected by the edge insertion. These nodes will later get new
|
||||
/// topological indexes by means of the Shift method.
|
||||
void ScheduleDAGRRList::DFS(const SUnit *SU, int UpperBound, bool& HasLoop) {
|
||||
std::vector<const SUnit*> WorkList;
|
||||
WorkList.reserve(SUnits.size());
|
||||
|
||||
WorkList.push_back(SU);
|
||||
while (!WorkList.empty()) {
|
||||
SU = WorkList.back();
|
||||
WorkList.pop_back();
|
||||
Visited.set(SU->NodeNum);
|
||||
for (int I = SU->Succs.size()-1; I >= 0; --I) {
|
||||
int s = SU->Succs[I].Dep->NodeNum;
|
||||
if (Node2Index[s] == UpperBound) {
|
||||
HasLoop = true;
|
||||
return;
|
||||
}
|
||||
// Visit successors if not already and in affected region.
|
||||
if (!Visited.test(s) && Node2Index[s] < UpperBound) {
|
||||
WorkList.push_back(SU->Succs[I].Dep);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Shift - Renumber the nodes so that the topological ordering is
|
||||
/// preserved.
|
||||
void ScheduleDAGRRList::Shift(BitVector& Visited, int LowerBound,
|
||||
int UpperBound) {
|
||||
std::vector<int> L;
|
||||
int shift = 0;
|
||||
int i;
|
||||
|
||||
for (i = LowerBound; i <= UpperBound; ++i) {
|
||||
// w is node at topological index i.
|
||||
int w = Index2Node[i];
|
||||
if (Visited.test(w)) {
|
||||
// Unmark.
|
||||
Visited.reset(w);
|
||||
L.push_back(w);
|
||||
shift = shift + 1;
|
||||
} else {
|
||||
Allocate(w, i - shift);
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned j = 0; j < L.size(); ++j) {
|
||||
Allocate(L[j], i - shift);
|
||||
i = i + 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
|
||||
/// create a cycle.
|
||||
bool ScheduleDAGRRList::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
|
||||
if (IsReachable(TargetSU, SU))
|
||||
return true;
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I)
|
||||
if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
|
||||
/// BTCycle in order to schedule a specific node. Returns the last unscheduled
|
||||
/// SUnit. Also returns if a successor is unscheduled in the process.
|
||||
|
|
|
@ -0,0 +1,33 @@
|
|||
; RUN: llvm-as < %s | llc -march=x86-64 -disable-post-RA-scheduler=false > %t
|
||||
; RUN: grep {%xmm0} %t | count 14
|
||||
; RUN: not grep {%xmm1} %t
|
||||
; RUN: llvm-as < %s | llc -march=x86-64 -disable-post-RA-scheduler=false -break-anti-dependencies > %t
|
||||
; RUN: grep {%xmm0} %t | count 7
|
||||
; RUN: grep {%xmm1} %t | count 7
|
||||
|
||||
define void @goo(double* %r, double* %p, double* %q) nounwind {
|
||||
entry:
|
||||
%0 = load double* %p, align 8
|
||||
%1 = add double %0, 1.100000e+00
|
||||
%2 = mul double %1, 1.200000e+00
|
||||
%3 = add double %2, 1.300000e+00
|
||||
%4 = mul double %3, 1.400000e+00
|
||||
%5 = add double %4, 1.500000e+00
|
||||
%6 = fptosi double %5 to i32
|
||||
%7 = load double* %r, align 8
|
||||
%8 = add double %7, 7.100000e+00
|
||||
%9 = mul double %8, 7.200000e+00
|
||||
%10 = add double %9, 7.300000e+00
|
||||
%11 = mul double %10, 7.400000e+00
|
||||
%12 = add double %11, 7.500000e+00
|
||||
%13 = fptosi double %12 to i32
|
||||
%14 = icmp slt i32 %6, %13
|
||||
br i1 %14, label %bb, label %return
|
||||
|
||||
bb:
|
||||
store double 9.300000e+00, double* %q, align 8
|
||||
ret void
|
||||
|
||||
return:
|
||||
ret void
|
||||
}
|
Loading…
Reference in New Issue