[MLIR][Shape] Lower `shape.shape_eq` to `scf`

Lower `shape.shape_eq` to the `scf` (and `std`) dialect. For now, this lowering
is limited to extent tensor operands.

Differential Revision: https://reviews.llvm.org/D82530
This commit is contained in:
Frederik Gossen 2020-07-16 14:43:42 +00:00
parent 69f3378ad6
commit aca7b8dd63
2 changed files with 120 additions and 1 deletions

View File

@ -19,6 +19,92 @@ using namespace mlir;
using namespace mlir::shape;
using namespace mlir::scf;
namespace {
/// Converts `shape.shape_eq` to an `scf.for` loop. For now, the lowering is
/// only defined on `tensor<?xindex>` operands. The test for equality first
/// compares their size and, if equal, checks every extent for equality.
///
/// Example:
///
/// %result = shape.shape_eq %a, %b : tensor<?xindex>, tensor<?xindex>
///
/// becomes
///
/// %c0 = constant 0 : index
/// %0 = dim %arg0, %c0 : tensor<?xindex>
/// %1 = dim %arg1, %c0 : tensor<?xindex>
/// %2 = cmpi "eq", %0, %1 : index
/// %result = scf.if %2 -> (i1) {
/// %c1 = constant 1 : index
/// %true = constant true
/// %4 = scf.for %arg2 = %c0 to %0 step %c1 iter_args(%arg3 = %true) -> (i1) {
/// %5 = extract_element %arg0[%arg2] : tensor<?xindex>
/// %6 = extract_element %arg1[%arg2] : tensor<?xindex>
/// %7 = cmpi "eq", %5, %6 : index
/// %8 = and %arg3, %7 : i1
/// scf.yield %8 : i1
/// }
/// scf.yield %4 : i1
/// } else {
/// %false = constant false
/// scf.yield %false : i1
/// }
///
struct ShapeEqOpConverter : public OpConversionPattern<ShapeEqOp> {
using OpConversionPattern<ShapeEqOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ShapeEqOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
ShapeEqOpConverter::matchAndRewrite(ShapeEqOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering is only defined on `tensor<?xindex>` operands, not
// on shapes.
if (op.lhs().getType().isa<ShapeType>() ||
op.rhs().getType().isa<ShapeType>()) {
return failure();
}
ShapeEqOp::Adaptor transformed(operands);
auto loc = op.getLoc();
Type indexTy = rewriter.getIndexType();
Value zero = rewriter.create<ConstantIndexOp>(loc, 0);
Value lhsRank = rewriter.create<DimOp>(loc, indexTy, transformed.lhs(), zero);
Value rhsRank = rewriter.create<DimOp>(loc, indexTy, transformed.rhs(), zero);
Value eqRank =
rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, lhsRank, rhsRank);
Type i1Ty = rewriter.getI1Type();
rewriter.replaceOpWithNewOp<IfOp>(
op, i1Ty, eqRank,
[&](OpBuilder &b, Location loc) {
Value one = b.create<ConstantIndexOp>(loc, 1);
Value init = b.create<ConstantOp>(loc, i1Ty, b.getBoolAttr(true));
auto loop = b.create<scf::ForOp>(
loc, zero, lhsRank, one, ValueRange{init},
[&](OpBuilder &b, Location nestedLoc, Value iv, ValueRange args) {
Value conj = args[0];
Value lhsExtent =
b.create<ExtractElementOp>(loc, transformed.lhs(), iv);
Value rhsExtent =
b.create<ExtractElementOp>(loc, transformed.rhs(), iv);
Value eqExtent = b.create<CmpIOp>(loc, CmpIPredicate::eq,
lhsExtent, rhsExtent);
Value conjNext = b.create<AndOp>(loc, conj, eqExtent);
b.create<scf::YieldOp>(loc, ValueRange({conjNext}));
});
b.create<scf::YieldOp>(loc, loop.getResults());
},
[&](OpBuilder &b, Location loc) {
Value result = b.create<ConstantOp>(loc, i1Ty, b.getBoolAttr(false));
b.create<scf::YieldOp>(loc, result);
});
return success();
}
namespace {
/// Converts `shape.reduce` to `scf.for`.
struct ReduceOpConverter : public OpConversionPattern<shape::ReduceOp> {
@ -148,7 +234,12 @@ void ConvertShapeToSCFPass::runOnFunction() {
void mlir::populateShapeToSCFConversionPatterns(
OwningRewritePatternList &patterns, MLIRContext *ctx) {
patterns.insert<ReduceOpConverter, ShapeOfOpConverter>(ctx);
// clang-format off
patterns.insert<
ShapeEqOpConverter,
ReduceOpConverter,
ShapeOfOpConverter>(ctx);
// clang-format on
}
std::unique_ptr<FunctionPass> mlir::createConvertShapeToSCFPass() {

View File

@ -43,3 +43,31 @@ func @shape_of_unranked(%arg : tensor<*xf32>) {
return
}
// -----
// CHECK-LABEL: @shape_eq
// CHECK-SAME: (%[[A:.*]]: tensor<?xindex>, %[[B:.*]]: tensor<?xindex>) -> i1
func @shape_eq(%a : tensor<?xindex>, %b : tensor<?xindex>) -> i1 {
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[RANK_A:.*]] = dim %[[A]], %[[C0]] : tensor<?xindex>
// CHECK: %[[RANK_B:.*]] = dim %[[B]], %[[C0]] : tensor<?xindex>
// CHECK: %[[RANK_EQ:.*]] = cmpi "eq", %[[RANK_A]], %[[RANK_B]]
// CHECK: %[[SHAPE_EQ:.*]] = scf.if %[[RANK_EQ]] -> (i1) {
// CHECK: %[[C1:.*]] = constant 1 : index
// CHECK: %[[INIT:.*]] = constant true
// CHECK: %[[SHAPE_EQ_INNER:.*]] = scf.for %[[I:.*]] = %[[C0]] to %[[RANK_A]] step %[[C1]] iter_args(%[[CONJ:.*]] = %[[INIT]]) -> (i1) {
// CHECK: %[[EXTENT_A:.*]] = extract_element %[[A]][%[[I]]] : tensor<?xindex>
// CHECK: %[[EXTENT_B:.*]] = extract_element %[[B]][%[[I]]] : tensor<?xindex>
// CHECK: %[[EXTENT_EQ:.*]] = cmpi "eq", %[[EXTENT_A]], %[[EXTENT_B]]
// CHECK: %[[CONJ_NEXT:.*]] = and %[[CONJ]], %[[EXTENT_EQ]]
// CHECK: scf.yield %[[CONJ_NEXT]] : i1
// CHECK: }
// CHECK: scf.yield %[[SHAPE_EQ_INNER]] : i1
// CHECK: } else {
// CHECK: %[[SHAPE_EQ_INNER:.*]] = constant false
// CHECK: scf.yield %[[SHAPE_EQ_INNER]] : i1
// CHECK: }
// CHECK: return %[[SHAPE_EQ]] : i1
%result = shape.shape_eq %a, %b : tensor<?xindex>, tensor<?xindex>
return %result : i1
}