Remove pybind11-based bindings

These bindings were added as an experiment, and never had a CMake configuration.
We will bring back python bindings after picking carefully our dependency and the kind
of layering we expect to expose for these bindings.

PiperOrigin-RevId: 286963717
This commit is contained in:
Mehdi Amini 2019-12-23 17:43:20 -08:00 committed by A. Unique TensorFlower
parent 21610e6651
commit ac6dce12e0
3 changed files with 0 additions and 1743 deletions

View File

@ -46,4 +46,3 @@ If you want to contribute, start working through the MLIR codebase, navigate to
Include a license at the top of new files.
* [C/C++ license example](https://github.com/tensorflow/mlir/blob/master/examples/toy/Ch1/toyc.cpp)
* [Python license example](https://github.com/tensorflow/mlir/blob/master/bindings/python/test/test_py2and3.py)

File diff suppressed because it is too large Load Diff

View File

@ -1,583 +0,0 @@
# Copyright 2019 The MLIR Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# RUN: %p/test_edsc %s | FileCheck %s
"""Python2 and 3 test for the MLIR EDSC Python bindings"""
import google_mlir.bindings.python.pybind as E
import inspect
# Prints `str` prefixed by the current test function name so we can use it in
# Filecheck label directives.
# This is achieved by inspecting the stack and getting the parent name.
def printWithCurrentFunctionName(str):
print(inspect.stack()[1][3])
print(str)
class EdscTest:
def setUp(self):
self.module = E.MLIRModule()
self.boolType = self.module.make_type("i1")
self.i32Type = self.module.make_type("i32")
self.f32Type = self.module.make_type("f32")
self.indexType = self.module.make_index_type()
def testBlockArguments(self):
self.setUp()
with self.module.function_context("foo", [], []) as fun:
E.constant_index(42)
with E.BlockContext([self.f32Type, self.f32Type]) as b:
b.arg(0) + b.arg(1)
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBlockArguments
# CHECK: %{{.*}} = constant 42 : index
# CHECK: ^bb{{.*}}(%{{.*}}: f32, %{{.*}}: f32):
# CHECK: %{{.*}} = addf %{{.*}}, %{{.*}} : f32
def testBlockContext(self):
self.setUp()
with self.module.function_context("foo", [], []) as fun:
cst = E.constant_index(42)
with E.BlockContext():
cst + cst
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBlockContext
# CHECK: %{{.*}} = constant 42 : index
# CHECK: ^bb
# CHECK: %{{.*}} = "affine.apply"() {map = () -> (84)} : () -> index
def testBlockContextAppend(self):
self.setUp()
with self.module.function_context("foo", [], []) as fun:
E.constant_index(41)
with E.BlockContext() as b:
blk = b # save block handle for later
E.constant_index(0)
E.constant_index(42)
with E.BlockContext(E.appendTo(blk)):
E.constant_index(1)
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBlockContextAppend
# CHECK: %{{.*}} = constant 41 : index
# CHECK: %{{.*}} = constant 42 : index
# CHECK: ^bb
# CHECK: %{{.*}} = constant 0 : index
# CHECK: %{{.*}} = constant 1 : index
def testBlockContextStandalone(self):
self.setUp()
with self.module.function_context("foo", [], []) as fun:
blk1 = E.BlockContext()
blk2 = E.BlockContext()
with blk1:
E.constant_index(0)
with blk2:
E.constant_index(56)
E.constant_index(57)
E.constant_index(41)
with blk1:
E.constant_index(1)
E.constant_index(42)
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBlockContextStandalone
# CHECK: %{{.*}} = constant 41 : index
# CHECK: %{{.*}} = constant 42 : index
# CHECK: ^bb
# CHECK: %{{.*}} = constant 0 : index
# CHECK: %{{.*}} = constant 1 : index
# CHECK: ^bb
# CHECK: %{{.*}} = constant 56 : index
# CHECK: %{{.*}} = constant 57 : index
def testBooleanOps(self):
self.setUp()
with self.module.function_context("booleans",
[self.boolType for _ in range(4)],
[]) as fun:
i, j, k, l = (fun.arg(x) for x in range(4))
stmt1 = (i < j) & (j >= k)
stmt2 = ~(stmt1 | (k == l))
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBooleanOps
# CHECK: %{{.*}} = cmpi "slt", %{{.*}}, %{{.*}} : i1
# CHECK: %{{.*}} = cmpi "sge", %{{.*}}, %{{.*}} : i1
# CHECK: %{{.*}} = muli %{{.*}}, %{{.*}} : i1
# CHECK: %{{.*}} = cmpi "eq", %{{.*}}, %{{.*}} : i1
# CHECK: %{{.*}} = constant 1 : i1
# CHECK: %{{.*}} = subi %{{.*}}, %{{.*}} : i1
# CHECK: %{{.*}} = constant 1 : i1
# CHECK: %{{.*}} = subi %{{.*}}, %{{.*}} : i1
# CHECK: %{{.*}} = muli %{{.*}}, %{{.*}} : i1
# CHECK: %{{.*}} = constant 1 : i1
# CHECK: %{{.*}} = subi %{{.*}}, %{{.*}} : i1
# CHECK: %{{.*}} = constant 1 : i1
# CHECK: %{{.*}} = subi %{{.*}}, %{{.*}} : i1
def testBr(self):
self.setUp()
with self.module.function_context("foo", [], []) as fun:
with E.BlockContext() as b:
blk = b
E.ret()
E.br(blk)
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBr
# CHECK: br ^bb
# CHECK: ^bb
# CHECK: return
def testBrArgs(self):
self.setUp()
with self.module.function_context("foo", [], []) as fun:
# Create an infinite loop.
with E.BlockContext([self.indexType, self.indexType]) as b:
E.br(b, [b.arg(1), b.arg(0)])
E.br(b, [E.constant_index(0), E.constant_index(1)])
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBrArgs
# CHECK: %{{.*}} = constant 0 : index
# CHECK: %{{.*}} = constant 1 : index
# CHECK: br ^bb{{.*}}(%{{.*}}, %{{.*}} : index, index)
# CHECK: ^bb{{.*}}(%{{.*}}: index, %{{.*}}: index):
# CHECK: br ^bb{{.*}}(%{{.*}}, %{{.*}} : index, index)
def testBrDeclaration(self):
self.setUp()
with self.module.function_context("foo", [], []) as fun:
blk = E.BlockContext()
E.br(blk.handle())
with blk:
E.ret()
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBrDeclaration
# CHECK: br ^bb
# CHECK: ^bb
# CHECK: return
def testCallOp(self):
self.setUp()
callee = self.module.declare_function("sqrtf", [self.f32Type],
[self.f32Type])
with self.module.function_context("call", [self.f32Type], []) as fun:
funCst = E.constant_function(callee)
funCst([fun.arg(0)]) + E.constant_float(42., self.f32Type)
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testCallOp
# CHECK: func @sqrtf(f32) -> f32
# CHECK: %{{.*}} = constant @sqrtf : (f32) -> f32
# CHECK: %{{.*}} = call_indirect %{{.*}}(%{{.*}}) : (f32) -> f32
def testCondBr(self):
self.setUp()
with self.module.function_context("foo", [self.boolType], []) as fun:
with E.BlockContext() as blk1:
E.ret([])
with E.BlockContext([self.indexType]) as blk2:
E.ret([])
cst = E.constant_index(0)
E.cond_br(fun.arg(0), blk1, [], blk2, [cst])
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testCondBr
# CHECK: cond_br %{{.*}}, ^bb{{.*}}, ^bb{{.*}}(%{{.*}} : index)
def testConstantAffineExpr(self):
self.setUp()
with self.module.function_context("constant_affine", [], []) as fun:
a1 = self.module.affine_dim_expr(0)
a2 = self.module.affine_dim_expr(1)
a3 = a1 + a2 + 3
composedExpr = a3.compose(
self.module.affine_map(2, 0, [
self.module.affine_constant_expr(4),
self.module.affine_constant_expr(7)
]))
printWithCurrentFunctionName(str(fun))
print("constant value : %d" % composedExpr.get_constant_value())
# CHECK-LABEL: testConstantAffineExpr
# CHECK: constant value : 14
def testConstants(self):
self.setUp()
with self.module.function_context("constants", [], []) as fun:
E.constant_float(1.23, self.module.make_type("bf16"))
E.constant_float(1.23, self.module.make_type("f16"))
E.constant_float(1.23, self.module.make_type("f32"))
E.constant_float(1.23, self.module.make_type("f64"))
E.constant_int(1, 1)
E.constant_int(123, 8)
E.constant_int(123, 16)
E.constant_int(123, 32)
E.constant_int(123, 64)
E.constant_index(123)
E.constant_function(fun)
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testConstants
# CHECK: constant 1.230000e+00 : bf16
# CHECK: constant 1.230470e+00 : f16
# CHECK: constant 1.230000e+00 : f32
# CHECK: constant 1.230000e+00 : f64
# CHECK: constant 1 : i1
# CHECK: constant 123 : i8
# CHECK: constant 123 : i16
# CHECK: constant 123 : i32
# CHECK: constant 123 : index
# CHECK: constant @constants : () -> ()
def testCustom(self):
self.setUp()
with self.module.function_context("custom", [self.indexType, self.f32Type],
[]) as fun:
E.op("foo", [fun.arg(0)], [self.f32Type]) + fun.arg(1)
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testCustom
# CHECK: %{{.*}} = "foo"(%{{.*}}) : (index) -> f32
# CHECK: %{{.*}} = addf %{{.*}}, %{{.*}} : f32
# Create 'addi' using the generic Op interface. We need an operation known
# to the execution engine so that the engine can compile it.
def testCustomOpCompilation(self):
self.setUp()
with self.module.function_context("adder", [self.i32Type], []) as f:
c1 = E.op(
"std.constant", [], [self.i32Type],
value=self.module.integerAttr(self.i32Type, 42))
E.op("std.addi", [c1, f.arg(0)], [self.i32Type])
E.ret([])
self.module.compile()
printWithCurrentFunctionName(str(self.module.get_engine_address() == 0))
# CHECK-LABEL: testCustomOpCompilation
# CHECK: False
def testDivisions(self):
self.setUp()
with self.module.function_context(
"division", [self.indexType, self.i32Type, self.i32Type], []) as fun:
# indices only support floor division
fun.arg(0) // E.constant_index(42)
# regular values only support regular division
fun.arg(1) / fun.arg(2)
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testDivisions
# CHECK: floordiv 42
# CHECK: divi_signed %{{.*}}, %{{.*}} : i32
def testFunctionArgs(self):
self.setUp()
with self.module.function_context("foo", [self.f32Type, self.f32Type],
[self.indexType]) as fun:
pass
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testFunctionArgs
# CHECK: func @foo(%{{.*}}: f32, %{{.*}}: f32) -> index
def testFunctionContext(self):
self.setUp()
with self.module.function_context("foo", [], []):
pass
printWithCurrentFunctionName(self.module.get_function("foo"))
# CHECK-LABEL: testFunctionContext
# CHECK: func @foo() {
def testFunctionDeclaration(self):
self.setUp()
boolAttr = self.module.boolAttr(True)
t = self.module.make_memref_type(self.f32Type, [10])
t_llvm_noalias = t({"llvm.noalias": boolAttr})
t_readonly = t({"readonly": boolAttr})
f = self.module.declare_function("foo", [t, t_llvm_noalias, t_readonly], [])
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testFunctionDeclaration
# CHECK: func @foo(memref<10xf32>, memref<10xf32> {llvm.noalias = true}, memref<10xf32> {readonly = true})
def testFunctionDeclarationWithAffineAttr(self):
self.setUp()
a1 = self.module.affine_constant_expr(23)
a2 = self.module.affine_constant_expr(44)
a3 = self.module.affine_dim_expr(1)
s0 = self.module.affine_symbol_expr(0)
aMap1 = self.module.affine_map(2, 0, [a1, a2, s0])
aMap2 = self.module.affine_constant_map(42)
aMap3 = self.module.affine_map(
2, 0,
[a1 + a2 * a3, a1 // a3 % a2,
a1.ceildiv(a2), a1 - 2, a2 * 2, -a3])
affineAttr1 = self.module.affineMapAttr(aMap1)
affineAttr2 = self.module.affineMapAttr(aMap2)
affineAttr3 = self.module.affineMapAttr(aMap3)
t = self.module.make_memref_type(self.f32Type, [10])
t_with_attr = t({
"affine_attr_1": affineAttr1,
"affine_attr_2": affineAttr2,
"affine_attr_3": affineAttr3,
})
f = self.module.declare_function("foo", [t, t_with_attr], [])
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testFunctionDeclarationWithAffineAttr
# CHECK: func @foo(memref<10xf32>, memref<10xf32> {affine_attr_1 = (d0, d1) -> (23, 44, s0), affine_attr_2 = () -> (42), affine_attr_3 = (d0, d1) -> (d1 * 44 + 23, (23 floordiv d1) mod 44, 1, 21, 88, -d1)})
def testFunctionDeclarationWithArrayAttr(self):
self.setUp()
arrayAttr = self.module.arrayAttr([
self.module.integerAttr(self.i32Type, 43),
self.module.integerAttr(self.i32Type, 33),
])
t = self.module.make_memref_type(self.f32Type, [10])
t_with_attr = t({"array_attr": arrayAttr})
f = self.module.declare_function("foo", [t, t_with_attr], [])
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testFunctionDeclarationWithArrayAttr
# CHECK: func @foo(memref<10xf32>, memref<10xf32> {array_attr = [43 : i32, 33 : i32]})
def testFunctionDeclarationWithFloatAndStringAttr(self):
self.setUp()
float_attr = self.module.floatAttr(23.3)
string_attr = self.module.stringAttr("TEST_STRING")
f = self.module.declare_function(
"foo", [], [], float_attr=float_attr, string_attr=string_attr)
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testFunctionDeclarationWithFloatAndStringAttr
# CHECK: func @foo() attributes {float_attr = 2.330000e+01 : f32, string_attr = "TEST_STRING"}
def testFunctionMultiple(self):
self.setUp()
with self.module.function_context("foo", [], []):
pass
with self.module.function_context("foo", [], []):
E.constant_index(0)
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testFunctionMultiple
# CHECK: func @foo()
# CHECK: func @foo_0()
# CHECK: %{{.*}} = constant 0 : index
def testIndexCast(self):
self.setUp()
with self.module.function_context("testIndexCast", [], []):
index = E.constant_index(0)
E.index_cast(index, self.i32Type)
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testIndexCast
# CHECK: index_cast %{{.*}} : index to i32
def testIndexedValue(self):
self.setUp()
memrefType = self.module.make_memref_type(self.f32Type, [10, 42])
with self.module.function_context("indexed", [memrefType],
[memrefType]) as fun:
A = E.IndexedValue(fun.arg(0))
cst = E.constant_float(1., self.f32Type)
with E.LoopNestContext(
[E.constant_index(0), E.constant_index(0)],
[E.constant_index(10), E.constant_index(42)], [1, 1]) as (i, j):
A.store([i, j], A.load([i, j]) + cst)
E.ret([fun.arg(0)])
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testIndexedValue
# CHECK: "affine.for"()
# CHECK: "affine.for"()
# CHECK: "affine.load"
# CHECK-SAME: memref<10x42xf32>
# CHECK: %{{.*}} = addf %{{.*}}, %{{.*}} : f32
# CHECK: "affine.store"
# CHECK-SAME: memref<10x42xf32>
# CHECK: {lower_bound = () -> (0), step = 1 : index, upper_bound = () -> (42)}
# CHECK: {lower_bound = () -> (0), step = 1 : index, upper_bound = () -> (10)}
def testLoopContext(self):
self.setUp()
with self.module.function_context("foo", [], []) as fun:
lhs = E.constant_index(0)
rhs = E.constant_index(42)
with E.LoopContext(lhs, rhs, 1) as i:
lhs + rhs + i
with E.LoopContext(rhs, rhs + rhs, 2) as j:
x = i + j
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testLoopContext
# CHECK: "affine.for"() (
# CHECK: ^bb{{.*}}(%{{.*}}: index):
# CHECK: "affine.for"(%{{.*}}, %{{.*}}) (
# CHECK: ^bb{{.*}}(%{{.*}}: index):
# CHECK: "affine.apply"(%{{.*}}, %{{.*}}) {map = (d0, d1) -> (d0 + d1)} : (index, index) -> index
# CHECK: {lower_bound = (d0) -> (d0), step = 2 : index, upper_bound = (d0) -> (d0)} : (index, index) -> ()
# CHECK: {lower_bound = () -> (0), step = 1 : index, upper_bound = () -> (42)}
def testLoopNestContext(self):
self.setUp()
with self.module.function_context("foo", [], []) as fun:
lbs = [E.constant_index(i) for i in range(4)]
ubs = [E.constant_index(10 * i + 5) for i in range(4)]
with E.LoopNestContext(lbs, ubs, [1, 3, 5, 7]) as (i, j, k, l):
i + j + k + l
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testLoopNestContext
# CHECK: "affine.for"() (
# CHECK: ^bb{{.*}}(%{{.*}}: index):
# CHECK: "affine.for"() (
# CHECK: ^bb{{.*}}(%{{.*}}: index):
# CHECK: "affine.for"() (
# CHECK: ^bb{{.*}}(%{{.*}}: index):
# CHECK: "affine.for"() (
# CHECK: ^bb{{.*}}(%{{.*}}: index):
# CHECK: %{{.*}} = "affine.apply"(%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) {map = (d0, d1, d2, d3) -> (d0 + d1 + d2 + d3)} : (index, index, index, index) -> index
def testMLIRBooleanCompilation(self):
self.setUp()
m = self.module.make_memref_type(self.boolType, [10]) # i1 tensor
with self.module.function_context("mkbooltensor", [m, m], []) as f:
input = E.IndexedValue(f.arg(0))
output = E.IndexedValue(f.arg(1))
zero = E.constant_index(0)
ten = E.constant_index(10)
with E.LoopNestContext([zero] * 3, [ten] * 3, [1] * 3) as (i, j, k):
b1 = (i < j) & (j < k)
b2 = ~b1
b3 = b2 | (k < j)
output.store([i], input.load([i]) & b3)
E.ret([])
self.module.compile()
printWithCurrentFunctionName(str(self.module.get_engine_address() == 0))
# CHECK-LABEL: testMLIRBooleanCompilation
# CHECK: False
def testMLIRFunctionCreation(self):
self.setUp()
module = E.MLIRModule()
t = module.make_type("f32")
m = module.make_memref_type(t, [3, 4, -1, 5])
printWithCurrentFunctionName(str(t))
print(str(m))
print(str(module.make_function("copy", [m, m], [])))
print(str(module.make_function("sqrtf", [t], [t])))
# CHECK-LABEL: testMLIRFunctionCreation
# CHECK: f32
# CHECK: memref<3x4x?x5xf32>
# CHECK: func @copy(%{{.*}}: memref<3x4x?x5xf32>, %{{.*}}: memref<3x4x?x5xf32>) {
# CHECK: func @sqrtf(%{{.*}}: f32) -> f32
def testMLIRScalarTypes(self):
self.setUp()
module = E.MLIRModule()
printWithCurrentFunctionName(str(module.make_type("bf16")))
print(str(module.make_type("f16")))
print(str(module.make_type("f32")))
print(str(module.make_type("f64")))
print(str(module.make_type("i1")))
print(str(module.make_type("i8")))
print(str(module.make_type("i32")))
print(str(module.make_type("i123")))
print(str(module.make_type("index")))
# CHECK-LABEL: testMLIRScalarTypes
# CHECK: bf16
# CHECK: f16
# CHECK: f32
# CHECK: f64
# CHECK: i1
# CHECK: i8
# CHECK: i32
# CHECK: i123
# CHECK: index
def testMatrixMultiply(self):
self.setUp()
memrefType = self.module.make_memref_type(self.f32Type, [32, 32])
with self.module.function_context("matmul",
[memrefType, memrefType, memrefType],
[]) as fun:
A = E.IndexedValue(fun.arg(0))
B = E.IndexedValue(fun.arg(1))
C = E.IndexedValue(fun.arg(2))
c0 = E.constant_index(0)
c32 = E.constant_index(32)
with E.LoopNestContext([c0, c0, c0], [c32, c32, c32],
[1, 1, 1]) as (i, j, k):
C.store([i, j], A.load([i, k]) * B.load([k, j]))
E.ret([])
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testMatrixMultiply
# CHECK: "affine.for"()
# CHECK: "affine.for"()
# CHECK: "affine.for"()
# CHECK-DAG: %{{.*}} = "affine.load"
# CHECK-DAG: %{{.*}} = "affine.load"
# CHECK: %{{.*}} = mulf %{{.*}}, %{{.*}} : f32
# CHECK: "affine.store"
# CHECK-SAME: memref<32x32xf32>
# CHECK: {lower_bound = () -> (0), step = 1 : index, upper_bound = () -> (32)} : () -> ()
# CHECK: {lower_bound = () -> (0), step = 1 : index, upper_bound = () -> (32)} : () -> ()
# CHECK: {lower_bound = () -> (0), step = 1 : index, upper_bound = () -> (32)} : () -> ()
def testRet(self):
self.setUp()
with self.module.function_context("foo", [],
[self.indexType, self.indexType]) as fun:
c42 = E.constant_index(42)
c0 = E.constant_index(0)
E.ret([c42, c0])
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testRet
# CHECK: %{{.*}} = constant 42 : index
# CHECK: %{{.*}} = constant 0 : index
# CHECK: return %{{.*}}, %{{.*}} : index, index
def testSelectOp(self):
self.setUp()
with self.module.function_context("foo", [self.boolType],
[self.i32Type]) as fun:
a = E.constant_int(42, 32)
b = E.constant_int(0, 32)
E.ret([E.select(fun.arg(0), a, b)])
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testSelectOp
# CHECK: %{{.*}} = select %{{.*}}, %{{.*}}, %{{.*}} : i32
def testType(self):
self.setUp()
printWithCurrentFunctionName("")
with self.module.function_context(
"foo", [self.module.make_memref_type(self.f32Type, [10])], []) as fun:
c42 = E.constant_int(42, 32)
print(str(c42.type()))
print(str(fun.arg(0).type()))
# CHECK-LABEL: testType
# CHECK: i32
# CHECK: memref<10xf32>
# Until python 3.6 this cannot be used because the order in the dict is not the
# order of method declaration.
def runTests():
def isTest(attr):
return inspect.ismethod(attr) and "EdscTest.setUp " not in str(attr)
edscTest = EdscTest()
tests = sorted(
filter(isTest, (getattr(edscTest, attr) for attr in dir(edscTest))),
key=lambda x: str(x))
for test in tests:
test()
if __name__ == "__main__":
runTests()