forked from OSchip/llvm-project
[LPM] Make LoopSimplify no longer a LoopPass and instead both a utility
function and a FunctionPass. This has many benefits. The motivating use case was to be able to compute function analysis passes *after* running LoopSimplify (to avoid invalidating them) and then to run other passes which require LoopSimplify. Specifically passes like unrolling and vectorization are critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so that they can be profile aware. For the LoopVectorize pass the only things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify and LCSSA is next on my list. There are also a bunch of other benefits of doing this: - It is now very feasible to make more passes *preserve* LoopSimplify because they can simply run it after changing a loop. Because subsequence passes can assume LoopSimplify is preserved we can reduce the runs of this pass to the times when we actually mutate a loop structure. - The new pass manager should be able to more easily support loop passes factored in this way. - We can at long, long last observe that LoopSimplify is preserved across SCEV. This *halves* the number of times we run LoopSimplify!!! Now, getting here wasn't trivial. First off, the interfaces used by LoopSimplify are all over the map regarding how analysis are updated. We end up with weird "pass" parameters as a consequence. I'll try to clean at least some of this up later -- I'll have to have it all clean for the new pass manager. Next up I discovered a really frustrating bug. LoopUnroll *claims* to preserve LoopSimplify. That's actually a lie. But the way the LoopPassManager ends up running the passes, it always ran LoopSimplify on the unrolled-into loop, rectifying this oversight before any verification could kick in and point out that in fact nothing was preserved. So I've added code to the unroller to *actually* simplify the surrounding loop when it succeeds at unrolling. The only functional change in the test suite is that we now catch a case that was previously missed because SCEV and other loop transforms see their containing loops as simplified and thus don't miss some opportunities. One test case has been converted to check that we catch this case rather than checking that we miss it but at least don't get the wrong answer. Note that I have #if-ed out all of the verification logic in LoopSimplify! This is a temporary workaround while extracting these bits from the LoopPassManager. Currently, there is no way to have a pass in the LoopPassManager which preserves LoopSimplify along with one which does not. The LPM will try to verify on each loop in the nest that LoopSimplify holds but the now-Function-pass cannot distinguish what loop is being verified and so must try to verify all of them. The inner most loop is clearly no longer simplified as there is a pass which didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe LoopVectorize and some other fixes) I'll be able to re-enable this check and catch any places where we are still failing to preserve LoopSimplify. If this causes problems I can back this out and try to commit *all* of this at once, but so far this seems to work and allow much more incremental progress. llvm-svn: 199884
This commit is contained in:
parent
6975704f62
commit
aa7fa5e4b2
|
@ -15,12 +15,25 @@
|
|||
#define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class AliasAnalysis;
|
||||
class BasicBlock;
|
||||
class DominatorTree;
|
||||
class Loop;
|
||||
class LoopInfo;
|
||||
class Pass;
|
||||
class ScalarEvolution;
|
||||
|
||||
BasicBlock *InsertPreheaderForLoop(Loop *L, Pass *P);
|
||||
|
||||
/// \brief Simplify each loop in a loop nest recursively.
|
||||
///
|
||||
/// This takes a potentially un-simplified loop L (and its children) and turns
|
||||
/// it into a simplified loop nest with preheaders and single backedges. It
|
||||
/// will optionally update \c AliasAnalysis and \c ScalarEvolution analyses if
|
||||
/// passed into it.
|
||||
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
|
||||
AliasAnalysis *AA = 0, ScalarEvolution *SE = 0);
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -21,9 +21,11 @@ namespace llvm {
|
|||
class Loop;
|
||||
class LoopInfo;
|
||||
class LPPassManager;
|
||||
class Pass;
|
||||
|
||||
bool UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool AllowRuntime,
|
||||
unsigned TripMultiple, LoopInfo* LI, LPPassManager* LPM);
|
||||
unsigned TripMultiple, LoopInfo *LI, Pass *PP,
|
||||
LPPassManager *LPM);
|
||||
|
||||
bool UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
|
||||
LPPassManager* LPM);
|
||||
|
|
|
@ -254,7 +254,7 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
|
|||
}
|
||||
|
||||
// Unroll the loop.
|
||||
if (!UnrollLoop(L, Count, TripCount, Runtime, TripMultiple, LI, &LPM))
|
||||
if (!UnrollLoop(L, Count, TripCount, Runtime, TripMultiple, LI, this, &LPM))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
|
|
|
@ -42,11 +42,12 @@
|
|||
#include "llvm/ADT/DepthFirstIterator.h"
|
||||
#include "llvm/ADT/SetOperations.h"
|
||||
#include "llvm/ADT/SetVector.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Analysis/AliasAnalysis.h"
|
||||
#include "llvm/Analysis/DependenceAnalysis.h"
|
||||
#include "llvm/Analysis/InstructionSimplify.h"
|
||||
#include "llvm/Analysis/LoopPass.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/IR/Constants.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
|
@ -65,310 +66,41 @@ using namespace llvm;
|
|||
STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
|
||||
STATISTIC(NumNested , "Number of nested loops split out");
|
||||
|
||||
namespace {
|
||||
struct LoopSimplify : public LoopPass {
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
LoopSimplify() : LoopPass(ID) {
|
||||
initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
|
||||
// AA - If we have an alias analysis object to update, this is it, otherwise
|
||||
// this is null.
|
||||
AliasAnalysis *AA;
|
||||
LoopInfo *LI;
|
||||
DominatorTree *DT;
|
||||
ScalarEvolution *SE;
|
||||
Loop *L;
|
||||
virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
// We need loop information to identify the loops...
|
||||
AU.addRequired<DominatorTreeWrapperPass>();
|
||||
AU.addPreserved<DominatorTreeWrapperPass>();
|
||||
|
||||
AU.addRequired<LoopInfo>();
|
||||
AU.addPreserved<LoopInfo>();
|
||||
|
||||
AU.addPreserved<AliasAnalysis>();
|
||||
AU.addPreserved<ScalarEvolution>();
|
||||
AU.addPreserved<DependenceAnalysis>();
|
||||
AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
|
||||
}
|
||||
|
||||
/// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
|
||||
void verifyAnalysis() const;
|
||||
|
||||
private:
|
||||
bool ProcessLoop(Loop *L, LPPassManager &LPM);
|
||||
BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
|
||||
Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM,
|
||||
BasicBlock *Preheader);
|
||||
BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
|
||||
};
|
||||
}
|
||||
|
||||
static void PlaceSplitBlockCarefully(BasicBlock *NewBB,
|
||||
// If the block isn't already, move the new block to right after some 'outside
|
||||
// block' block. This prevents the preheader from being placed inside the loop
|
||||
// body, e.g. when the loop hasn't been rotated.
|
||||
static void placeSplitBlockCarefully(BasicBlock *NewBB,
|
||||
SmallVectorImpl<BasicBlock *> &SplitPreds,
|
||||
Loop *L);
|
||||
|
||||
char LoopSimplify::ID = 0;
|
||||
INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
|
||||
"Canonicalize natural loops", true, false)
|
||||
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
|
||||
INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
|
||||
"Canonicalize natural loops", true, false)
|
||||
|
||||
// Publicly exposed interface to pass...
|
||||
char &llvm::LoopSimplifyID = LoopSimplify::ID;
|
||||
Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
|
||||
|
||||
/// runOnLoop - Run down all loops in the CFG (recursively, but we could do
|
||||
/// it in any convenient order) inserting preheaders...
|
||||
///
|
||||
bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
|
||||
L = l;
|
||||
bool Changed = false;
|
||||
LI = &getAnalysis<LoopInfo>();
|
||||
AA = getAnalysisIfAvailable<AliasAnalysis>();
|
||||
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
||||
SE = getAnalysisIfAvailable<ScalarEvolution>();
|
||||
|
||||
Changed |= ProcessLoop(L, LPM);
|
||||
|
||||
return Changed;
|
||||
Loop *L) {
|
||||
// Check to see if NewBB is already well placed.
|
||||
Function::iterator BBI = NewBB; --BBI;
|
||||
for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
|
||||
if (&*BBI == SplitPreds[i])
|
||||
return;
|
||||
}
|
||||
|
||||
/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
|
||||
/// all loops have preheaders.
|
||||
///
|
||||
bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
|
||||
bool Changed = false;
|
||||
ReprocessLoop:
|
||||
// If it isn't already after an outside block, move it after one. This is
|
||||
// always good as it makes the uncond branch from the outside block into a
|
||||
// fall-through.
|
||||
|
||||
// Check to see that no blocks (other than the header) in this loop have
|
||||
// predecessors that are not in the loop. This is not valid for natural
|
||||
// loops, but can occur if the blocks are unreachable. Since they are
|
||||
// unreachable we can just shamelessly delete those CFG edges!
|
||||
for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
|
||||
BB != E; ++BB) {
|
||||
if (*BB == L->getHeader()) continue;
|
||||
|
||||
SmallPtrSet<BasicBlock*, 4> BadPreds;
|
||||
for (pred_iterator PI = pred_begin(*BB),
|
||||
PE = pred_end(*BB); PI != PE; ++PI) {
|
||||
BasicBlock *P = *PI;
|
||||
if (!L->contains(P))
|
||||
BadPreds.insert(P);
|
||||
}
|
||||
|
||||
// Delete each unique out-of-loop (and thus dead) predecessor.
|
||||
for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
|
||||
E = BadPreds.end(); I != E; ++I) {
|
||||
|
||||
DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
|
||||
<< (*I)->getName() << "\n");
|
||||
|
||||
// Inform each successor of each dead pred.
|
||||
for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
|
||||
(*SI)->removePredecessor(*I);
|
||||
// Zap the dead pred's terminator and replace it with unreachable.
|
||||
TerminatorInst *TI = (*I)->getTerminator();
|
||||
TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
|
||||
(*I)->getTerminator()->eraseFromParent();
|
||||
new UnreachableInst((*I)->getContext(), *I);
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
// If there are exiting blocks with branches on undef, resolve the undef in
|
||||
// the direction which will exit the loop. This will help simplify loop
|
||||
// trip count computations.
|
||||
SmallVector<BasicBlock*, 8> ExitingBlocks;
|
||||
L->getExitingBlocks(ExitingBlocks);
|
||||
for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
|
||||
E = ExitingBlocks.end(); I != E; ++I)
|
||||
if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
|
||||
if (BI->isConditional()) {
|
||||
if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
|
||||
|
||||
DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
|
||||
<< (*I)->getName() << "\n");
|
||||
|
||||
BI->setCondition(ConstantInt::get(Cond->getType(),
|
||||
!L->contains(BI->getSuccessor(0))));
|
||||
|
||||
// This may make the loop analyzable, force SCEV recomputation.
|
||||
if (SE)
|
||||
SE->forgetLoop(L);
|
||||
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Does the loop already have a preheader? If so, don't insert one.
|
||||
BasicBlock *Preheader = L->getLoopPreheader();
|
||||
if (!Preheader) {
|
||||
Preheader = InsertPreheaderForLoop(L, this);
|
||||
if (Preheader) {
|
||||
++NumInserted;
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Next, check to make sure that all exit nodes of the loop only have
|
||||
// predecessors that are inside of the loop. This check guarantees that the
|
||||
// loop preheader/header will dominate the exit blocks. If the exit block has
|
||||
// predecessors from outside of the loop, split the edge now.
|
||||
SmallVector<BasicBlock*, 8> ExitBlocks;
|
||||
L->getExitBlocks(ExitBlocks);
|
||||
|
||||
SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
|
||||
ExitBlocks.end());
|
||||
for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
|
||||
E = ExitBlockSet.end(); I != E; ++I) {
|
||||
BasicBlock *ExitBlock = *I;
|
||||
for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
|
||||
PI != PE; ++PI)
|
||||
// Must be exactly this loop: no subloops, parent loops, or non-loop preds
|
||||
// allowed.
|
||||
if (!L->contains(*PI)) {
|
||||
if (RewriteLoopExitBlock(L, ExitBlock)) {
|
||||
++NumInserted;
|
||||
Changed = true;
|
||||
}
|
||||
// Figure out *which* outside block to put this after. Prefer an outside
|
||||
// block that neighbors a BB actually in the loop.
|
||||
BasicBlock *FoundBB = 0;
|
||||
for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
|
||||
Function::iterator BBI = SplitPreds[i];
|
||||
if (++BBI != NewBB->getParent()->end() &&
|
||||
L->contains(BBI)) {
|
||||
FoundBB = SplitPreds[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If the header has more than two predecessors at this point (from the
|
||||
// preheader and from multiple backedges), we must adjust the loop.
|
||||
BasicBlock *LoopLatch = L->getLoopLatch();
|
||||
if (!LoopLatch) {
|
||||
// If this is really a nested loop, rip it out into a child loop. Don't do
|
||||
// this for loops with a giant number of backedges, just factor them into a
|
||||
// common backedge instead.
|
||||
if (L->getNumBackEdges() < 8) {
|
||||
if (SeparateNestedLoop(L, LPM, Preheader)) {
|
||||
++NumNested;
|
||||
// This is a big restructuring change, reprocess the whole loop.
|
||||
Changed = true;
|
||||
// GCC doesn't tail recursion eliminate this.
|
||||
goto ReprocessLoop;
|
||||
}
|
||||
}
|
||||
|
||||
// If we either couldn't, or didn't want to, identify nesting of the loops,
|
||||
// insert a new block that all backedges target, then make it jump to the
|
||||
// loop header.
|
||||
LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
|
||||
if (LoopLatch) {
|
||||
++NumInserted;
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Scan over the PHI nodes in the loop header. Since they now have only two
|
||||
// incoming values (the loop is canonicalized), we may have simplified the PHI
|
||||
// down to 'X = phi [X, Y]', which should be replaced with 'Y'.
|
||||
PHINode *PN;
|
||||
for (BasicBlock::iterator I = L->getHeader()->begin();
|
||||
(PN = dyn_cast<PHINode>(I++)); )
|
||||
if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
|
||||
if (AA) AA->deleteValue(PN);
|
||||
if (SE) SE->forgetValue(PN);
|
||||
PN->replaceAllUsesWith(V);
|
||||
PN->eraseFromParent();
|
||||
}
|
||||
|
||||
// If this loop has multiple exits and the exits all go to the same
|
||||
// block, attempt to merge the exits. This helps several passes, such
|
||||
// as LoopRotation, which do not support loops with multiple exits.
|
||||
// SimplifyCFG also does this (and this code uses the same utility
|
||||
// function), however this code is loop-aware, where SimplifyCFG is
|
||||
// not. That gives it the advantage of being able to hoist
|
||||
// loop-invariant instructions out of the way to open up more
|
||||
// opportunities, and the disadvantage of having the responsibility
|
||||
// to preserve dominator information.
|
||||
bool UniqueExit = true;
|
||||
if (!ExitBlocks.empty())
|
||||
for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
|
||||
if (ExitBlocks[i] != ExitBlocks[0]) {
|
||||
UniqueExit = false;
|
||||
break;
|
||||
}
|
||||
if (UniqueExit) {
|
||||
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
|
||||
BasicBlock *ExitingBlock = ExitingBlocks[i];
|
||||
if (!ExitingBlock->getSinglePredecessor()) continue;
|
||||
BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
|
||||
if (!BI || !BI->isConditional()) continue;
|
||||
CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
|
||||
if (!CI || CI->getParent() != ExitingBlock) continue;
|
||||
|
||||
// Attempt to hoist out all instructions except for the
|
||||
// comparison and the branch.
|
||||
bool AllInvariant = true;
|
||||
bool AnyInvariant = false;
|
||||
for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
|
||||
Instruction *Inst = I++;
|
||||
// Skip debug info intrinsics.
|
||||
if (isa<DbgInfoIntrinsic>(Inst))
|
||||
continue;
|
||||
if (Inst == CI)
|
||||
continue;
|
||||
if (!L->makeLoopInvariant(Inst, AnyInvariant,
|
||||
Preheader ? Preheader->getTerminator() : 0)) {
|
||||
AllInvariant = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (AnyInvariant) {
|
||||
Changed = true;
|
||||
// The loop disposition of all SCEV expressions that depend on any
|
||||
// hoisted values have also changed.
|
||||
if (SE)
|
||||
SE->forgetLoopDispositions(L);
|
||||
}
|
||||
if (!AllInvariant) continue;
|
||||
|
||||
// The block has now been cleared of all instructions except for
|
||||
// a comparison and a conditional branch. SimplifyCFG may be able
|
||||
// to fold it now.
|
||||
if (!FoldBranchToCommonDest(BI)) continue;
|
||||
|
||||
// Success. The block is now dead, so remove it from the loop,
|
||||
// update the dominator tree and delete it.
|
||||
DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
|
||||
<< ExitingBlock->getName() << "\n");
|
||||
|
||||
// Notify ScalarEvolution before deleting this block. Currently assume the
|
||||
// parent loop doesn't change (spliting edges doesn't count). If blocks,
|
||||
// CFG edges, or other values in the parent loop change, then we need call
|
||||
// to forgetLoop() for the parent instead.
|
||||
if (SE)
|
||||
SE->forgetLoop(L);
|
||||
|
||||
assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
|
||||
Changed = true;
|
||||
LI->removeBlock(ExitingBlock);
|
||||
|
||||
DomTreeNode *Node = DT->getNode(ExitingBlock);
|
||||
const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
|
||||
Node->getChildren();
|
||||
while (!Children.empty()) {
|
||||
DomTreeNode *Child = Children.front();
|
||||
DT->changeImmediateDominator(Child, Node->getIDom());
|
||||
}
|
||||
DT->eraseNode(ExitingBlock);
|
||||
|
||||
BI->getSuccessor(0)->removePredecessor(ExitingBlock);
|
||||
BI->getSuccessor(1)->removePredecessor(ExitingBlock);
|
||||
ExitingBlock->eraseFromParent();
|
||||
}
|
||||
}
|
||||
|
||||
return Changed;
|
||||
// If our heuristic for a *good* bb to place this after doesn't find
|
||||
// anything, just pick something. It's likely better than leaving it within
|
||||
// the loop.
|
||||
if (!FoundBB)
|
||||
FoundBB = SplitPreds[0];
|
||||
NewBB->moveAfter(FoundBB);
|
||||
}
|
||||
|
||||
/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
|
||||
|
@ -413,15 +145,16 @@ BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
|
|||
|
||||
// Make sure that NewBB is put someplace intelligent, which doesn't mess up
|
||||
// code layout too horribly.
|
||||
PlaceSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
|
||||
placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
|
||||
|
||||
return PreheaderBB;
|
||||
}
|
||||
|
||||
/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
|
||||
/// blocks. This method is used to split exit blocks that have predecessors
|
||||
/// outside of the loop.
|
||||
BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
|
||||
/// \brief Ensure that the loop preheader dominates all exit blocks.
|
||||
///
|
||||
/// This method is used to split exit blocks that have predecessors outside of
|
||||
/// the loop.
|
||||
static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, Pass *PP) {
|
||||
SmallVector<BasicBlock*, 8> LoopBlocks;
|
||||
for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
|
||||
BasicBlock *P = *I;
|
||||
|
@ -441,10 +174,10 @@ BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
|
|||
SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
|
||||
LoopBlocks.size()),
|
||||
".loopexit", ".nonloopexit",
|
||||
this, NewBBs);
|
||||
PP, NewBBs);
|
||||
NewExitBB = NewBBs[0];
|
||||
} else {
|
||||
NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", this);
|
||||
NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", PP);
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
|
||||
|
@ -452,29 +185,29 @@ BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
|
|||
return NewExitBB;
|
||||
}
|
||||
|
||||
/// AddBlockAndPredsToSet - Add the specified block, and all of its
|
||||
/// predecessors, to the specified set, if it's not already in there. Stop
|
||||
/// predecessor traversal when we reach StopBlock.
|
||||
static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
|
||||
/// Add the specified block, and all of its predecessors, to the specified set,
|
||||
/// if it's not already in there. Stop predecessor traversal when we reach
|
||||
/// StopBlock.
|
||||
static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
|
||||
std::set<BasicBlock*> &Blocks) {
|
||||
std::vector<BasicBlock *> WorkList;
|
||||
WorkList.push_back(InputBB);
|
||||
SmallVector<BasicBlock *, 8> Worklist;
|
||||
Worklist.push_back(InputBB);
|
||||
do {
|
||||
BasicBlock *BB = WorkList.back(); WorkList.pop_back();
|
||||
BasicBlock *BB = Worklist.pop_back_val();
|
||||
if (Blocks.insert(BB).second && BB != StopBlock)
|
||||
// If BB is not already processed and it is not a stop block then
|
||||
// insert its predecessor in the work list
|
||||
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
|
||||
BasicBlock *WBB = *I;
|
||||
WorkList.push_back(WBB);
|
||||
Worklist.push_back(WBB);
|
||||
}
|
||||
} while(!WorkList.empty());
|
||||
} while (!Worklist.empty());
|
||||
}
|
||||
|
||||
/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
|
||||
/// PHI node that tells us how to partition the loops.
|
||||
static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
|
||||
AliasAnalysis *AA, LoopInfo *LI) {
|
||||
/// \brief The first part of loop-nestification is to find a PHI node that tells
|
||||
/// us how to partition the loops.
|
||||
static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA,
|
||||
DominatorTree *DT) {
|
||||
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
|
||||
PHINode *PN = cast<PHINode>(I);
|
||||
++I;
|
||||
|
@ -496,46 +229,10 @@ static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
|
|||
return 0;
|
||||
}
|
||||
|
||||
// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
|
||||
// right after some 'outside block' block. This prevents the preheader from
|
||||
// being placed inside the loop body, e.g. when the loop hasn't been rotated.
|
||||
void PlaceSplitBlockCarefully(BasicBlock *NewBB,
|
||||
SmallVectorImpl<BasicBlock*> &SplitPreds,
|
||||
Loop *L) {
|
||||
// Check to see if NewBB is already well placed.
|
||||
Function::iterator BBI = NewBB; --BBI;
|
||||
for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
|
||||
if (&*BBI == SplitPreds[i])
|
||||
return;
|
||||
}
|
||||
|
||||
// If it isn't already after an outside block, move it after one. This is
|
||||
// always good as it makes the uncond branch from the outside block into a
|
||||
// fall-through.
|
||||
|
||||
// Figure out *which* outside block to put this after. Prefer an outside
|
||||
// block that neighbors a BB actually in the loop.
|
||||
BasicBlock *FoundBB = 0;
|
||||
for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
|
||||
Function::iterator BBI = SplitPreds[i];
|
||||
if (++BBI != NewBB->getParent()->end() &&
|
||||
L->contains(BBI)) {
|
||||
FoundBB = SplitPreds[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If our heuristic for a *good* bb to place this after doesn't find
|
||||
// anything, just pick something. It's likely better than leaving it within
|
||||
// the loop.
|
||||
if (!FoundBB)
|
||||
FoundBB = SplitPreds[0];
|
||||
NewBB->moveAfter(FoundBB);
|
||||
}
|
||||
|
||||
|
||||
/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
|
||||
/// them out into a nested loop. This is important for code that looks like
|
||||
/// \brief If this loop has multiple backedges, try to pull one of them out into
|
||||
/// a nested loop.
|
||||
///
|
||||
/// This is important for code that looks like
|
||||
/// this:
|
||||
///
|
||||
/// Loop:
|
||||
|
@ -551,8 +248,9 @@ void PlaceSplitBlockCarefully(BasicBlock *NewBB,
|
|||
/// If we are able to separate out a loop, return the new outer loop that was
|
||||
/// created.
|
||||
///
|
||||
Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM,
|
||||
BasicBlock *Preheader) {
|
||||
static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
|
||||
AliasAnalysis *AA, DominatorTree *DT,
|
||||
LoopInfo *LI, ScalarEvolution *SE, Pass *PP) {
|
||||
// Don't try to separate loops without a preheader.
|
||||
if (!Preheader)
|
||||
return 0;
|
||||
|
@ -561,7 +259,7 @@ Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM,
|
|||
assert(!L->getHeader()->isLandingPad() &&
|
||||
"Can't insert backedge to landing pad");
|
||||
|
||||
PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
|
||||
PHINode *PN = findPHIToPartitionLoops(L, AA, DT);
|
||||
if (PN == 0) return 0; // No known way to partition.
|
||||
|
||||
// Pull out all predecessors that have varying values in the loop. This
|
||||
|
@ -587,11 +285,11 @@ Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM,
|
|||
|
||||
BasicBlock *Header = L->getHeader();
|
||||
BasicBlock *NewBB =
|
||||
SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", this);
|
||||
SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", PP);
|
||||
|
||||
// Make sure that NewBB is put someplace intelligent, which doesn't mess up
|
||||
// code layout too horribly.
|
||||
PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
|
||||
placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
|
||||
|
||||
// Create the new outer loop.
|
||||
Loop *NewOuter = new Loop();
|
||||
|
@ -605,9 +303,6 @@ Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM,
|
|||
// L is now a subloop of our outer loop.
|
||||
NewOuter->addChildLoop(L);
|
||||
|
||||
// Add the new loop to the pass manager queue.
|
||||
LPM.insertLoopIntoQueue(NewOuter);
|
||||
|
||||
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
|
||||
I != E; ++I)
|
||||
NewOuter->addBlockEntry(*I);
|
||||
|
@ -622,7 +317,7 @@ Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM,
|
|||
for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
|
||||
BasicBlock *P = *PI;
|
||||
if (DT->dominates(Header, P))
|
||||
AddBlockAndPredsToSet(P, Header, BlocksInL);
|
||||
addBlockAndPredsToSet(P, Header, BlocksInL);
|
||||
}
|
||||
|
||||
// Scan all of the loop children of L, moving them to OuterLoop if they are
|
||||
|
@ -650,15 +345,15 @@ Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM,
|
|||
return NewOuter;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// InsertUniqueBackedgeBlock - This method is called when the specified loop
|
||||
/// has more than one backedge in it. If this occurs, revector all of these
|
||||
/// backedges to target a new basic block and have that block branch to the loop
|
||||
/// header. This ensures that loops have exactly one backedge.
|
||||
/// \brief This method is called when the specified loop has more than one
|
||||
/// backedge in it.
|
||||
///
|
||||
BasicBlock *
|
||||
LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
|
||||
/// If this occurs, revector all of these backedges to target a new basic block
|
||||
/// and have that block branch to the loop header. This ensures that loops
|
||||
/// have exactly one backedge.
|
||||
static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
|
||||
AliasAnalysis *AA,
|
||||
DominatorTree *DT, LoopInfo *LI) {
|
||||
assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
|
||||
|
||||
// Get information about the loop
|
||||
|
@ -769,7 +464,349 @@ LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
|
|||
return BEBlock;
|
||||
}
|
||||
|
||||
void LoopSimplify::verifyAnalysis() const {
|
||||
/// \brief Simplify one loop and queue further loops for simplification.
|
||||
///
|
||||
/// FIXME: Currently this accepts both lots of analyses that it uses and a raw
|
||||
/// Pass pointer. The Pass pointer is used by numerous utilities to update
|
||||
/// specific analyses. Rather than a pass it would be much cleaner and more
|
||||
/// explicit if they accepted the analysis directly and then updated it.
|
||||
static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
|
||||
AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
|
||||
ScalarEvolution *SE, Pass *PP) {
|
||||
bool Changed = false;
|
||||
ReprocessLoop:
|
||||
|
||||
// Check to see that no blocks (other than the header) in this loop have
|
||||
// predecessors that are not in the loop. This is not valid for natural
|
||||
// loops, but can occur if the blocks are unreachable. Since they are
|
||||
// unreachable we can just shamelessly delete those CFG edges!
|
||||
for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
|
||||
BB != E; ++BB) {
|
||||
if (*BB == L->getHeader()) continue;
|
||||
|
||||
SmallPtrSet<BasicBlock*, 4> BadPreds;
|
||||
for (pred_iterator PI = pred_begin(*BB),
|
||||
PE = pred_end(*BB); PI != PE; ++PI) {
|
||||
BasicBlock *P = *PI;
|
||||
if (!L->contains(P))
|
||||
BadPreds.insert(P);
|
||||
}
|
||||
|
||||
// Delete each unique out-of-loop (and thus dead) predecessor.
|
||||
for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
|
||||
E = BadPreds.end(); I != E; ++I) {
|
||||
|
||||
DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
|
||||
<< (*I)->getName() << "\n");
|
||||
|
||||
// Inform each successor of each dead pred.
|
||||
for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
|
||||
(*SI)->removePredecessor(*I);
|
||||
// Zap the dead pred's terminator and replace it with unreachable.
|
||||
TerminatorInst *TI = (*I)->getTerminator();
|
||||
TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
|
||||
(*I)->getTerminator()->eraseFromParent();
|
||||
new UnreachableInst((*I)->getContext(), *I);
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
// If there are exiting blocks with branches on undef, resolve the undef in
|
||||
// the direction which will exit the loop. This will help simplify loop
|
||||
// trip count computations.
|
||||
SmallVector<BasicBlock*, 8> ExitingBlocks;
|
||||
L->getExitingBlocks(ExitingBlocks);
|
||||
for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
|
||||
E = ExitingBlocks.end(); I != E; ++I)
|
||||
if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
|
||||
if (BI->isConditional()) {
|
||||
if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
|
||||
|
||||
DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
|
||||
<< (*I)->getName() << "\n");
|
||||
|
||||
BI->setCondition(ConstantInt::get(Cond->getType(),
|
||||
!L->contains(BI->getSuccessor(0))));
|
||||
|
||||
// This may make the loop analyzable, force SCEV recomputation.
|
||||
if (SE)
|
||||
SE->forgetLoop(L);
|
||||
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Does the loop already have a preheader? If so, don't insert one.
|
||||
BasicBlock *Preheader = L->getLoopPreheader();
|
||||
if (!Preheader) {
|
||||
Preheader = InsertPreheaderForLoop(L, PP);
|
||||
if (Preheader) {
|
||||
++NumInserted;
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Next, check to make sure that all exit nodes of the loop only have
|
||||
// predecessors that are inside of the loop. This check guarantees that the
|
||||
// loop preheader/header will dominate the exit blocks. If the exit block has
|
||||
// predecessors from outside of the loop, split the edge now.
|
||||
SmallVector<BasicBlock*, 8> ExitBlocks;
|
||||
L->getExitBlocks(ExitBlocks);
|
||||
|
||||
SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
|
||||
ExitBlocks.end());
|
||||
for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
|
||||
E = ExitBlockSet.end(); I != E; ++I) {
|
||||
BasicBlock *ExitBlock = *I;
|
||||
for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
|
||||
PI != PE; ++PI)
|
||||
// Must be exactly this loop: no subloops, parent loops, or non-loop preds
|
||||
// allowed.
|
||||
if (!L->contains(*PI)) {
|
||||
if (rewriteLoopExitBlock(L, ExitBlock, PP)) {
|
||||
++NumInserted;
|
||||
Changed = true;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If the header has more than two predecessors at this point (from the
|
||||
// preheader and from multiple backedges), we must adjust the loop.
|
||||
BasicBlock *LoopLatch = L->getLoopLatch();
|
||||
if (!LoopLatch) {
|
||||
// If this is really a nested loop, rip it out into a child loop. Don't do
|
||||
// this for loops with a giant number of backedges, just factor them into a
|
||||
// common backedge instead.
|
||||
if (L->getNumBackEdges() < 8) {
|
||||
if (Loop *OuterL = separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP)) {
|
||||
++NumNested;
|
||||
// Enqueue the outer loop as it should be processed next in our
|
||||
// depth-first nest walk.
|
||||
Worklist.push_back(OuterL);
|
||||
|
||||
// This is a big restructuring change, reprocess the whole loop.
|
||||
Changed = true;
|
||||
// GCC doesn't tail recursion eliminate this.
|
||||
// FIXME: It isn't clear we can't rely on LLVM to TRE this.
|
||||
goto ReprocessLoop;
|
||||
}
|
||||
}
|
||||
|
||||
// If we either couldn't, or didn't want to, identify nesting of the loops,
|
||||
// insert a new block that all backedges target, then make it jump to the
|
||||
// loop header.
|
||||
LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI);
|
||||
if (LoopLatch) {
|
||||
++NumInserted;
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Scan over the PHI nodes in the loop header. Since they now have only two
|
||||
// incoming values (the loop is canonicalized), we may have simplified the PHI
|
||||
// down to 'X = phi [X, Y]', which should be replaced with 'Y'.
|
||||
PHINode *PN;
|
||||
for (BasicBlock::iterator I = L->getHeader()->begin();
|
||||
(PN = dyn_cast<PHINode>(I++)); )
|
||||
if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
|
||||
if (AA) AA->deleteValue(PN);
|
||||
if (SE) SE->forgetValue(PN);
|
||||
PN->replaceAllUsesWith(V);
|
||||
PN->eraseFromParent();
|
||||
}
|
||||
|
||||
// If this loop has multiple exits and the exits all go to the same
|
||||
// block, attempt to merge the exits. This helps several passes, such
|
||||
// as LoopRotation, which do not support loops with multiple exits.
|
||||
// SimplifyCFG also does this (and this code uses the same utility
|
||||
// function), however this code is loop-aware, where SimplifyCFG is
|
||||
// not. That gives it the advantage of being able to hoist
|
||||
// loop-invariant instructions out of the way to open up more
|
||||
// opportunities, and the disadvantage of having the responsibility
|
||||
// to preserve dominator information.
|
||||
bool UniqueExit = true;
|
||||
if (!ExitBlocks.empty())
|
||||
for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
|
||||
if (ExitBlocks[i] != ExitBlocks[0]) {
|
||||
UniqueExit = false;
|
||||
break;
|
||||
}
|
||||
if (UniqueExit) {
|
||||
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
|
||||
BasicBlock *ExitingBlock = ExitingBlocks[i];
|
||||
if (!ExitingBlock->getSinglePredecessor()) continue;
|
||||
BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
|
||||
if (!BI || !BI->isConditional()) continue;
|
||||
CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
|
||||
if (!CI || CI->getParent() != ExitingBlock) continue;
|
||||
|
||||
// Attempt to hoist out all instructions except for the
|
||||
// comparison and the branch.
|
||||
bool AllInvariant = true;
|
||||
bool AnyInvariant = false;
|
||||
for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
|
||||
Instruction *Inst = I++;
|
||||
// Skip debug info intrinsics.
|
||||
if (isa<DbgInfoIntrinsic>(Inst))
|
||||
continue;
|
||||
if (Inst == CI)
|
||||
continue;
|
||||
if (!L->makeLoopInvariant(Inst, AnyInvariant,
|
||||
Preheader ? Preheader->getTerminator() : 0)) {
|
||||
AllInvariant = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (AnyInvariant) {
|
||||
Changed = true;
|
||||
// The loop disposition of all SCEV expressions that depend on any
|
||||
// hoisted values have also changed.
|
||||
if (SE)
|
||||
SE->forgetLoopDispositions(L);
|
||||
}
|
||||
if (!AllInvariant) continue;
|
||||
|
||||
// The block has now been cleared of all instructions except for
|
||||
// a comparison and a conditional branch. SimplifyCFG may be able
|
||||
// to fold it now.
|
||||
if (!FoldBranchToCommonDest(BI)) continue;
|
||||
|
||||
// Success. The block is now dead, so remove it from the loop,
|
||||
// update the dominator tree and delete it.
|
||||
DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
|
||||
<< ExitingBlock->getName() << "\n");
|
||||
|
||||
// Notify ScalarEvolution before deleting this block. Currently assume the
|
||||
// parent loop doesn't change (spliting edges doesn't count). If blocks,
|
||||
// CFG edges, or other values in the parent loop change, then we need call
|
||||
// to forgetLoop() for the parent instead.
|
||||
if (SE)
|
||||
SE->forgetLoop(L);
|
||||
|
||||
assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
|
||||
Changed = true;
|
||||
LI->removeBlock(ExitingBlock);
|
||||
|
||||
DomTreeNode *Node = DT->getNode(ExitingBlock);
|
||||
const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
|
||||
Node->getChildren();
|
||||
while (!Children.empty()) {
|
||||
DomTreeNode *Child = Children.front();
|
||||
DT->changeImmediateDominator(Child, Node->getIDom());
|
||||
}
|
||||
DT->eraseNode(ExitingBlock);
|
||||
|
||||
BI->getSuccessor(0)->removePredecessor(ExitingBlock);
|
||||
BI->getSuccessor(1)->removePredecessor(ExitingBlock);
|
||||
ExitingBlock->eraseFromParent();
|
||||
}
|
||||
}
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
|
||||
AliasAnalysis *AA, ScalarEvolution *SE) {
|
||||
bool Changed = false;
|
||||
|
||||
// Worklist maintains our depth-first queue of loops in this nest to process.
|
||||
SmallVector<Loop *, 4> Worklist;
|
||||
Worklist.push_back(L);
|
||||
|
||||
// Walk the worklist from front to back, pushing newly found sub loops onto
|
||||
// the back. This will let us process loops from back to front in depth-first
|
||||
// order. We can use this simple process because loops form a tree.
|
||||
for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
|
||||
Loop *L2 = Worklist[Idx];
|
||||
for (Loop::iterator I = L2->begin(), E = L2->end(); I != E; ++I)
|
||||
Worklist.push_back(*I);
|
||||
}
|
||||
|
||||
while (!Worklist.empty())
|
||||
Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI, SE, PP);
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
namespace {
|
||||
struct LoopSimplify : public FunctionPass {
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
LoopSimplify() : FunctionPass(ID) {
|
||||
initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
|
||||
// AA - If we have an alias analysis object to update, this is it, otherwise
|
||||
// this is null.
|
||||
AliasAnalysis *AA;
|
||||
DominatorTree *DT;
|
||||
LoopInfo *LI;
|
||||
ScalarEvolution *SE;
|
||||
|
||||
virtual bool runOnFunction(Function &F);
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
// We need loop information to identify the loops...
|
||||
AU.addRequired<DominatorTreeWrapperPass>();
|
||||
AU.addPreserved<DominatorTreeWrapperPass>();
|
||||
|
||||
AU.addRequired<LoopInfo>();
|
||||
AU.addPreserved<LoopInfo>();
|
||||
|
||||
AU.addPreserved<AliasAnalysis>();
|
||||
AU.addPreserved<ScalarEvolution>();
|
||||
AU.addPreserved<DependenceAnalysis>();
|
||||
AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
|
||||
}
|
||||
|
||||
/// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
|
||||
void verifyAnalysis() const;
|
||||
|
||||
private:
|
||||
bool ProcessLoop(Loop *L);
|
||||
BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
|
||||
Loop *SeparateNestedLoop(Loop *L, BasicBlock *Preheader);
|
||||
BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
|
||||
};
|
||||
}
|
||||
|
||||
char LoopSimplify::ID = 0;
|
||||
INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
|
||||
"Canonicalize natural loops", true, false)
|
||||
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
|
||||
INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
|
||||
"Canonicalize natural loops", true, false)
|
||||
|
||||
// Publicly exposed interface to pass...
|
||||
char &llvm::LoopSimplifyID = LoopSimplify::ID;
|
||||
Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
|
||||
|
||||
/// runOnLoop - Run down all loops in the CFG (recursively, but we could do
|
||||
/// it in any convenient order) inserting preheaders...
|
||||
///
|
||||
bool LoopSimplify::runOnFunction(Function &F) {
|
||||
bool Changed = false;
|
||||
AA = getAnalysisIfAvailable<AliasAnalysis>();
|
||||
LI = &getAnalysis<LoopInfo>();
|
||||
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
||||
SE = getAnalysisIfAvailable<ScalarEvolution>();
|
||||
|
||||
// Simplify each loop nest in the function.
|
||||
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
|
||||
Changed |= simplifyLoop(*I, DT, LI, this, AA, SE);
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
// FIXME: Restore this code when we re-enable verification in verifyAnalysis
|
||||
// below.
|
||||
#if 0
|
||||
static void verifyLoop(Loop *L) {
|
||||
// Verify subloops.
|
||||
for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
|
||||
verifyLoop(*I);
|
||||
|
||||
// It used to be possible to just assert L->isLoopSimplifyForm(), however
|
||||
// with the introduction of indirectbr, there are now cases where it's
|
||||
// not possible to transform a loop as necessary. We can at least check
|
||||
|
@ -806,3 +843,15 @@ void LoopSimplify::verifyAnalysis() const {
|
|||
(void)HasIndBrExiting;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void LoopSimplify::verifyAnalysis() const {
|
||||
// FIXME: This routine is being called mid-way through the loop pass manager
|
||||
// as loop passes destroy this analysis. That's actually fine, but we have no
|
||||
// way of expressing that here. Once all of the passes that destroy this are
|
||||
// hoisted out of the loop pass manager we can add back verification here.
|
||||
#if 0
|
||||
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
|
||||
verifyLoop(*I);
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -30,6 +30,7 @@
|
|||
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||||
#include "llvm/Transforms/Utils/Cloning.h"
|
||||
#include "llvm/Transforms/Utils/Local.h"
|
||||
#include "llvm/Transforms/Utils/LoopUtils.h"
|
||||
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
|
||||
using namespace llvm;
|
||||
|
||||
|
@ -138,10 +139,10 @@ static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
|
|||
/// removed from the LoopPassManager as well. LPM can also be NULL.
|
||||
///
|
||||
/// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
|
||||
/// available it must also preserve those analyses.
|
||||
/// available from the Pass it must also preserve those analyses.
|
||||
bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
|
||||
bool AllowRuntime, unsigned TripMultiple,
|
||||
LoopInfo *LI, LPPassManager *LPM) {
|
||||
LoopInfo *LI, Pass *PP, LPPassManager *LPM) {
|
||||
BasicBlock *Preheader = L->getLoopPreheader();
|
||||
if (!Preheader) {
|
||||
DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
|
||||
|
@ -209,8 +210,8 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
|
|||
|
||||
// Notify ScalarEvolution that the loop will be substantially changed,
|
||||
// if not outright eliminated.
|
||||
if (LPM) {
|
||||
ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
|
||||
if (PP) {
|
||||
ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
|
||||
if (SE)
|
||||
SE->forgetLoop(L);
|
||||
}
|
||||
|
@ -410,15 +411,18 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
|
|||
}
|
||||
}
|
||||
|
||||
if (LPM) {
|
||||
DominatorTree *DT = 0;
|
||||
if (PP) {
|
||||
// FIXME: Reconstruct dom info, because it is not preserved properly.
|
||||
// Incrementally updating domtree after loop unrolling would be easy.
|
||||
if (DominatorTreeWrapperPass *DTWP =
|
||||
LPM->getAnalysisIfAvailable<DominatorTreeWrapperPass>())
|
||||
DTWP->getDomTree().recalculate(*L->getHeader()->getParent());
|
||||
PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
|
||||
DT = &DTWP->getDomTree();
|
||||
DT->recalculate(*L->getHeader()->getParent());
|
||||
}
|
||||
|
||||
// Simplify any new induction variables in the partially unrolled loop.
|
||||
ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
|
||||
ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
|
||||
if (SE && !CompletelyUnroll) {
|
||||
SmallVector<WeakVH, 16> DeadInsts;
|
||||
simplifyLoopIVs(L, SE, LPM, DeadInsts);
|
||||
|
@ -451,9 +455,23 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
|
|||
|
||||
NumCompletelyUnrolled += CompletelyUnroll;
|
||||
++NumUnrolled;
|
||||
|
||||
Loop *OuterL = L->getParentLoop();
|
||||
// Remove the loop from the LoopPassManager if it's completely removed.
|
||||
if (CompletelyUnroll && LPM != NULL)
|
||||
LPM->deleteLoopFromQueue(L);
|
||||
|
||||
// If we have a pass and a DominatorTree we should re-simplify impacted loops
|
||||
// to ensure subsequent analyses can rely on this form. We want to simplify
|
||||
// at least one layer outside of the loop that was unrolled so that any
|
||||
// changes to the parent loop exposed by the unrolling are considered.
|
||||
if (PP && DT) {
|
||||
if (!OuterL && !CompletelyUnroll)
|
||||
OuterL = L;
|
||||
if (OuterL)
|
||||
simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ 0,
|
||||
PP->getAnalysisIfAvailable<ScalarEvolution>());
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
|
|
@ -38,17 +38,16 @@ for.end:
|
|||
ret void
|
||||
}
|
||||
|
||||
; It would be nice if SCEV and any loop analysis could assume that
|
||||
; preheaders exist. Unfortunately it is not always the case. This test
|
||||
; checks that SCEVExpander can handle an outer loop that has not yet
|
||||
; been simplified. As a result, the inner loop's exit test will not be
|
||||
; rewritten.
|
||||
; This test checks that SCEVExpander can handle an outer loop that has been
|
||||
; simplified, and as a result the inner loop's exit test will be rewritten.
|
||||
define void @expandOuterRecurrence(i32 %arg) nounwind {
|
||||
entry:
|
||||
%sub1 = sub nsw i32 %arg, 1
|
||||
%cmp1 = icmp slt i32 0, %sub1
|
||||
br i1 %cmp1, label %outer, label %exit
|
||||
|
||||
; CHECK: outer:
|
||||
; CHECK: icmp slt
|
||||
outer:
|
||||
%i = phi i32 [ 0, %entry ], [ %i.inc, %outer.inc ]
|
||||
%sub2 = sub nsw i32 %arg, %i
|
||||
|
@ -60,7 +59,6 @@ inner.ph:
|
|||
br label %inner
|
||||
|
||||
; CHECK: inner:
|
||||
; CHECK: icmp slt
|
||||
; CHECK: br i1
|
||||
inner:
|
||||
%j = phi i32 [ 0, %inner.ph ], [ %j.inc, %inner ]
|
||||
|
|
Loading…
Reference in New Issue