forked from OSchip/llvm-project
EXTRACT_SUBREG coalescing support. The coalescer now treats EXTRACT_SUBREG like
(almost) a register copy. However, it always coalesced to the register of the RHS (the super-register). All uses of the result of a EXTRACT_SUBREG are sub- register uses which adds subtle complications to load folding, spiller rewrite, etc. llvm-svn: 42899
This commit is contained in:
parent
89d5916921
commit
aa2d6ef81d
|
@ -155,7 +155,7 @@ namespace llvm {
|
|||
|
||||
/// copyValNumInfo - Copy the value number info for one value number to
|
||||
/// another.
|
||||
void copyValNumInfo(VNInfo *DstValNo, VNInfo *SrcValNo) {
|
||||
void copyValNumInfo(VNInfo *DstValNo, const VNInfo *SrcValNo) {
|
||||
DstValNo->def = SrcValNo->def;
|
||||
DstValNo->reg = SrcValNo->reg;
|
||||
DstValNo->kills = SrcValNo->kills;
|
||||
|
@ -241,11 +241,23 @@ namespace llvm {
|
|||
void MergeInClobberRanges(const LiveInterval &Clobbers,
|
||||
BumpPtrAllocator &VNInfoAllocator);
|
||||
|
||||
/// MergeRangesInAsValue - Merge all of the intervals in RHS into this live
|
||||
/// interval as the specified value number. The LiveRanges in RHS are
|
||||
/// MergeRangesInAsValue - Merge all of the live ranges in RHS into this
|
||||
/// live interval as the specified value number. The LiveRanges in RHS are
|
||||
/// allowed to overlap with LiveRanges in the current interval, but only if
|
||||
/// the overlapping LiveRanges have the specified value number.
|
||||
void MergeRangesInAsValue(const LiveInterval &RHS, VNInfo *LHSValNo);
|
||||
|
||||
/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
|
||||
/// in RHS into this live interval as the specified value number.
|
||||
/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
|
||||
/// current interval, but only if the overlapping LiveRanges have the
|
||||
/// specified value number.
|
||||
void MergeValueInAsValue(const LiveInterval &RHS,
|
||||
VNInfo *RHSValNo, VNInfo *LHSValNo);
|
||||
|
||||
/// Copy - Copy the specified live interval. This copies all the fields
|
||||
/// except for the register of the interval.
|
||||
void Copy(const LiveInterval &RHS, BumpPtrAllocator &VNInfoAllocator);
|
||||
|
||||
bool empty() const { return ranges.empty(); }
|
||||
|
||||
|
|
|
@ -167,11 +167,6 @@ namespace llvm {
|
|||
return I->second;
|
||||
}
|
||||
|
||||
/// CreateNewLiveInterval - Create a new live interval with the given live
|
||||
/// ranges. The new live interval will have an infinite spill weight.
|
||||
LiveInterval &CreateNewLiveInterval(const LiveInterval *LI,
|
||||
const std::vector<LiveRange> &LRs);
|
||||
|
||||
std::vector<LiveInterval*> addIntervalsForSpills(const LiveInterval& i,
|
||||
VirtRegMap& vrm, unsigned reg);
|
||||
|
||||
|
@ -254,8 +249,8 @@ namespace llvm {
|
|||
/// MI. If it is successul, MI is updated with the newly created MI and
|
||||
/// returns true.
|
||||
bool tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm,
|
||||
unsigned index, unsigned i, bool isSS,
|
||||
MachineInstr *DefMI, int slot, unsigned reg);
|
||||
MachineInstr *DefMI, unsigned index, unsigned i,
|
||||
bool isSS, int slot, unsigned reg);
|
||||
|
||||
static LiveInterval createInterval(unsigned Reg);
|
||||
|
||||
|
|
|
@ -418,6 +418,10 @@ public:
|
|||
/// none is found.
|
||||
int findFirstPredOperandIdx() const;
|
||||
|
||||
/// isRegReDefinedByTwoAddr - Returns true if the Reg re-definition is due
|
||||
/// to two addr elimination.
|
||||
bool isRegReDefinedByTwoAddr(unsigned Reg) const;
|
||||
|
||||
/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
|
||||
///
|
||||
void copyKillDeadInfo(const MachineInstr *MI);
|
||||
|
|
|
@ -26,6 +26,7 @@ class TargetRegisterClass;
|
|||
|
||||
class SSARegMap {
|
||||
IndexedMap<const TargetRegisterClass*, VirtReg2IndexFunctor> RegClassMap;
|
||||
IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegSubIdxMap;
|
||||
unsigned NextRegNum;
|
||||
|
||||
public:
|
||||
|
@ -42,12 +43,30 @@ class SSARegMap {
|
|||
assert(RegClass && "Cannot create register without RegClass!");
|
||||
RegClassMap.grow(NextRegNum);
|
||||
RegClassMap[NextRegNum] = RegClass;
|
||||
RegSubIdxMap.grow(NextRegNum);
|
||||
RegSubIdxMap[NextRegNum] = std::make_pair(0,0);
|
||||
return NextRegNum++;
|
||||
}
|
||||
|
||||
unsigned getLastVirtReg() const {
|
||||
return NextRegNum - 1;
|
||||
}
|
||||
|
||||
void setIsSubRegister(unsigned Reg, unsigned SuperReg, unsigned SubIdx) {
|
||||
RegSubIdxMap[Reg] = std::make_pair(SuperReg, SubIdx);
|
||||
}
|
||||
|
||||
bool isSubRegister(unsigned Reg) const {
|
||||
return RegSubIdxMap[Reg].first != 0;
|
||||
}
|
||||
|
||||
unsigned getSuperRegister(unsigned Reg) const {
|
||||
return RegSubIdxMap[Reg].first;
|
||||
}
|
||||
|
||||
unsigned getSubRegisterIndex(unsigned Reg) const {
|
||||
return RegSubIdxMap[Reg].second;
|
||||
}
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
|
|
@ -47,6 +47,10 @@ namespace llvm {
|
|||
/// with other intervals.
|
||||
BitVector JoinedLIs;
|
||||
|
||||
/// SubRegIdxes - Keep track of sub-register and sub-indexes.
|
||||
///
|
||||
std::vector<std::pair<unsigned, unsigned> > SubRegIdxes;
|
||||
|
||||
public:
|
||||
static char ID; // Pass identifcation, replacement for typeid
|
||||
SimpleRegisterCoalescing() : MachineFunctionPass((intptr_t)&ID) {}
|
||||
|
|
|
@ -383,6 +383,26 @@ void LiveInterval::MergeRangesInAsValue(const LiveInterval &RHS,
|
|||
}
|
||||
|
||||
|
||||
/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
|
||||
/// in RHS into this live interval as the specified value number.
|
||||
/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
|
||||
/// current interval, but only if the overlapping LiveRanges have the
|
||||
/// specified value number.
|
||||
void LiveInterval::MergeValueInAsValue(const LiveInterval &RHS,
|
||||
VNInfo *RHSValNo, VNInfo *LHSValNo) {
|
||||
// TODO: Make this more efficient.
|
||||
iterator InsertPos = begin();
|
||||
for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
|
||||
if (I->valno != RHSValNo)
|
||||
continue;
|
||||
// Map the valno in the other live range to the current live range.
|
||||
LiveRange Tmp = *I;
|
||||
Tmp.valno = LHSValNo;
|
||||
InsertPos = addRangeFrom(Tmp, InsertPos);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// MergeInClobberRanges - For any live ranges that are not defined in the
|
||||
/// current interval, but are defined in the Clobbers interval, mark them
|
||||
/// used with an unknown definition value.
|
||||
|
@ -485,6 +505,23 @@ void LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
|
|||
}
|
||||
}
|
||||
|
||||
void LiveInterval::Copy(const LiveInterval &RHS,
|
||||
BumpPtrAllocator &VNInfoAllocator) {
|
||||
ranges.clear();
|
||||
valnos.clear();
|
||||
preference = RHS.preference;
|
||||
weight = RHS.weight;
|
||||
for (unsigned i = 0, e = RHS.getNumValNums(); i != e; ++i) {
|
||||
const VNInfo *VNI = RHS.getValNumInfo(i);
|
||||
VNInfo *NewVNI = getNextValue(~0U, 0, VNInfoAllocator);
|
||||
copyValNumInfo(NewVNI, VNI);
|
||||
}
|
||||
for (unsigned i = 0, e = RHS.ranges.size(); i != e; ++i) {
|
||||
const LiveRange &LR = RHS.ranges[i];
|
||||
addRange(LiveRange(LR.start, LR.end, getValNumInfo(LR.valno->id)));
|
||||
}
|
||||
}
|
||||
|
||||
unsigned LiveInterval::getSize() const {
|
||||
unsigned Sum = 0;
|
||||
for (const_iterator I = begin(), E = end(); I != E; ++I)
|
||||
|
|
|
@ -136,75 +136,6 @@ void LiveIntervals::print(std::ostream &O, const Module* ) const {
|
|||
}
|
||||
}
|
||||
|
||||
// Not called?
|
||||
/// CreateNewLiveInterval - Create a new live interval with the given live
|
||||
/// ranges. The new live interval will have an infinite spill weight.
|
||||
LiveInterval&
|
||||
LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
|
||||
const std::vector<LiveRange> &LRs) {
|
||||
const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
|
||||
|
||||
// Create a new virtual register for the spill interval.
|
||||
unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
|
||||
|
||||
// Replace the old virtual registers in the machine operands with the shiny
|
||||
// new one.
|
||||
for (std::vector<LiveRange>::const_iterator
|
||||
I = LRs.begin(), E = LRs.end(); I != E; ++I) {
|
||||
unsigned Index = getBaseIndex(I->start);
|
||||
unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
|
||||
|
||||
for (; Index != End; Index += InstrSlots::NUM) {
|
||||
// Skip deleted instructions
|
||||
while (Index != End && !getInstructionFromIndex(Index))
|
||||
Index += InstrSlots::NUM;
|
||||
|
||||
if (Index == End) break;
|
||||
|
||||
MachineInstr *MI = getInstructionFromIndex(Index);
|
||||
|
||||
for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
|
||||
MachineOperand &MOp = MI->getOperand(J);
|
||||
if (MOp.isRegister() && MOp.getReg() == LI->reg)
|
||||
MOp.setReg(NewVReg);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
LiveInterval &NewLI = getOrCreateInterval(NewVReg);
|
||||
|
||||
// The spill weight is now infinity as it cannot be spilled again
|
||||
NewLI.weight = float(HUGE_VAL);
|
||||
|
||||
for (std::vector<LiveRange>::const_iterator
|
||||
I = LRs.begin(), E = LRs.end(); I != E; ++I) {
|
||||
DOUT << " Adding live range " << *I << " to new interval\n";
|
||||
NewLI.addRange(*I);
|
||||
}
|
||||
|
||||
DOUT << "Created new live interval " << NewLI << "\n";
|
||||
return NewLI;
|
||||
}
|
||||
|
||||
/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
|
||||
/// two addr elimination.
|
||||
static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
|
||||
const TargetInstrInfo *TII) {
|
||||
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
||||
MachineOperand &MO1 = MI->getOperand(i);
|
||||
if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
|
||||
for (unsigned j = i+1; j < e; ++j) {
|
||||
MachineOperand &MO2 = MI->getOperand(j);
|
||||
if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
|
||||
MI->getInstrDescriptor()->
|
||||
getOperandConstraint(j, TOI::TIED_TO) == (int)i)
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// isReMaterializable - Returns true if the definition MI of the specified
|
||||
/// val# of the specified interval is re-materializable.
|
||||
bool LiveIntervals::isReMaterializable(const LiveInterval &li,
|
||||
|
@ -232,7 +163,7 @@ bool LiveIntervals::isReMaterializable(const LiveInterval &li,
|
|||
continue; // Dead val#.
|
||||
MachineInstr *DefMI = (DefIdx == ~0u)
|
||||
? NULL : getInstructionFromIndex(DefIdx);
|
||||
if (DefMI && isReDefinedByTwoAddr(DefMI, li.reg, tii_))
|
||||
if (DefMI && DefMI->isRegReDefinedByTwoAddr(li.reg))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
@ -243,9 +174,9 @@ bool LiveIntervals::isReMaterializable(const LiveInterval &li,
|
|||
/// MI. If it is successul, MI is updated with the newly created MI and
|
||||
/// returns true.
|
||||
bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm,
|
||||
MachineInstr *DefMI,
|
||||
unsigned index, unsigned i,
|
||||
bool isSS, MachineInstr *DefMI,
|
||||
int slot, unsigned reg) {
|
||||
bool isSS, int slot, unsigned reg) {
|
||||
MachineInstr *fmi = isSS
|
||||
? mri_->foldMemoryOperand(MI, i, slot)
|
||||
: mri_->foldMemoryOperand(MI, i, DefMI);
|
||||
|
@ -281,7 +212,8 @@ addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, unsigned reg) {
|
|||
li.print(DOUT, mri_);
|
||||
DOUT << '\n';
|
||||
|
||||
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
|
||||
SSARegMap *RegMap = mf_->getSSARegMap();
|
||||
const TargetRegisterClass* rc = RegMap->getRegClass(li.reg);
|
||||
|
||||
unsigned NumValNums = li.getNumValNums();
|
||||
SmallVector<MachineInstr*, 4> ReMatDefs;
|
||||
|
@ -364,113 +296,126 @@ addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, unsigned reg) {
|
|||
RestartInstruction:
|
||||
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
|
||||
MachineOperand& mop = MI->getOperand(i);
|
||||
if (mop.isRegister() && mop.getReg() == li.reg) {
|
||||
if (DefIsReMat) {
|
||||
// If this is the rematerializable definition MI itself and
|
||||
// all of its uses are rematerialized, simply delete it.
|
||||
if (MI == OrigDefMI) {
|
||||
if (CanDelete) {
|
||||
RemoveMachineInstrFromMaps(MI);
|
||||
MI->eraseFromParent();
|
||||
break;
|
||||
} else if (tryFoldMemoryOperand(MI, vrm, index, i, true,
|
||||
DefMI, slot, li.reg)) {
|
||||
// Folding the load/store can completely change the instruction
|
||||
// in unpredictable ways, rescan it from the beginning.
|
||||
goto RestartInstruction;
|
||||
}
|
||||
} else if (isLoad &&
|
||||
tryFoldMemoryOperand(MI, vrm, index, i, isLoadSS,
|
||||
DefMI, LdSlot, li.reg))
|
||||
// Folding the load/store can completely change the
|
||||
// instruction in unpredictable ways, rescan it from
|
||||
// the beginning.
|
||||
goto RestartInstruction;
|
||||
} else {
|
||||
if (tryFoldMemoryOperand(MI, vrm, index, i, true, DefMI,
|
||||
slot, li.reg))
|
||||
// Folding the load/store can completely change the instruction in
|
||||
// unpredictable ways, rescan it from the beginning.
|
||||
goto RestartInstruction;
|
||||
if (!mop.isRegister())
|
||||
continue;
|
||||
unsigned Reg = mop.getReg();
|
||||
if (Reg == 0 || MRegisterInfo::isPhysicalRegister(Reg))
|
||||
continue;
|
||||
bool isSubReg = RegMap->isSubRegister(Reg);
|
||||
unsigned SubIdx = 0;
|
||||
if (isSubReg) {
|
||||
SubIdx = RegMap->getSubRegisterIndex(Reg);
|
||||
Reg = RegMap->getSuperRegister(Reg);
|
||||
}
|
||||
if (Reg != li.reg)
|
||||
continue;
|
||||
|
||||
bool TryFold = !DefIsReMat;
|
||||
bool FoldSS = true;
|
||||
int FoldSlot = slot;
|
||||
if (DefIsReMat) {
|
||||
// If this is the rematerializable definition MI itself and
|
||||
// all of its uses are rematerialized, simply delete it.
|
||||
if (MI == OrigDefMI && CanDelete) {
|
||||
RemoveMachineInstrFromMaps(MI);
|
||||
MI->eraseFromParent();
|
||||
break;
|
||||
}
|
||||
|
||||
// Create a new virtual register for the spill interval.
|
||||
unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
|
||||
|
||||
// Scan all of the operands of this instruction rewriting operands
|
||||
// to use NewVReg instead of li.reg as appropriate. We do this for
|
||||
// two reasons:
|
||||
//
|
||||
// 1. If the instr reads the same spilled vreg multiple times, we
|
||||
// want to reuse the NewVReg.
|
||||
// 2. If the instr is a two-addr instruction, we are required to
|
||||
// keep the src/dst regs pinned.
|
||||
//
|
||||
// Keep track of whether we replace a use and/or def so that we can
|
||||
// create the spill interval with the appropriate range.
|
||||
mop.setReg(NewVReg);
|
||||
|
||||
bool HasUse = mop.isUse();
|
||||
bool HasDef = mop.isDef();
|
||||
for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
|
||||
if (MI->getOperand(j).isRegister() &&
|
||||
MI->getOperand(j).getReg() == li.reg) {
|
||||
MI->getOperand(j).setReg(NewVReg);
|
||||
HasUse |= MI->getOperand(j).isUse();
|
||||
HasDef |= MI->getOperand(j).isDef();
|
||||
}
|
||||
// If def for this use can't be rematerialized, then try folding.
|
||||
TryFold = !OrigDefMI || (OrigDefMI && (MI == OrigDefMI || isLoad));
|
||||
if (isLoad) {
|
||||
// Try fold loads (from stack slot, constant pool, etc.) into uses.
|
||||
FoldSS = isLoadSS;
|
||||
FoldSlot = LdSlot;
|
||||
}
|
||||
}
|
||||
|
||||
vrm.grow();
|
||||
if (DefIsReMat) {
|
||||
vrm.setVirtIsReMaterialized(NewVReg, DefMI/*, CanDelete*/);
|
||||
if (ReMatIds[I->valno->id] == VirtRegMap::MAX_STACK_SLOT) {
|
||||
// Each valnum may have its own remat id.
|
||||
ReMatIds[I->valno->id] = vrm.assignVirtReMatId(NewVReg);
|
||||
} else {
|
||||
vrm.assignVirtReMatId(NewVReg, ReMatIds[I->valno->id]);
|
||||
}
|
||||
if (!CanDelete || (HasUse && HasDef)) {
|
||||
// If this is a two-addr instruction then its use operands are
|
||||
// rematerializable but its def is not. It should be assigned a
|
||||
// stack slot.
|
||||
vrm.assignVirt2StackSlot(NewVReg, slot);
|
||||
}
|
||||
// FIXME: fold subreg use
|
||||
if (!isSubReg && TryFold &&
|
||||
tryFoldMemoryOperand(MI, vrm, DefMI, index, i, FoldSS, FoldSlot, Reg))
|
||||
// Folding the load/store can completely change the instruction in
|
||||
// unpredictable ways, rescan it from the beginning.
|
||||
goto RestartInstruction;
|
||||
|
||||
// Create a new virtual register for the spill interval.
|
||||
unsigned NewVReg = RegMap->createVirtualRegister(rc);
|
||||
if (isSubReg)
|
||||
RegMap->setIsSubRegister(NewVReg, NewVReg, SubIdx);
|
||||
|
||||
// Scan all of the operands of this instruction rewriting operands
|
||||
// to use NewVReg instead of li.reg as appropriate. We do this for
|
||||
// two reasons:
|
||||
//
|
||||
// 1. If the instr reads the same spilled vreg multiple times, we
|
||||
// want to reuse the NewVReg.
|
||||
// 2. If the instr is a two-addr instruction, we are required to
|
||||
// keep the src/dst regs pinned.
|
||||
//
|
||||
// Keep track of whether we replace a use and/or def so that we can
|
||||
// create the spill interval with the appropriate range.
|
||||
mop.setReg(NewVReg);
|
||||
|
||||
bool HasUse = mop.isUse();
|
||||
bool HasDef = mop.isDef();
|
||||
for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
|
||||
if (MI->getOperand(j).isRegister() &&
|
||||
MI->getOperand(j).getReg() == li.reg) {
|
||||
MI->getOperand(j).setReg(NewVReg);
|
||||
HasUse |= MI->getOperand(j).isUse();
|
||||
HasDef |= MI->getOperand(j).isDef();
|
||||
}
|
||||
}
|
||||
|
||||
vrm.grow();
|
||||
if (DefIsReMat) {
|
||||
vrm.setVirtIsReMaterialized(NewVReg, DefMI/*, CanDelete*/);
|
||||
if (ReMatIds[I->valno->id] == VirtRegMap::MAX_STACK_SLOT) {
|
||||
// Each valnum may have its own remat id.
|
||||
ReMatIds[I->valno->id] = vrm.assignVirtReMatId(NewVReg);
|
||||
} else {
|
||||
vrm.assignVirtReMatId(NewVReg, ReMatIds[I->valno->id]);
|
||||
}
|
||||
if (!CanDelete || (HasUse && HasDef)) {
|
||||
// If this is a two-addr instruction then its use operands are
|
||||
// rematerializable but its def is not. It should be assigned a
|
||||
// stack slot.
|
||||
vrm.assignVirt2StackSlot(NewVReg, slot);
|
||||
}
|
||||
|
||||
// create a new register interval for this spill / remat.
|
||||
LiveInterval &nI = getOrCreateInterval(NewVReg);
|
||||
assert(nI.empty());
|
||||
|
||||
// the spill weight is now infinity as it
|
||||
// cannot be spilled again
|
||||
nI.weight = HUGE_VALF;
|
||||
|
||||
if (HasUse) {
|
||||
LiveRange LR(getLoadIndex(index), getUseIndex(index)+1,
|
||||
nI.getNextValue(~0U, 0, VNInfoAllocator));
|
||||
DOUT << " +" << LR;
|
||||
nI.addRange(LR);
|
||||
}
|
||||
if (HasDef) {
|
||||
LiveRange LR(getDefIndex(index), getStoreIndex(index),
|
||||
nI.getNextValue(~0U, 0, VNInfoAllocator));
|
||||
DOUT << " +" << LR;
|
||||
nI.addRange(LR);
|
||||
}
|
||||
|
||||
added.push_back(&nI);
|
||||
|
||||
// update live variables if it is available
|
||||
if (lv_)
|
||||
lv_->addVirtualRegisterKilled(NewVReg, MI);
|
||||
|
||||
DOUT << "\t\t\t\tadded new interval: ";
|
||||
nI.print(DOUT, mri_);
|
||||
DOUT << '\n';
|
||||
} else {
|
||||
vrm.assignVirt2StackSlot(NewVReg, slot);
|
||||
}
|
||||
|
||||
// create a new register interval for this spill / remat.
|
||||
LiveInterval &nI = getOrCreateInterval(NewVReg);
|
||||
assert(nI.empty());
|
||||
|
||||
// the spill weight is now infinity as it
|
||||
// cannot be spilled again
|
||||
nI.weight = HUGE_VALF;
|
||||
|
||||
if (HasUse) {
|
||||
LiveRange LR(getLoadIndex(index), getUseIndex(index)+1,
|
||||
nI.getNextValue(~0U, 0, VNInfoAllocator));
|
||||
DOUT << " +" << LR;
|
||||
nI.addRange(LR);
|
||||
}
|
||||
if (HasDef) {
|
||||
LiveRange LR(getDefIndex(index), getStoreIndex(index),
|
||||
nI.getNextValue(~0U, 0, VNInfoAllocator));
|
||||
DOUT << " +" << LR;
|
||||
nI.addRange(LR);
|
||||
}
|
||||
|
||||
added.push_back(&nI);
|
||||
|
||||
// update live variables if it is available
|
||||
if (lv_)
|
||||
lv_->addVirtualRegisterKilled(NewVReg, MI);
|
||||
|
||||
DOUT << "\t\t\t\tadded new interval: ";
|
||||
nI.print(DOUT, mri_);
|
||||
DOUT << '\n';
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -501,10 +446,14 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
|
|||
unsigned defIndex = getDefIndex(MIIdx);
|
||||
VNInfo *ValNo;
|
||||
unsigned SrcReg, DstReg;
|
||||
if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
|
||||
ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);
|
||||
else
|
||||
if (tii_->isMoveInstr(*mi, SrcReg, DstReg))
|
||||
ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator);
|
||||
else if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
|
||||
mi->getOpcode() == TargetInstrInfo::INSERT_SUBREG)
|
||||
ValNo = interval.getNextValue(defIndex, mi->getOperand(1).getReg(),
|
||||
VNInfoAllocator);
|
||||
else
|
||||
ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);
|
||||
|
||||
assert(ValNo->id == 0 && "First value in interval is not 0?");
|
||||
|
||||
|
@ -576,7 +525,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
|
|||
// must be due to phi elimination or two addr elimination. If this is
|
||||
// the result of two address elimination, then the vreg is one of the
|
||||
// def-and-use register operand.
|
||||
if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
|
||||
if (mi->isRegReDefinedByTwoAddr(interval.reg)) {
|
||||
// If this is a two-address definition, then we have already processed
|
||||
// the live range. The only problem is that we didn't realize there
|
||||
// are actually two values in the live interval. Because of this we
|
||||
|
@ -656,10 +605,13 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
|
|||
|
||||
VNInfo *ValNo;
|
||||
unsigned SrcReg, DstReg;
|
||||
if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
|
||||
ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);
|
||||
else
|
||||
if (tii_->isMoveInstr(*mi, SrcReg, DstReg))
|
||||
ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator);
|
||||
else if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
|
||||
ValNo = interval.getNextValue(defIndex, mi->getOperand(1).getReg(),
|
||||
VNInfoAllocator);
|
||||
else
|
||||
ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);
|
||||
|
||||
unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
|
||||
LiveRange LR(defIndex, killIndex, ValNo);
|
||||
|
@ -741,7 +693,9 @@ void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
|
|||
handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
|
||||
else if (allocatableRegs_[reg]) {
|
||||
unsigned SrcReg, DstReg;
|
||||
if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
|
||||
if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
|
||||
SrcReg = MI->getOperand(1).getReg();
|
||||
else if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
|
||||
SrcReg = 0;
|
||||
handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
|
||||
// Def of a register also defines its sub-registers.
|
||||
|
|
|
@ -220,6 +220,24 @@ int MachineInstr::findFirstPredOperandIdx() const {
|
|||
return -1;
|
||||
}
|
||||
|
||||
/// isRegReDefinedByTwoAddr - Returns true if the Reg re-definition is due
|
||||
/// to two addr elimination.
|
||||
bool MachineInstr::isRegReDefinedByTwoAddr(unsigned Reg) const {
|
||||
const TargetInstrDescriptor *TID = getInstrDescriptor();
|
||||
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
||||
const MachineOperand &MO1 = getOperand(i);
|
||||
if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
|
||||
for (unsigned j = i+1; j < e; ++j) {
|
||||
const MachineOperand &MO2 = getOperand(j);
|
||||
if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
|
||||
TID->getOperandConstraint(j, TOI::TIED_TO) == (int)i)
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
|
||||
///
|
||||
void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
|
||||
|
|
|
@ -567,9 +567,6 @@ void ScheduleDAG::EmitSubregNode(SDNode *Node,
|
|||
// TODO: If the node is a use of a CopyFromReg from a physical register
|
||||
// fold the extract into the copy now
|
||||
|
||||
// TODO: Add tracking info to SSARegMap of which vregs are subregs
|
||||
// to allow coalescing in the allocator
|
||||
|
||||
// Create the extract_subreg machine instruction.
|
||||
MachineInstr *MI =
|
||||
new MachineInstr(BB, TII->get(TargetInstrInfo::EXTRACT_SUBREG));
|
||||
|
|
|
@ -1097,6 +1097,11 @@ namespace {
|
|||
// CopyToReg should be close to its uses to facilitate coalescing and
|
||||
// avoid spilling.
|
||||
return 0;
|
||||
else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
|
||||
Opc == TargetInstrInfo::INSERT_SUBREG)
|
||||
// EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
|
||||
// facilitate coalescing.
|
||||
return 0;
|
||||
else if (SU->NumSuccs == 0)
|
||||
// If SU does not have a use, i.e. it doesn't produce a value that would
|
||||
// be consumed (e.g. store), then it terminates a chain of computation.
|
||||
|
@ -1308,6 +1313,14 @@ void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
|
|||
// Be conservative. Ignore if nodes aren't at the same depth.
|
||||
if (SuccSU->Depth != SU->Depth)
|
||||
continue;
|
||||
if (!SuccSU->Node || !SuccSU->Node->isTargetOpcode())
|
||||
continue;
|
||||
// Don't constraint extract_subreg / insert_subreg these may be
|
||||
// coalesced away. We don't them close to their uses.
|
||||
unsigned SuccOpc = SuccSU->Node->getTargetOpcode();
|
||||
if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
|
||||
SuccOpc == TargetInstrInfo::INSERT_SUBREG)
|
||||
continue;
|
||||
if ((!canClobber(SuccSU, DUSU) ||
|
||||
(hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
|
||||
(!SU->isCommutable && SuccSU->isCommutable)) &&
|
||||
|
|
|
@ -226,11 +226,55 @@ bool SimpleRegisterCoalescing::JoinCopy(MachineInstr *CopyMI,
|
|||
DOUT << "\tDst reg is unallocatable physreg.\n";
|
||||
return true; // Not coalescable.
|
||||
}
|
||||
|
||||
// If they are not of the same register class, we cannot join them.
|
||||
if (differingRegisterClasses(repSrcReg, repDstReg)) {
|
||||
|
||||
bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG;
|
||||
unsigned RealDstReg = 0;
|
||||
if (isExtSubReg) {
|
||||
unsigned SubIdx = CopyMI->getOperand(2).getImm();
|
||||
if (SrcIsPhys)
|
||||
// r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
|
||||
// coalesced with AX.
|
||||
repSrcReg = mri_->getSubReg(repSrcReg, SubIdx);
|
||||
else if (DstIsPhys) {
|
||||
// If this is a extract_subreg where dst is a physical register, e.g.
|
||||
// cl = EXTRACT_SUBREG reg1024, 1
|
||||
// then create and update the actual physical register allocated to RHS.
|
||||
const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(SrcReg);
|
||||
for (const unsigned *SRs = mri_->getSuperRegisters(repDstReg);
|
||||
unsigned SR = *SRs; ++SRs) {
|
||||
if (repDstReg == mri_->getSubReg(SR, SubIdx) &&
|
||||
RC->contains(SR)) {
|
||||
RealDstReg = SR;
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(RealDstReg && "Invalid extra_subreg instruction!");
|
||||
|
||||
// For this type of EXTRACT_SUBREG, conservatively
|
||||
// check if the live interval of the source register interfere with the
|
||||
// actual super physical register we are trying to coalesce with.
|
||||
LiveInterval &RHS = li_->getInterval(repSrcReg);
|
||||
if (li_->hasInterval(RealDstReg) &&
|
||||
RHS.overlaps(li_->getInterval(RealDstReg))) {
|
||||
DOUT << "Interfere with register ";
|
||||
DEBUG(li_->getInterval(RealDstReg).print(DOUT, mri_));
|
||||
return true; // Not coalescable
|
||||
}
|
||||
for (const unsigned* SR = mri_->getSubRegisters(RealDstReg); *SR; ++SR)
|
||||
if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
|
||||
DOUT << "Interfere with sub-register ";
|
||||
DEBUG(li_->getInterval(*SR).print(DOUT, mri_));
|
||||
return true;
|
||||
}
|
||||
}
|
||||
} else if (differingRegisterClasses(repSrcReg, repDstReg)) {
|
||||
// If they are not of the same register class, we cannot join them.
|
||||
DOUT << "\tSrc/Dest are different register classes.\n";
|
||||
return true; // Not coalescable.
|
||||
// Allow the coalescer to try again in case either side gets coalesced to
|
||||
// a physical register that's compatible with the other side. e.g.
|
||||
// r1024 = MOV32to32_ r1025
|
||||
// but later r1024 is assigned EAX then r1025 may be coalesced with EAX.
|
||||
return false;
|
||||
}
|
||||
|
||||
LiveInterval &SrcInt = li_->getInterval(repSrcReg);
|
||||
|
@ -286,14 +330,14 @@ bool SimpleRegisterCoalescing::JoinCopy(MachineInstr *CopyMI,
|
|||
// virtual register. Once the coalescing is done, it cannot be broken and
|
||||
// these are not spillable! If the destination interval uses are far away,
|
||||
// think twice about coalescing them!
|
||||
if (!mopd->isDead() && (SrcIsPhys || DstIsPhys)) {
|
||||
if (!mopd->isDead() && (SrcIsPhys || DstIsPhys) && !isExtSubReg) {
|
||||
LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
|
||||
unsigned JoinVReg = SrcIsPhys ? repDstReg : repSrcReg;
|
||||
unsigned JoinPReg = SrcIsPhys ? repSrcReg : repDstReg;
|
||||
const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(JoinVReg);
|
||||
unsigned Threshold = allocatableRCRegs_[RC].count();
|
||||
|
||||
// If the virtual register live interval is long has it has low use desity,
|
||||
// If the virtual register live interval is long but it has low use desity,
|
||||
// do not join them, instead mark the physical register as its allocation
|
||||
// preference.
|
||||
unsigned Length = JoinVInt.getSize() / InstrSlots::NUM;
|
||||
|
@ -340,7 +384,7 @@ bool SimpleRegisterCoalescing::JoinCopy(MachineInstr *CopyMI,
|
|||
// Coalescing failed.
|
||||
|
||||
// If we can eliminate the copy without merging the live ranges, do so now.
|
||||
if (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI))
|
||||
if (!isExtSubReg && AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI))
|
||||
return true;
|
||||
|
||||
// Otherwise, we are unable to join the intervals.
|
||||
|
@ -368,9 +412,24 @@ bool SimpleRegisterCoalescing::JoinCopy(MachineInstr *CopyMI,
|
|||
unsetRegisterKills(I->start, I->end, repDstReg);
|
||||
}
|
||||
|
||||
// If this is a extract_subreg where dst is a physical register, e.g.
|
||||
// cl = EXTRACT_SUBREG reg1024, 1
|
||||
// then create and update the actual physical register allocated to RHS.
|
||||
if (RealDstReg) {
|
||||
unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
|
||||
VNInfo *DstValNo =
|
||||
ResDstInt->getLiveRangeContaining(li_->getUseIndex(CopyIdx))->valno;
|
||||
LiveInterval &RealDstInt = li_->getOrCreateInterval(RealDstReg);
|
||||
VNInfo *ValNo = RealDstInt.getNextValue(DstValNo->def, DstValNo->reg,
|
||||
li_->getVNInfoAllocator());
|
||||
RealDstInt.addKills(ValNo, DstValNo->kills);
|
||||
RealDstInt.MergeValueInAsValue(*ResDstInt, DstValNo, ValNo);
|
||||
repDstReg = RealDstReg;
|
||||
}
|
||||
|
||||
// Update the liveintervals of sub-registers.
|
||||
for (const unsigned *AS = mri_->getSubRegisters(repDstReg); *AS; ++AS)
|
||||
li_->getInterval(*AS).MergeInClobberRanges(*ResSrcInt,
|
||||
li_->getOrCreateInterval(*AS).MergeInClobberRanges(*ResSrcInt,
|
||||
li_->getVNInfoAllocator());
|
||||
} else {
|
||||
// Merge use info if the destination is a virtual register.
|
||||
|
@ -379,14 +438,25 @@ bool SimpleRegisterCoalescing::JoinCopy(MachineInstr *CopyMI,
|
|||
dVI.NumUses += sVI.NumUses;
|
||||
}
|
||||
|
||||
DOUT << "\n\t\tJoined. Result = "; ResDstInt->print(DOUT, mri_);
|
||||
DOUT << "\n";
|
||||
|
||||
// Remember these liveintervals have been joined.
|
||||
JoinedLIs.set(repSrcReg - MRegisterInfo::FirstVirtualRegister);
|
||||
if (MRegisterInfo::isVirtualRegister(repDstReg))
|
||||
JoinedLIs.set(repDstReg - MRegisterInfo::FirstVirtualRegister);
|
||||
|
||||
if (isExtSubReg && !SrcIsPhys && !DstIsPhys) {
|
||||
if (!Swapped) {
|
||||
// Make sure we allocate the larger super-register.
|
||||
ResSrcInt->Copy(*ResDstInt, li_->getVNInfoAllocator());
|
||||
std::swap(repSrcReg, repDstReg);
|
||||
std::swap(ResSrcInt, ResDstInt);
|
||||
}
|
||||
SubRegIdxes.push_back(std::make_pair(repSrcReg,
|
||||
CopyMI->getOperand(2).getImm()));
|
||||
}
|
||||
|
||||
DOUT << "\n\t\tJoined. Result = "; ResDstInt->print(DOUT, mri_);
|
||||
DOUT << "\n";
|
||||
|
||||
// repSrcReg is guarateed to be the register whose live interval that is
|
||||
// being merged.
|
||||
li_->removeInterval(repSrcReg);
|
||||
|
@ -857,9 +927,13 @@ void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
|
|||
MII != E;) {
|
||||
MachineInstr *Inst = MII++;
|
||||
|
||||
// If this isn't a copy, we can't join intervals.
|
||||
// If this isn't a copy nor a extract_subreg, we can't join intervals.
|
||||
unsigned SrcReg, DstReg;
|
||||
if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
|
||||
if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
|
||||
DstReg = Inst->getOperand(0).getReg();
|
||||
SrcReg = Inst->getOperand(1).getReg();
|
||||
} else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg))
|
||||
continue;
|
||||
|
||||
bool Done = JoinCopy(Inst, SrcReg, DstReg, PhysOnly);
|
||||
if (TryAgain && !Done)
|
||||
|
@ -950,7 +1024,7 @@ void SimpleRegisterCoalescing::joinIntervals() {
|
|||
/// Return true if the two specified registers belong to different register
|
||||
/// classes. The registers may be either phys or virt regs.
|
||||
bool SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
|
||||
unsigned RegB) const {
|
||||
unsigned RegB) const {
|
||||
|
||||
// Get the register classes for the first reg.
|
||||
if (MRegisterInfo::isPhysicalRegister(RegA)) {
|
||||
|
@ -1074,6 +1148,7 @@ void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
|
|||
void SimpleRegisterCoalescing::releaseMemory() {
|
||||
r2rMap_.clear();
|
||||
JoinedLIs.clear();
|
||||
SubRegIdxes.clear();
|
||||
}
|
||||
|
||||
static bool isZeroLengthInterval(LiveInterval *li) {
|
||||
|
@ -1101,7 +1176,8 @@ bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
|
|||
E = mri_->regclass_end(); I != E; ++I)
|
||||
allocatableRCRegs_.insert(std::make_pair(*I,mri_->getAllocatableSet(fn, *I)));
|
||||
|
||||
r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
|
||||
SSARegMap *RegMap = mf_->getSSARegMap();
|
||||
r2rMap_.grow(RegMap->getLastVirtReg());
|
||||
|
||||
// Join (coalesce) intervals if requested.
|
||||
if (EnableJoining) {
|
||||
|
@ -1111,6 +1187,13 @@ bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
|
|||
I->second.print(DOUT, mri_);
|
||||
DOUT << "\n";
|
||||
}
|
||||
|
||||
// Track coalesced sub-registers.
|
||||
while (!SubRegIdxes.empty()) {
|
||||
std::pair<unsigned, unsigned> RI = SubRegIdxes.back();
|
||||
SubRegIdxes.pop_back();
|
||||
mf_->getSSARegMap()->setIsSubRegister(RI.first, rep(RI.first), RI.second);
|
||||
}
|
||||
}
|
||||
|
||||
// perform a final pass over the instructions and compute spill
|
||||
|
@ -1150,8 +1233,14 @@ bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
|
|||
if (mop.isRegister() && mop.getReg() &&
|
||||
MRegisterInfo::isVirtualRegister(mop.getReg())) {
|
||||
// replace register with representative register
|
||||
unsigned reg = rep(mop.getReg());
|
||||
mii->getOperand(i).setReg(reg);
|
||||
unsigned OrigReg = mop.getReg();
|
||||
unsigned reg = rep(OrigReg);
|
||||
// Don't rewrite if it is a sub-register of a virtual register.
|
||||
if (!RegMap->isSubRegister(OrigReg))
|
||||
mii->getOperand(i).setReg(reg);
|
||||
else if (MRegisterInfo::isPhysicalRegister(reg))
|
||||
mii->getOperand(i).setReg(mri_->getSubReg(reg,
|
||||
RegMap->getSubRegisterIndex(OrigReg)));
|
||||
|
||||
// Multiple uses of reg by the same instruction. It should not
|
||||
// contribute to spill weight again.
|
||||
|
|
|
@ -242,10 +242,12 @@ namespace {
|
|||
/// blocks that have low register pressure (the vreg may be spilled due to
|
||||
/// register pressure in other blocks).
|
||||
class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
|
||||
SSARegMap *RegMap;
|
||||
const MRegisterInfo *MRI;
|
||||
const TargetInstrInfo *TII;
|
||||
public:
|
||||
bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
|
||||
RegMap = MF.getSSARegMap();
|
||||
MRI = MF.getTarget().getRegisterInfo();
|
||||
TII = MF.getTarget().getInstrInfo();
|
||||
DOUT << "\n**** Local spiller rewriting function '"
|
||||
|
@ -776,25 +778,33 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
|
|||
if (!MO.isRegister() || MO.getReg() == 0)
|
||||
continue; // Ignore non-register operands.
|
||||
|
||||
if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
|
||||
unsigned VirtReg = MO.getReg();
|
||||
if (MRegisterInfo::isPhysicalRegister(VirtReg)) {
|
||||
// Ignore physregs for spilling, but remember that it is used by this
|
||||
// function.
|
||||
MF.setPhysRegUsed(MO.getReg());
|
||||
ReusedOperands.markClobbered(MO.getReg());
|
||||
MF.setPhysRegUsed(VirtReg);
|
||||
ReusedOperands.markClobbered(VirtReg);
|
||||
continue;
|
||||
}
|
||||
|
||||
assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
|
||||
assert(MRegisterInfo::isVirtualRegister(VirtReg) &&
|
||||
"Not a virtual or a physical register?");
|
||||
|
||||
unsigned VirtReg = MO.getReg();
|
||||
unsigned SubIdx = 0;
|
||||
bool isSubReg = RegMap->isSubRegister(VirtReg);
|
||||
if (isSubReg) {
|
||||
SubIdx = RegMap->getSubRegisterIndex(VirtReg);
|
||||
VirtReg = RegMap->getSuperRegister(VirtReg);
|
||||
}
|
||||
|
||||
if (VRM.isAssignedReg(VirtReg)) {
|
||||
// This virtual register was assigned a physreg!
|
||||
unsigned Phys = VRM.getPhys(VirtReg);
|
||||
MF.setPhysRegUsed(Phys);
|
||||
if (MO.isDef())
|
||||
ReusedOperands.markClobbered(Phys);
|
||||
MI.getOperand(i).setReg(Phys);
|
||||
unsigned RReg = isSubReg ? MRI->getSubReg(Phys, SubIdx) : Phys;
|
||||
MI.getOperand(i).setReg(RReg);
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -817,6 +827,24 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
|
|||
if (ReuseSlot != VirtRegMap::NO_STACK_SLOT)
|
||||
PhysReg = Spills.getSpillSlotOrReMatPhysReg(ReuseSlot);
|
||||
}
|
||||
|
||||
// If this is a sub-register use, make sure the reuse register is in the
|
||||
// right register class. For example, for x86 not all of the 32-bit
|
||||
// registers have accessible sub-registers.
|
||||
// Similarly so for EXTRACT_SUBREG. Consider this:
|
||||
// EDI = op
|
||||
// MOV32_mr fi#1, EDI
|
||||
// ...
|
||||
// = EXTRACT_SUBREG fi#1
|
||||
// fi#1 is available in EDI, but it cannot be reused because it's not in
|
||||
// the right register file.
|
||||
if (PhysReg &&
|
||||
(isSubReg || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
|
||||
const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
|
||||
if (!RC->contains(PhysReg))
|
||||
PhysReg = 0;
|
||||
}
|
||||
|
||||
if (PhysReg) {
|
||||
// This spilled operand might be part of a two-address operand. If this
|
||||
// is the case, then changing it will necessarily require changing the
|
||||
|
@ -824,6 +852,7 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
|
|||
// aren't allowed to modify the reused register. If none of these cases
|
||||
// apply, reuse it.
|
||||
bool CanReuse = true;
|
||||
|
||||
int ti = TID->getOperandConstraint(i, TOI::TIED_TO);
|
||||
if (ti != -1 &&
|
||||
MI.getOperand(ti).isRegister() &&
|
||||
|
@ -845,7 +874,8 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
|
|||
<< MRI->getName(PhysReg) << " for vreg"
|
||||
<< VirtReg <<" instead of reloading into physreg "
|
||||
<< MRI->getName(VRM.getPhys(VirtReg)) << "\n";
|
||||
MI.getOperand(i).setReg(PhysReg);
|
||||
unsigned RReg = isSubReg ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
|
||||
MI.getOperand(i).setReg(RReg);
|
||||
|
||||
// The only technical detail we have is that we don't know that
|
||||
// PhysReg won't be clobbered by a reloaded stack slot that occurs
|
||||
|
@ -883,7 +913,7 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
|
|||
}
|
||||
}
|
||||
continue;
|
||||
}
|
||||
} // CanReuse
|
||||
|
||||
// Otherwise we have a situation where we have a two-address instruction
|
||||
// whose mod/ref operand needs to be reloaded. This reload is already
|
||||
|
@ -917,13 +947,14 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
|
|||
DOUT << " from physreg " << MRI->getName(PhysReg) << " for vreg"
|
||||
<< VirtReg
|
||||
<< " instead of reloading into same physreg.\n";
|
||||
MI.getOperand(i).setReg(PhysReg);
|
||||
unsigned RReg = isSubReg ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
|
||||
MI.getOperand(i).setReg(RReg);
|
||||
ReusedOperands.markClobbered(PhysReg);
|
||||
++NumReused;
|
||||
continue;
|
||||
}
|
||||
|
||||
const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(VirtReg);
|
||||
const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
|
||||
MF.setPhysRegUsed(DesignatedReg);
|
||||
ReusedOperands.markClobbered(DesignatedReg);
|
||||
MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
|
||||
|
@ -935,16 +966,17 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
|
|||
Spills.ClobberPhysReg(DesignatedReg);
|
||||
|
||||
Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
|
||||
MI.getOperand(i).setReg(DesignatedReg);
|
||||
unsigned RReg =
|
||||
isSubReg ? MRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
|
||||
MI.getOperand(i).setReg(RReg);
|
||||
DOUT << '\t' << *prior(MII);
|
||||
++NumReused;
|
||||
continue;
|
||||
}
|
||||
} // is (PhysReg)
|
||||
|
||||
// Otherwise, reload it and remember that we have it.
|
||||
PhysReg = VRM.getPhys(VirtReg);
|
||||
assert(PhysReg && "Must map virtreg to physreg!");
|
||||
const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(VirtReg);
|
||||
|
||||
// Note that, if we reused a register for a previous operand, the
|
||||
// register we want to reload into might not actually be
|
||||
|
@ -960,6 +992,7 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
|
|||
MRI->reMaterialize(MBB, &MI, PhysReg, VRM.getReMaterializedMI(VirtReg));
|
||||
++NumReMats;
|
||||
} else {
|
||||
const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
|
||||
MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
|
||||
++NumLoads;
|
||||
}
|
||||
|
@ -974,7 +1007,8 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
|
|||
// unless it's a two-address operand.
|
||||
if (TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
|
||||
MI.getOperand(i).setIsKill();
|
||||
MI.getOperand(i).setReg(PhysReg);
|
||||
unsigned RReg = isSubReg ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
|
||||
MI.getOperand(i).setReg(RReg);
|
||||
UpdateKills(*prior(MII), RegKills, KillOps);
|
||||
DOUT << '\t' << *prior(MII);
|
||||
}
|
||||
|
@ -1002,30 +1036,28 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
|
|||
// straight load from the virt reg slot.
|
||||
if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
|
||||
int FrameIdx;
|
||||
if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
|
||||
if (FrameIdx == SS) {
|
||||
// If this spill slot is available, turn it into a copy (or nothing)
|
||||
// instead of leaving it as a load!
|
||||
if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
|
||||
DOUT << "Promoted Load To Copy: " << MI;
|
||||
if (DestReg != InReg) {
|
||||
const TargetRegisterClass *RC =
|
||||
MF.getSSARegMap()->getRegClass(VirtReg);
|
||||
MRI->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
|
||||
// Revisit the copy so we make sure to notice the effects of the
|
||||
// operation on the destreg (either needing to RA it if it's
|
||||
// virtual or needing to clobber any values if it's physical).
|
||||
NextMII = &MI;
|
||||
--NextMII; // backtrack to the copy.
|
||||
BackTracked = true;
|
||||
} else
|
||||
DOUT << "Removing now-noop copy: " << MI;
|
||||
unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
|
||||
if (DestReg && FrameIdx == SS) {
|
||||
// If this spill slot is available, turn it into a copy (or nothing)
|
||||
// instead of leaving it as a load!
|
||||
if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
|
||||
DOUT << "Promoted Load To Copy: " << MI;
|
||||
if (DestReg != InReg) {
|
||||
const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg);
|
||||
MRI->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
|
||||
// Revisit the copy so we make sure to notice the effects of the
|
||||
// operation on the destreg (either needing to RA it if it's
|
||||
// virtual or needing to clobber any values if it's physical).
|
||||
NextMII = &MI;
|
||||
--NextMII; // backtrack to the copy.
|
||||
BackTracked = true;
|
||||
} else
|
||||
DOUT << "Removing now-noop copy: " << MI;
|
||||
|
||||
VRM.RemoveFromFoldedVirtMap(&MI);
|
||||
MBB.erase(&MI);
|
||||
Erased = true;
|
||||
goto ProcessNextInst;
|
||||
}
|
||||
VRM.RemoveFromFoldedVirtMap(&MI);
|
||||
MBB.erase(&MI);
|
||||
Erased = true;
|
||||
goto ProcessNextInst;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1121,7 +1153,7 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
|
|||
|
||||
// The only vregs left are stack slot definitions.
|
||||
int StackSlot = VRM.getStackSlot(VirtReg);
|
||||
const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(VirtReg);
|
||||
const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg);
|
||||
|
||||
// If this def is part of a two-address operand, make sure to execute
|
||||
// the store from the correct physical register.
|
||||
|
|
Loading…
Reference in New Issue