forked from OSchip/llvm-project
[mlir][SCF] Generalize AffineMinSCFCanonicalization to min/max ops
* Add support for affine.max ops to SCF loop peeling pattern. * Add support for affine.max ops to `AffineMinSCFCanonicalizationPattern`. * Rename `AffineMinSCFCanonicalizationPattern` to `AffineOpSCFCanonicalizationPattern`. * Rename `AffineMinSCFCanonicalization` pass to `SCFAffineOpCanonicalization`. Differential Revision: https://reviews.llvm.org/D108009
This commit is contained in:
parent
90e0c657b7
commit
a9cff97f94
|
@ -28,9 +28,9 @@ std::unique_ptr<Pass> createForLoopSpecializationPass();
|
|||
/// better vectorization.
|
||||
std::unique_ptr<Pass> createForLoopPeelingPass();
|
||||
|
||||
/// Creates a pass that canonicalizes affine.min ops in scf.for loops with
|
||||
/// known lower and upper bounds.
|
||||
std::unique_ptr<Pass> createAffineMinSCFCanonicalizationPass();
|
||||
/// Creates a pass that canonicalizes affine.min and affine.max operations
|
||||
/// inside of scf.for loops with known lower and upper bounds.
|
||||
std::unique_ptr<Pass> createSCFAffineOpCanonicalizationPass();
|
||||
|
||||
/// Creates a loop fusion pass which fuses parallel loops.
|
||||
std::unique_ptr<Pass> createParallelLoopFusionPass();
|
||||
|
|
|
@ -19,11 +19,11 @@ def SCFBufferize : FunctionPass<"scf-bufferize"> {
|
|||
|
||||
// Note: Making this a canonicalization pattern would require a dependency
|
||||
// of the SCF dialect on the Affine dialect or vice versa.
|
||||
def AffineMinSCFCanonicalization
|
||||
: FunctionPass<"canonicalize-scf-affine-min"> {
|
||||
let summary = "Canonicalize affine.min ops in the context of SCF loops with "
|
||||
"known bounds";
|
||||
let constructor = "mlir::createAffineMinSCFCanonicalizationPass()";
|
||||
def SCFAffineOpCanonicalization
|
||||
: FunctionPass<"canonicalize-scf-affine-op"> {
|
||||
let summary = "Canonicalize affine.min and affine.max ops in the context of "
|
||||
"SCF loops with known bounds";
|
||||
let constructor = "mlir::createSCFAffineOpCanonicalizationPass()";
|
||||
let dependentDialects = ["AffineDialect"];
|
||||
}
|
||||
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
|
||||
namespace mlir {
|
||||
|
||||
class AffineMinOp;
|
||||
class AffineMap;
|
||||
class ConversionTarget;
|
||||
struct LogicalResult;
|
||||
class MLIRContext;
|
||||
|
@ -29,6 +29,7 @@ class RewritePatternSet;
|
|||
using OwningRewritePatternList = RewritePatternSet;
|
||||
class Operation;
|
||||
class Value;
|
||||
class ValueRange;
|
||||
|
||||
namespace scf {
|
||||
|
||||
|
@ -37,20 +38,28 @@ class ForOp;
|
|||
class ParallelOp;
|
||||
class ForOp;
|
||||
|
||||
/// Try to canonicalize an affine.min operation in the context of `for` loops
|
||||
/// with a known range.
|
||||
/// Match "for loop"-like operations: If the first parameter is an iteration
|
||||
/// variable, return lower/upper bounds via the second/third parameter and the
|
||||
/// step size via the last parameter. The function should return `success` in
|
||||
/// that case. If the first parameter is not an iteration variable, return
|
||||
/// `failure`.
|
||||
using LoopMatcherFn =
|
||||
function_ref<LogicalResult(Value, Value &, Value &, Value &)>;
|
||||
|
||||
/// Try to canonicalize an min/max operations in the context of for `loops` with
|
||||
/// a known range.
|
||||
///
|
||||
/// `loopMatcher` is used to retrieve loop bounds and step size for a given
|
||||
/// iteration variable: If the first parameter is an iteration variable, return
|
||||
/// lower/upper bounds via the second/third parameter and the step size via the
|
||||
/// last parameter. The function should return `success` in that case. If the
|
||||
/// first parameter is not an iteration variable, return `failure`.
|
||||
/// `map` is the body of the min/max operation and `operands` are the SSA values
|
||||
/// that the dimensions and symbols are bound to; dimensions are listed first.
|
||||
/// If `isMin`, the operation is a min operation; otherwise, a max operation.
|
||||
/// `loopMatcher` is used to retrieve loop bounds and the step size for a given
|
||||
/// iteration variable.
|
||||
///
|
||||
/// Note: `loopMatcher` allows this function to be used with any "for loop"-like
|
||||
/// operation (scf.for, scf.parallel and even ops defined in other dialects).
|
||||
LogicalResult canonicalizeAffineMinOpInLoop(
|
||||
AffineMinOp minOp, RewriterBase &rewriter,
|
||||
function_ref<LogicalResult(Value, Value &, Value &, Value &)> loopMatcher);
|
||||
LogicalResult canonicalizeMinMaxOpInLoop(RewriterBase &rewriter, Operation *op,
|
||||
AffineMap map, ValueRange operands,
|
||||
bool isMin, LoopMatcherFn loopMatcher);
|
||||
|
||||
/// Fuses all adjacent scf.parallel operations with identical bounds and step
|
||||
/// into one scf.parallel operations. Uses a naive aliasing and dependency
|
||||
|
@ -85,10 +94,10 @@ void naivelyFuseParallelOps(Region ®ion);
|
|||
/// ```
|
||||
///
|
||||
/// After loop peeling, this function tries to simplify/canonicalize affine.min
|
||||
/// operations in the body of the loop and the scf.if, taking advantage of the
|
||||
/// fact that every iteration of the peeled loop is a "full" iteration. This
|
||||
/// canonicalization is expected to enable further canonicalization
|
||||
/// opportunities through other patterns.
|
||||
/// and affine.max ops in the body of the loop and the scf.if, taking advantage
|
||||
/// of the fact that the peeled loop has only "full" iterations and the scf.if
|
||||
/// is always a partial iteration (if any). This canonicalization is expected to
|
||||
/// enable further canonicalization opportunities through other patterns.
|
||||
///
|
||||
/// The return value indicates whether the loop was rewritten or not. Loops are
|
||||
/// not rewritten if:
|
||||
|
@ -168,7 +177,7 @@ void populateSCFLoopPipeliningPatterns(RewritePatternSet &patterns,
|
|||
const PipeliningOption &options);
|
||||
|
||||
/// Populate patterns for canonicalizing operations inside SCF loop bodies.
|
||||
/// At the moment, only affine.min computations with iteration variables,
|
||||
/// At the moment, only affine.min/max computations with iteration variables,
|
||||
/// loop bounds and loop steps are canonicalized.
|
||||
void populateSCFLoopBodyCanonicalizationPatterns(RewritePatternSet &patterns);
|
||||
|
||||
|
|
|
@ -190,76 +190,80 @@ static LogicalResult alignAndAddBound(FlatAffineValueConstraints &constraints,
|
|||
return constraints.addBound(type, pos, alignedMap);
|
||||
}
|
||||
|
||||
/// This function tries to canonicalize affine.min operations by proving that
|
||||
/// its value is bounded by the same lower and upper bound. In that case, the
|
||||
/// This function tries to canonicalize min/max operations by proving that their
|
||||
/// value is bounded by the same lower and upper bound. In that case, the
|
||||
/// operation can be folded away.
|
||||
///
|
||||
/// Bounds are computed by FlatAffineValueConstraints. Invariants required for
|
||||
/// finding/proving bounds should be supplied via `constraints`.
|
||||
///
|
||||
/// 1. Add dimensions for `minOp` and `minOpUb` (upper bound of `minOp`).
|
||||
/// 2. Compute an upper bound of `minOp` and bind it to `minOpUb`. SSA values
|
||||
/// that are used in `minOp` but are not part of `dims`, are added as extra
|
||||
/// symbols to the constraint set.
|
||||
/// 3. For each result of `minOp`: Add result as a dimension `r_i`. Prove that
|
||||
/// r_i >= minOpUb. If this is the case, ub(minOp) == lb(minOp) and `minOp`
|
||||
/// can be replaced with that bound.
|
||||
/// 1. Add dimensions for `op` and `opBound` (lower or upper bound of `op`).
|
||||
/// 2. Compute an upper bound of `op` (in case of `isMin`) or a lower bound (in
|
||||
/// case of `!isMin`) and bind it to `opBound`. SSA values that are used in
|
||||
/// `op` but are not part of `constraints`, are added as extra symbols.
|
||||
/// 3. For each result of `op`: Add result as a dimension `r_i`. Prove that:
|
||||
/// * If `isMin`: r_i >= opBound
|
||||
/// * If `isMax`: r_i <= opBound
|
||||
/// If this is the case, ub(op) == lb(op).
|
||||
/// 4. Replace `op` with `opBound`.
|
||||
///
|
||||
/// In summary, the following constraints are added throughout this function.
|
||||
/// Note: `invar` are dimensions added by the caller to express the invariants.
|
||||
/// (Showing only the case where `isMin`.)
|
||||
///
|
||||
/// invar | minOp | minOpUb | r_i | extra syms... | const | eq/ineq
|
||||
/// invar | op | opBound | r_i | extra syms... | const | eq/ineq
|
||||
/// ------+-------+---------+-----+---------------+-------+-------------------
|
||||
/// (various eq./ineq. constraining `invar`, added by the caller)
|
||||
/// ... | 0 | 0 | 0 | 0 | ... | ...
|
||||
/// ------+-------+---------+-----+---------------+-------+-------------------
|
||||
/// (various ineq. constraining `minOp` in terms of `minOp` operands (`invar`
|
||||
/// and extra `minOp` operands "extra syms" that are not in `invar`)).
|
||||
/// (various ineq. constraining `op` in terms of `op` operands (`invar` and
|
||||
/// extra `op` operands "extra syms" that are not in `invar`)).
|
||||
/// ... | -1 | 0 | 0 | ... | ... | >= 0
|
||||
/// ------+-------+---------+-----+---------------+-------+-------------------
|
||||
/// (set `minOpUb` to `minOp` upper bound in terms of `invar` and extra syms)
|
||||
/// (set `opBound` to `op` upper bound in terms of `invar` and "extra syms")
|
||||
/// ... | 0 | -1 | 0 | ... | ... | = 0
|
||||
/// ------+-------+---------+-----+---------------+-------+-------------------
|
||||
/// (for each `minOp` map result r_i: copy previous constraints, set r_i to
|
||||
/// corresponding map result, prove r_i >= minOpUb via contradiction)
|
||||
/// (for each `op` map result r_i: set r_i to corresponding map result,
|
||||
/// prove that r_i >= minOpUb via contradiction)
|
||||
/// ... | 0 | 0 | -1 | ... | ... | = 0
|
||||
/// 0 | 0 | 1 | -1 | 0 | -1 | >= 0
|
||||
///
|
||||
static LogicalResult
|
||||
canonicalizeAffineMinOp(RewriterBase &rewriter, AffineMinOp minOp,
|
||||
FlatAffineValueConstraints constraints) {
|
||||
canonicalizeMinMaxOp(RewriterBase &rewriter, Operation *op, AffineMap map,
|
||||
ValueRange operands, bool isMin,
|
||||
FlatAffineValueConstraints constraints) {
|
||||
RewriterBase::InsertionGuard guard(rewriter);
|
||||
AffineMap minOpMap = minOp.getAffineMap();
|
||||
unsigned numResults = minOpMap.getNumResults();
|
||||
unsigned numResults = map.getNumResults();
|
||||
|
||||
// Add a few extra dimensions.
|
||||
unsigned dimMinOp = constraints.addDimId(); // `minOp`
|
||||
unsigned dimMinOpUb = constraints.addDimId(); // `minOp` upper bound
|
||||
unsigned dimOp = constraints.addDimId(); // `op`
|
||||
unsigned dimOpBound = constraints.addDimId(); // `op` lower/upper bound
|
||||
unsigned resultDimStart = constraints.getNumDimIds();
|
||||
for (unsigned i = 0; i < numResults; ++i)
|
||||
constraints.addDimId();
|
||||
|
||||
// Add an inequality for each result expr_i of minOpMap: minOp <= expr_i
|
||||
if (failed(alignAndAddBound(constraints, FlatAffineConstraints::UB, dimMinOp,
|
||||
minOpMap, minOp.operands())))
|
||||
// Add an inequality for each result expr_i of map:
|
||||
// isMin: op <= expr_i, !isMin: op >= expr_i
|
||||
auto boundType =
|
||||
isMin ? FlatAffineConstraints::UB : FlatAffineConstraints::LB;
|
||||
if (failed(alignAndAddBound(constraints, boundType, dimOp, map, operands)))
|
||||
return failure();
|
||||
|
||||
// Try to compute an upper bound for minOp, expressed in terms of the other
|
||||
// Try to compute a lower/upper bound for op, expressed in terms of the other
|
||||
// `dims` and extra symbols.
|
||||
SmallVector<AffineMap> minOpValLb(1), minOpValUb(1);
|
||||
constraints.getSliceBounds(dimMinOp, 1, minOp.getContext(), &minOpValLb,
|
||||
&minOpValUb);
|
||||
SmallVector<AffineMap> opLb(1), opUb(1);
|
||||
constraints.getSliceBounds(dimOp, 1, rewriter.getContext(), &opLb, &opUb);
|
||||
AffineMap boundMap = isMin ? opUb[0] : opLb[0];
|
||||
// TODO: `getSliceBounds` may return multiple bounds at the moment. This is
|
||||
// a TODO of `getSliceBounds` and not handled here.
|
||||
if (!minOpValUb[0] || minOpValUb[0].getNumResults() != 1)
|
||||
return failure(); // No or multiple upper bounds found.
|
||||
if (!boundMap || boundMap.getNumResults() != 1)
|
||||
return failure(); // No or multiple bounds found.
|
||||
|
||||
// Add an equality: dimMinOpUb = minOpValUb[0]
|
||||
// Add back dimension for minOp. (Was removed by `getSliceBounds`.)
|
||||
AffineMap alignedUbMap = minOpValUb[0].shiftDims(/*shift=*/1,
|
||||
/*offset=*/dimMinOp);
|
||||
if (failed(constraints.addBound(FlatAffineConstraints::EQ, dimMinOpUb,
|
||||
alignedUbMap)))
|
||||
// Add an equality: Set dimOpBound to computed bound.
|
||||
// Add back dimension for op. (Was removed by `getSliceBounds`.)
|
||||
AffineMap alignedBoundMap = boundMap.shiftDims(/*shift=*/1, /*offset=*/dimOp);
|
||||
if (failed(constraints.addBound(FlatAffineConstraints::EQ, dimOpBound,
|
||||
alignedBoundMap)))
|
||||
return failure();
|
||||
|
||||
// If the constraint system is empty, there is an inconsistency. (E.g., this
|
||||
|
@ -267,12 +271,13 @@ canonicalizeAffineMinOp(RewriterBase &rewriter, AffineMinOp minOp,
|
|||
if (constraints.isEmpty())
|
||||
return failure();
|
||||
|
||||
// Prove that each result of minOpMap has a lower bound that is equal to (or
|
||||
// greater than) the upper bound of minOp (`kDimMinOpUb`). In that case,
|
||||
// minOp can be replaced with the bound. I.e., prove that for each result
|
||||
// In the case of `isMin` (`!isMin` is inversed):
|
||||
// Prove that each result of `map` has a lower bound that is equal to (or
|
||||
// greater than) the upper bound of `op` (`dimOpBound`). In that case, `op`
|
||||
// can be replaced with the bound. I.e., prove that for each result
|
||||
// expr_i (represented by dimension r_i):
|
||||
//
|
||||
// r_i >= minOpUb
|
||||
// r_i >= opBound
|
||||
//
|
||||
// To prove this inequality, add its negation to the constraint set and prove
|
||||
// that the constraint set is empty.
|
||||
|
@ -284,33 +289,35 @@ canonicalizeAffineMinOp(RewriterBase &rewriter, AffineMinOp minOp,
|
|||
// minOp <= expr_i. However, then we run the risk that `getSliceBounds`
|
||||
// computes minOpUb in terms of r_i dims, which is not desired.
|
||||
if (failed(alignAndAddBound(newConstr, FlatAffineConstraints::EQ, i,
|
||||
minOpMap.getSubMap({i - resultDimStart}),
|
||||
minOp.operands())))
|
||||
map.getSubMap({i - resultDimStart}), operands)))
|
||||
return failure();
|
||||
|
||||
// Add inequality: r_i < minOpUb (equiv.: minOpUb - r_i - 1 >= 0)
|
||||
// If `isMin`: Add inequality: r_i < opBound
|
||||
// equiv.: opBound - r_i - 1 >= 0
|
||||
// If `!isMin`: Add inequality: r_i > opBound
|
||||
// equiv.: -opBound + r_i - 1 >= 0
|
||||
SmallVector<int64_t> ineq(newConstr.getNumCols(), 0);
|
||||
ineq[dimMinOpUb] = 1;
|
||||
ineq[i] = -1;
|
||||
ineq[dimOpBound] = isMin ? 1 : -1;
|
||||
ineq[i] = isMin ? -1 : 1;
|
||||
ineq[newConstr.getNumCols() - 1] = -1;
|
||||
newConstr.addInequality(ineq);
|
||||
if (!newConstr.isEmpty())
|
||||
return failure();
|
||||
}
|
||||
|
||||
// Lower and upper bound of `minOp` are equal. Replace `minOp` with its bound.
|
||||
AffineMap newMap = alignedUbMap;
|
||||
// Lower and upper bound of `op` are equal. Replace `minOp` with its bound.
|
||||
AffineMap newMap = alignedBoundMap;
|
||||
SmallVector<Value> newOperands;
|
||||
unpackOptionalValues(constraints.getMaybeDimAndSymbolValues(), newOperands);
|
||||
mlir::canonicalizeMapAndOperands(&newMap, &newOperands);
|
||||
rewriter.setInsertionPoint(minOp);
|
||||
rewriter.replaceOpWithNewOp<AffineApplyOp>(minOp, newMap, newOperands);
|
||||
rewriter.setInsertionPoint(op);
|
||||
rewriter.replaceOpWithNewOp<AffineApplyOp>(op, newMap, newOperands);
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Try to simplify an affine.min operation `minOp` after loop peeling. This
|
||||
/// function detects affine.min operations such as (ub is the previous upper
|
||||
/// bound of the unpeeled loop):
|
||||
/// Try to simplify a min/max operation `op` after loop peeling. This function
|
||||
/// can simplify min/max operations such as (ub is the previous upper bound of
|
||||
/// the unpeeled loop):
|
||||
/// ```
|
||||
/// #map = affine_map<(d0)[s0, s1] -> (s0, -d0 + s1)>
|
||||
/// %r = affine.min #affine.min #map(%iv)[%step, %ub]
|
||||
|
@ -319,19 +326,24 @@ canonicalizeAffineMinOp(RewriterBase &rewriter, AffineMinOp minOp,
|
|||
/// ```
|
||||
/// %r = %step
|
||||
/// ```
|
||||
/// affine.min operations inside the generated scf.if operation are rewritten in
|
||||
/// min/max operations inside the generated scf.if operation are rewritten in
|
||||
/// a similar way.
|
||||
///
|
||||
/// This function builds up a set of constraints, capable of proving that:
|
||||
/// * Inside the peeled loop: min(step, ub - iv) == step
|
||||
/// * Inside the scf.if operation: min(step, ub - iv) == ub - iv
|
||||
///
|
||||
/// Returns `success` if the given operation was replaced by a new operation;
|
||||
/// `failure` otherwise.
|
||||
///
|
||||
/// Note: `ub` is the previous upper bound of the loop (before peeling).
|
||||
/// `insideLoop` must be true for affine.min ops inside the loop and false for
|
||||
/// affine.min ops inside the scf.for op.
|
||||
static LogicalResult rewritePeeledAffineOp(RewriterBase &rewriter,
|
||||
AffineMinOp minOp, Value iv,
|
||||
Value ub, Value step,
|
||||
/// `insideLoop` must be true for min/max ops inside the loop and false for
|
||||
/// affine.min ops inside the scf.for op. For an explanation of the other
|
||||
/// parameters, see comment of `canonicalizeMinMaxOpInLoop`.
|
||||
static LogicalResult rewritePeeledMinMaxOp(RewriterBase &rewriter,
|
||||
Operation *op, AffineMap map,
|
||||
ValueRange operands, bool isMin,
|
||||
Value iv, Value ub, Value step,
|
||||
bool insideLoop) {
|
||||
FlatAffineValueConstraints constraints;
|
||||
constraints.addDimId(0, iv);
|
||||
|
@ -358,7 +370,23 @@ static LogicalResult rewritePeeledAffineOp(RewriterBase &rewriter,
|
|||
constraints.addInequality({1, -1, 1, -1});
|
||||
}
|
||||
|
||||
return canonicalizeAffineMinOp(rewriter, minOp, constraints);
|
||||
return canonicalizeMinMaxOp(rewriter, op, map, operands, isMin, constraints);
|
||||
}
|
||||
|
||||
template <typename OpTy, bool IsMin>
|
||||
static void
|
||||
rewriteAffineOpAfterPeeling(RewriterBase &rewriter, ForOp forOp, scf::IfOp ifOp,
|
||||
Value iv, Value splitBound, Value ub, Value step) {
|
||||
forOp.walk([&](OpTy affineOp) {
|
||||
(void)rewritePeeledMinMaxOp(rewriter, affineOp, affineOp.getAffineMap(),
|
||||
affineOp.operands(), IsMin, iv, ub, step,
|
||||
/*insideLoop=*/true);
|
||||
});
|
||||
ifOp.walk([&](OpTy affineOp) {
|
||||
(void)rewritePeeledMinMaxOp(rewriter, affineOp, affineOp.getAffineMap(),
|
||||
affineOp.operands(), IsMin, splitBound, ub,
|
||||
step, /*insideLoop=*/false);
|
||||
});
|
||||
}
|
||||
|
||||
LogicalResult mlir::scf::peelAndCanonicalizeForLoop(RewriterBase &rewriter,
|
||||
|
@ -369,21 +397,18 @@ LogicalResult mlir::scf::peelAndCanonicalizeForLoop(RewriterBase &rewriter,
|
|||
if (failed(peelForLoop(rewriter, forOp, ifOp, splitBound)))
|
||||
return failure();
|
||||
|
||||
// Rewrite affine.min ops.
|
||||
forOp.walk([&](AffineMinOp minOp) {
|
||||
(void)rewritePeeledAffineOp(rewriter, minOp, forOp.getInductionVar(), ub,
|
||||
forOp.step(), /*insideLoop=*/true);
|
||||
});
|
||||
ifOp.walk([&](AffineMinOp minOp) {
|
||||
(void)rewritePeeledAffineOp(rewriter, minOp, splitBound, ub, forOp.step(),
|
||||
/*insideLoop=*/false);
|
||||
});
|
||||
// Rewrite affine.min and affine.max ops.
|
||||
Value iv = forOp.getInductionVar(), step = forOp.step();
|
||||
rewriteAffineOpAfterPeeling<AffineMinOp, /*IsMin=*/true>(
|
||||
rewriter, forOp, ifOp, iv, splitBound, ub, step);
|
||||
rewriteAffineOpAfterPeeling<AffineMaxOp, /*IsMin=*/false>(
|
||||
rewriter, forOp, ifOp, iv, splitBound, ub, step);
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Canonicalize AffineMinOp operations in the context of for loops with a known
|
||||
/// range. Call `canonicalizeAffineMinOp` and add the following constraints to
|
||||
/// Canonicalize min/max operations in the context of for loops with a known
|
||||
/// range. Call `canonicalizeMinMaxOp` and add the following constraints to
|
||||
/// the constraint system (along with the missing dimensions):
|
||||
///
|
||||
/// * iv >= lb
|
||||
|
@ -391,14 +416,15 @@ LogicalResult mlir::scf::peelAndCanonicalizeForLoop(RewriterBase &rewriter,
|
|||
///
|
||||
/// Note: Due to limitations of FlatAffineConstraints, only constant step sizes
|
||||
/// are currently supported.
|
||||
LogicalResult mlir::scf::canonicalizeAffineMinOpInLoop(
|
||||
AffineMinOp minOp, RewriterBase &rewriter,
|
||||
function_ref<LogicalResult(Value, Value &, Value &, Value &)> loopMatcher) {
|
||||
LogicalResult
|
||||
mlir::scf::canonicalizeMinMaxOpInLoop(RewriterBase &rewriter, Operation *op,
|
||||
AffineMap map, ValueRange operands,
|
||||
bool isMin, LoopMatcherFn loopMatcher) {
|
||||
FlatAffineValueConstraints constraints;
|
||||
DenseSet<Value> allIvs;
|
||||
|
||||
// Find all iteration variables among `minOp`'s operands add constrain them.
|
||||
for (Value operand : minOp.operands()) {
|
||||
for (Value operand : operands) {
|
||||
// Skip duplicate ivs.
|
||||
if (llvm::find(allIvs, operand) != allIvs.end())
|
||||
continue;
|
||||
|
@ -450,7 +476,7 @@ LogicalResult mlir::scf::canonicalizeAffineMinOpInLoop(
|
|||
return failure();
|
||||
}
|
||||
|
||||
return canonicalizeAffineMinOp(rewriter, minOp, constraints);
|
||||
return canonicalizeMinMaxOp(rewriter, op, map, operands, isMin, constraints);
|
||||
}
|
||||
|
||||
static constexpr char kPeeledLoopLabel[] = "__peeled_loop__";
|
||||
|
@ -495,13 +521,13 @@ struct ForLoopPeelingPattern : public OpRewritePattern<ForOp> {
|
|||
bool skipPartial;
|
||||
};
|
||||
|
||||
/// Canonicalize AffineMinOp operations in the context of scf.for and
|
||||
/// scf.parallel loops with a known range.
|
||||
struct AffineMinSCFCanonicalizationPattern
|
||||
: public OpRewritePattern<AffineMinOp> {
|
||||
using OpRewritePattern<AffineMinOp>::OpRewritePattern;
|
||||
/// Canonicalize AffineMinOp/AffineMaxOp operations in the context of scf.for
|
||||
/// and scf.parallel loops with a known range.
|
||||
template <typename OpTy, bool IsMin>
|
||||
struct AffineOpSCFCanonicalizationPattern : public OpRewritePattern<OpTy> {
|
||||
using OpRewritePattern<OpTy>::OpRewritePattern;
|
||||
|
||||
LogicalResult matchAndRewrite(AffineMinOp minOp,
|
||||
LogicalResult matchAndRewrite(OpTy op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
auto loopMatcher = [](Value iv, Value &lb, Value &ub, Value &step) {
|
||||
if (scf::ForOp forOp = scf::getForInductionVarOwner(iv)) {
|
||||
|
@ -524,7 +550,8 @@ struct AffineMinSCFCanonicalizationPattern
|
|||
return failure();
|
||||
};
|
||||
|
||||
return scf::canonicalizeAffineMinOpInLoop(minOp, rewriter, loopMatcher);
|
||||
return scf::canonicalizeMinMaxOpInLoop(rewriter, op, op.getAffineMap(),
|
||||
op.operands(), IsMin, loopMatcher);
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
@ -561,21 +588,21 @@ struct ForLoopPeeling : public SCFForLoopPeelingBase<ForLoopPeeling> {
|
|||
}
|
||||
};
|
||||
|
||||
struct AffineMinSCFCanonicalization
|
||||
: public AffineMinSCFCanonicalizationBase<AffineMinSCFCanonicalization> {
|
||||
struct SCFAffineOpCanonicalization
|
||||
: public SCFAffineOpCanonicalizationBase<SCFAffineOpCanonicalization> {
|
||||
void runOnFunction() override {
|
||||
FuncOp funcOp = getFunction();
|
||||
MLIRContext *ctx = funcOp.getContext();
|
||||
RewritePatternSet patterns(ctx);
|
||||
patterns.add<AffineMinSCFCanonicalizationPattern>(ctx);
|
||||
scf::populateSCFLoopBodyCanonicalizationPatterns(patterns);
|
||||
if (failed(applyPatternsAndFoldGreedily(funcOp, std::move(patterns))))
|
||||
signalPassFailure();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
std::unique_ptr<Pass> mlir::createAffineMinSCFCanonicalizationPass() {
|
||||
return std::make_unique<AffineMinSCFCanonicalization>();
|
||||
std::unique_ptr<Pass> mlir::createSCFAffineOpCanonicalizationPass() {
|
||||
return std::make_unique<SCFAffineOpCanonicalization>();
|
||||
}
|
||||
|
||||
std::unique_ptr<Pass> mlir::createParallelLoopSpecializationPass() {
|
||||
|
@ -592,5 +619,9 @@ std::unique_ptr<Pass> mlir::createForLoopPeelingPass() {
|
|||
|
||||
void mlir::scf::populateSCFLoopBodyCanonicalizationPatterns(
|
||||
RewritePatternSet &patterns) {
|
||||
patterns.insert<AffineMinSCFCanonicalizationPattern>(patterns.getContext());
|
||||
MLIRContext *ctx = patterns.getContext();
|
||||
patterns
|
||||
.insert<AffineOpSCFCanonicalizationPattern<AffineMinOp, /*IsMin=*/true>,
|
||||
AffineOpSCFCanonicalizationPattern<AffineMaxOp, /*IsMin=*/false>>(
|
||||
ctx);
|
||||
}
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
// RUN: mlir-opt %s -canonicalize-scf-affine-min -split-input-file | FileCheck %s
|
||||
// RUN: mlir-opt %s -canonicalize-scf-affine-op -split-input-file | FileCheck %s
|
||||
|
||||
// CHECK-LABEL: func @scf_for_canonicalize_min
|
||||
// CHECK: %[[C2:.*]] = constant 2 : i64
|
||||
|
@ -19,6 +19,45 @@ func @scf_for_canonicalize_min(%A : memref<i64>) {
|
|||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func @scf_for_canonicalize_max
|
||||
// CHECK: %[[Cneg2:.*]] = constant -2 : i64
|
||||
// CHECK: scf.for
|
||||
// CHECK: memref.store %[[Cneg2]], %{{.*}}[] : memref<i64>
|
||||
func @scf_for_canonicalize_max(%A : memref<i64>) {
|
||||
%c0 = constant 0 : index
|
||||
%c2 = constant 2 : index
|
||||
%c4 = constant 4 : index
|
||||
|
||||
scf.for %i = %c0 to %c4 step %c2 {
|
||||
%1 = affine.max affine_map<(d0, d1)[] -> (-2, -(d1 - d0))> (%i, %c4)
|
||||
%2 = index_cast %1: index to i64
|
||||
memref.store %2, %A[]: memref<i64>
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func @scf_for_max_not_canonicalizable
|
||||
// CHECK: scf.for
|
||||
// CHECK: affine.max
|
||||
// CHECK: index_cast
|
||||
func @scf_for_max_not_canonicalizable(%A : memref<i64>) {
|
||||
%c0 = constant 0 : index
|
||||
%c2 = constant 2 : index
|
||||
%c3 = constant 3 : index
|
||||
%c4 = constant 4 : index
|
||||
|
||||
scf.for %i = %c0 to %c4 step %c2 {
|
||||
%1 = affine.max affine_map<(d0, d1)[] -> (-2, -(d1 - d0))> (%i, %c3)
|
||||
%2 = index_cast %1: index to i64
|
||||
memref.store %2, %A[]: memref<i64>
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func @scf_for_loop_nest_canonicalize_min
|
||||
// CHECK: %[[C5:.*]] = constant 5 : i64
|
||||
// CHECK: scf.for
|
|
@ -149,18 +149,20 @@ func @no_loop_results(%ub : index, %d : memref<i32>) {
|
|||
|
||||
// -----
|
||||
|
||||
// Test rewriting of affine.min ops. Make sure that more general cases than
|
||||
// Test rewriting of affine.min/max ops. Make sure that more general cases than
|
||||
// the ones above are successfully rewritten. Also make sure that the pattern
|
||||
// does not rewrite affine.min ops that should not be rewritten.
|
||||
// does not rewrite ops that should not be rewritten.
|
||||
|
||||
// CHECK-DAG: #[[MAP1:.*]] = affine_map<()[s0] -> (s0 + 1)>
|
||||
// CHECK-DAG: #[[MAP2:.*]] = affine_map<(d0)[s0, s1] -> (s0, -d0 + s1 - 1)>
|
||||
// CHECK-DAG: #[[MAP3:.*]] = affine_map<(d0)[s0, s1, s2] -> (s0, -d0 + s1, s2)>
|
||||
// CHECK-DAG: #[[MAP4:.*]] = affine_map<()[s0, s1, s2] -> (-(s0 - (s0 - s1) mod s2) + s0)>
|
||||
// CHECK-DAG: #[[MAP5:.*]] = affine_map<()[s0, s1, s2] -> (-(s0 - (s0 - s1) mod s2) + s0 + 1)>
|
||||
// CHECK-DAG: #[[MAP6:.*]] = affine_map<()[s0, s1, s2] -> (-(s0 - (s0 - s1) mod s2) + s0 - 1)>
|
||||
// CHECK-DAG: #[[MAP7:.*]] = affine_map<()[s0, s1, s2, s3] -> (s0, s2 - (s2 - (s2 - s1) mod s0), s3)>
|
||||
// CHECK: func @test_affine_min_rewrite(
|
||||
// CHECK-DAG: #[[MAP4:.*]] = affine_map<()[s0] -> (-s0)>
|
||||
// CHECK-DAG: #[[MAP5:.*]] = affine_map<()[s0, s1, s2] -> (-(s0 - (s0 - s1) mod s2) + s0)>
|
||||
// CHECK-DAG: #[[MAP6:.*]] = affine_map<()[s0, s1, s2] -> (-(s0 - (s0 - s1) mod s2) + s0 + 1)>
|
||||
// CHECK-DAG: #[[MAP7:.*]] = affine_map<()[s0, s1, s2] -> (-(s0 - (s0 - s1) mod s2) + s0 - 1)>
|
||||
// CHECK-DAG: #[[MAP8:.*]] = affine_map<()[s0, s1, s2, s3] -> (s0, s2 - (s2 - (s2 - s1) mod s0), s3)>
|
||||
// CHECK-DAG: #[[MAP9:.*]] = affine_map<()[s0, s1, s2] -> (s0 - (s0 - s1) mod s2 - s0)>
|
||||
// CHECK: func @test_affine_op_rewrite(
|
||||
// CHECK-SAME: %[[LB:.*]]: index, %[[UB:.*]]: index, %[[STEP:.*]]: index,
|
||||
// CHECK-SAME: %[[MEMREF:.*]]: memref<?xindex>, %[[SOME_VAL:.*]]: index
|
||||
// CHECK: scf.for %[[IV:.*]] = %[[LB]] to %{{.*}} step %[[STEP]] {
|
||||
|
@ -174,31 +176,37 @@ func @no_loop_results(%ub : index, %d : memref<i32>) {
|
|||
// CHECK: memref.store %[[RES3]]
|
||||
// CHECK: %[[RES4:.*]] = affine.min #[[MAP3]](%[[IV]])[%[[STEP]], %[[UB]], %[[SOME_VAL]]]
|
||||
// CHECK: memref.store %[[RES4]]
|
||||
// CHECK: %[[RES5:.*]] = affine.apply #[[MAP4]]()[%[[STEP]]]
|
||||
// CHECK: memref.store %[[RES5]]
|
||||
// CHECK: }
|
||||
// CHECK: scf.if {{.*}} {
|
||||
// CHECK: %[[RES_IF_0:.*]] = affine.apply #[[MAP4]]()[%[[UB]], %[[LB]], %[[STEP]]]
|
||||
// CHECK: %[[RES_IF_0:.*]] = affine.apply #[[MAP5]]()[%[[UB]], %[[LB]], %[[STEP]]]
|
||||
// CHECK: memref.store %[[RES_IF_0]]
|
||||
// CHECK: %[[RES_IF_1:.*]] = affine.apply #[[MAP5]]()[%[[UB]], %[[LB]], %[[STEP]]]
|
||||
// CHECK: %[[RES_IF_1:.*]] = affine.apply #[[MAP6]]()[%[[UB]], %[[LB]], %[[STEP]]]
|
||||
// CHECK: memref.store %[[RES_IF_1]]
|
||||
// CHECK: %[[RES_IF_2:.*]] = affine.apply #[[MAP5]]()[%[[UB]], %[[LB]], %[[STEP]]]
|
||||
// CHECK: %[[RES_IF_2:.*]] = affine.apply #[[MAP6]]()[%[[UB]], %[[LB]], %[[STEP]]]
|
||||
// CHECK: memref.store %[[RES_IF_2]]
|
||||
// CHECK: %[[RES_IF_3:.*]] = affine.apply #[[MAP6]]()[%[[UB]], %[[LB]], %[[STEP]]]
|
||||
// CHECK: %[[RES_IF_3:.*]] = affine.apply #[[MAP7]]()[%[[UB]], %[[LB]], %[[STEP]]]
|
||||
// CHECK: memref.store %[[RES_IF_3]]
|
||||
// CHECK: %[[RES_IF_4:.*]] = affine.min #[[MAP7]]()[%[[STEP]], %[[LB]], %[[UB]], %[[SOME_VAL]]]
|
||||
// CHECK: %[[RES_IF_4:.*]] = affine.min #[[MAP8]]()[%[[STEP]], %[[LB]], %[[UB]], %[[SOME_VAL]]]
|
||||
// CHECK: memref.store %[[RES_IF_4]]
|
||||
// CHECK: %[[RES_IF_5:.*]] = affine.apply #[[MAP9]]()[%[[UB]], %[[LB]], %[[STEP]]]
|
||||
// CHECK: memref.store %[[RES_IF_5]]
|
||||
#map0 = affine_map<(d0, d1)[s0] -> (s0, d0 - d1)>
|
||||
#map1 = affine_map<(d0, d1)[s0] -> (d0 - d1 + 1, s0)>
|
||||
#map2 = affine_map<(d0, d1)[s0] -> (s0 + 1, d0 - d1 + 1)>
|
||||
#map3 = affine_map<(d0, d1)[s0] -> (s0, d0 - d1 - 1)>
|
||||
#map4 = affine_map<(d0, d1, d2)[s0] -> (s0, d0 - d1, d2)>
|
||||
func @test_affine_min_rewrite(%lb : index, %ub: index,
|
||||
%step: index, %d : memref<?xindex>,
|
||||
%some_val: index) {
|
||||
#map5 = affine_map<(d0, d1)[s0] -> (-s0, -d0 + d1)>
|
||||
func @test_affine_op_rewrite(%lb : index, %ub: index,
|
||||
%step: index, %d : memref<?xindex>,
|
||||
%some_val: index) {
|
||||
%c0 = constant 0 : index
|
||||
%c1 = constant 1 : index
|
||||
%c2 = constant 2 : index
|
||||
%c3 = constant 3 : index
|
||||
%c4 = constant 4 : index
|
||||
%c5 = constant 5 : index
|
||||
scf.for %iv = %lb to %ub step %step {
|
||||
// Most common case: Rewrite min(%ub - %iv, %step) to %step.
|
||||
%m0 = affine.min #map0(%ub, %iv)[%step]
|
||||
|
@ -221,6 +229,10 @@ func @test_affine_min_rewrite(%lb : index, %ub: index,
|
|||
// of %some_val is unknown.
|
||||
%m4 = affine.min #map4(%ub, %iv, %some_val)[%step]
|
||||
memref.store %m4, %d[%c4] : memref<?xindex>
|
||||
|
||||
// Rewrite max(-%ub + %iv, -%step) to -%ub + %iv (and -%step in the scf.if).
|
||||
%m5 = affine.max #map5(%ub, %iv)[%step]
|
||||
memref.store %m5, %d[%c5] : memref<?xindex>
|
||||
}
|
||||
return
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue